Ramsey theory

Ramsey theory asks extremal questions from a slightly different perspective from Turan theory. If we fix the number of vertices, then a high density of edges guarantees the appearance of certain subgraphs, while a low densite of edges guarantees subgraphs in the complement of the graph. Instead of thinking of graphs and their complements, we can think of taking the complete graph K_{n} and coloring the edges red/blue. The questions are now of the form: what is the smallest number of vertices such that every red/blue coloring of the edges of K_{n} has either a red copy of G or a blue copy of H. In 1930, Ramsey proved that such a number exists.

Theorem 1. For every $s, t \in \mathbb{N}$, there exists an n such that every red/blue coloring of the edges of K_{n} has either a red copy of K_{s} or a blue copy of K_{t}.

Thm 9.1.1
p. 284

We let $R(s, t)$ be the smallest such n, and let $R(s)=R(s, s)$. We did most of the following proofs in class.

Exercise 1. Write the full proof that $R(3)=6$. (Lower and upper bound.)
Exercise 2. Show that $R(2, s)=s$.
Exercise 3. Show that $R(3,4) \leq 9$. (We did an example in class to show that $R(3,4) \geq 9$.)
Exercise 4. Show that

$$
R(s, t) \leq R(s-1, t)+R(s, t-1)
$$

Probabilistic method

A sample space is a set of elements that we call outcomes. An event is a subset $A \subseteq \Omega$. The event space \mathcal{F} is a sigma-algebra: a collection of subsets $\mathcal{F} \subseteq 2^{\Omega}$ that includes Ω, is closed under taking complements and countable unions. For our purposes it is fine to assume $\mathcal{F}=2^{\Omega}$. A probability measure is a function $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$, such that $\mathbb{P}(\Omega)=1$, and \mathbb{P} is countable additive, meaning that $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)$, for disjoint events A_{1}, A_{2}, \ldots Now, a probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$.

A random variable is a measurable function $X: \Omega \rightarrow S$, where S is the state space of X. We will always deal with $S \subseteq \mathbb{R}$, and most of the time we will deal with discrete nonnegative random variables, such that $S \subseteq \mathbb{N}_{0}$. We use the notation $\mathbb{P}(X \in B)=\mathbb{P}(\{\omega \in \Omega \mid X(\omega) \in$ $B\}$). (Note that in that expression $B \subseteq \mathbb{R}$.) We let I_{A} be an indicator random variable for the event A. This means that

$$
I_{A}= \begin{cases}1, & \text { if } A \text { occurs } \\ 0, & \text { otherwise }\end{cases}
$$

In the case of a discrete random variable, we define the expectation of X as

$$
\mathbb{E}(X)=\sum_{x \in S} x \mathbb{P}(X=x)
$$

We say that two events A_{1} and A_{2} are independent if

$$
\mathbb{P}\left(A_{1} \cap A_{2}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right)
$$

In order to understand this idea more intuitively, we need the following definition. We let

$$
\mathbb{P}\left(A_{1} \mid A_{2}\right)=\frac{\mathbb{P}\left(A_{1} \cap A_{2}\right)}{\mathbb{P}\left(A_{2}\right)}
$$

The conditional probability $\mathbb{P}\left(A_{1} \mid A_{2}\right)$ indicates the probability of event A_{1} under the assumption of A_{2}. Another way of thinking about conditional probabilities is the following: we assume that $\mathbb{P}\left(A_{2}\right)=1$ and therefore $\mathbb{P}(\omega)=0$ for any $\omega \notin A_{2}$. We then obtain a new probability measure by scaling $\mathbb{P}(\omega)$ by $1 / \mathbb{P}\left(A_{2}\right)$ for each $\omega \in A_{2}$ so that our total probability remains 1. Now, we see that two events A_{1} and A_{2} are independent if and only if

$$
\mathbb{P}\left(A_{1} \mid A_{2}\right)=\mathbb{P}\left(A_{1}\right)
$$

In other words, the events A_{1} and A_{2} are independent if knowledge of one event does not yield information about the probability of the other.
Similarly, for random variables X, Y, we say that X and Y are independent if

$$
\mathbb{P}(X=x, Y=y)=\mathbb{P}(X=x)(Y=y), \text { for all } x, y
$$

The following lemma is one of the reasons that first-moment method proofs are usually surprisingly straight-forward. We can ignore dependence when working with the expectation of the sum of sets of random variables.

Lemma 2. We have linearity of expectation:

$$
\mathbb{E}\left(\sum_{i} X_{i}\right)=\sum_{i} \mathbb{E}\left(X_{i}\right)
$$

whether the events X_{i} are dependent or not.
Before we get into more complicated first-moment lemmas, we make a simple observation:
Proposition 3. We have

$$
\begin{aligned}
& \mathbb{P}(X \leq \mathbb{E}(X))>0 \\
& \mathbb{P}(X \geq \mathbb{E}(X))>0
\end{aligned}
$$

This simple observation gives us a powerful method of proving the existence of structures without finding explicit constructions. If $X(G)$ is an invariant of, for example, graphs, and we sample graphs from some distribution, then we immediately know that graphs with $X \geq \mathbb{E}(X)$ as well as graphs with $X \leq \mathbb{E}(X)$ exist.

Lemma 4 (Markov's inequality). For a non-negative random variable, we have

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}(X)}{t}
$$

The following is obtained from Markov by letting $t=1$.

Lemma 5 (First moment method). For a non-negative, integer-valued random variable, we have

$$
\mathbb{P}(X>0) \leq \mathbb{E}(X)
$$

Let $G=(V, E)$ be a graph, and let $n=|V|$ be the number of vertices in G. A k-edge-coloring of a graph is a coloring that uses k colors. We wish to find the largest n s.t. there exists a 2-edge coloring such that G contains no monochromatic K_{s}.

Exercise 5. Show that $R(s, s)>n$ if $\binom{n}{s} 2^{1-\binom{s}{2}}>1$. (Can you replace the $>$ by \geq in that last inequality?)

Exercise 6. Show that $R(s, s)>n-\binom{n}{s} 2^{1-\binom{s}{2}}$ for any n.

