
MATH 273 Graph Theory Rombach Week 10

Ramsey theory

Ramsey theory asks extremal questions from a slightly different perspective from Turan theory.
If we fix the number of vertices, then a high density of edges guarantees the appearance of
certain subgraphs, while a low densite of edges guarantees subgraphs in the complement of
the graph. Instead of thinking of graphs and their complements, we can think of taking the
complete graph Kn and coloring the edges red/blue. The questions are now of the form: what
is the smallest number of vertices such that every red/blue coloring of the edges of Kn has
either a red copy of G or a blue copy of H. In 1930, Ramsey proved that such a number
exists.

Theorem 1. For every s, t ∈ N, there exists an n such that every red/blue coloring of the Thm 9.1.1
p.284edges of Kn has either a red copy of Ks or a blue copy of Kt.

We let R(s, t) be the smallest such n, and let R(s) = R(s, s). We did most of the following
proofs in class.

Exercise 1. Write the full proof that R(3) = 6. (Lower and upper bound.) 1 point

Exercise 2. Show that R(2, s) = s. 1 point

Exercise 3. Show that R(3, 4) ≤ 9. (We did an example in class to show that R(3, 4) ≥ 9.) 2 points

Exercise 4. Show that 2 points
R(s, t) ≤ R(s− 1, t) + R(s, t− 1).

Probabilistic method

A sample space is a set of elements that we call outcomes. An event is a subset A ⊆ Ω.
The event space F is a sigma-algebra: a collection of subsets F ⊆ 2Ω that includes Ω, is
closed under taking complements and countable unions. For our purposes it is fine to assume
F = 2Ω. A probability measure is a function P : F → [0, 1], such that P(Ω) = 1, and P is
countable additive, meaning that P(

⋃∞
i=1 Ai) =

∑∞
i=1 P(Ai), for disjoint events A1, A2, . . ..

Now, a probability space is a triple (Ω,F ,P).

A random variable is a measurable function X : Ω → S, where S is the state space of X.
We will always deal with S ⊆ R, and most of the time we will deal with discrete nonnegative
random variables, such that S ⊆ N0. We use the notation P(X ∈ B) = P({ω ∈ Ω | X(ω) ∈
B}). (Note that in that expression B ⊆ R.) We let IA be an indicator random variable for
the event A. This means that

IA =

{
1, if A occurs
0, otherwise.

In the case of a discrete random variable, we define the expectation of X as

E(X) =
∑
x∈S

xP(X = x).
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We say that two events A1 and A2 are independent if

P(A1 ∩A2) = P(A1)P(A2).

In order to understand this idea more intuitively, we need the following definition. We let

P(A1|A2) =
P(A1 ∩A2)

P(A2)
.

The conditional probability P(A1|A2) indicates the probability of event A1 under the assump-
tion of A2. Another way of thinking about conditional probabilities is the following: we
assume that P(A2) = 1 and therefore P(ω) = 0 for any ω /∈ A2. We then obtain a new
probability measure by scaling P(ω) by 1/P(A2) for each ω ∈ A2 so that our total probability
remains 1. Now, we see that two events A1 and A2 are independent if and only if

P(A1|A2) = P(A1).

In other words, the events A1 and A2 are independent if knowledge of one event does not
yield information about the probability of the other.
Similarly, for random variables X,Y , we say that X and Y are independent if

P(X = x, Y = y) = P(X = x)(Y = y), for all x, y.

The following lemma is one of the reasons that first-moment method proofs are usually sur-
prisingly straight-forward. We can ignore dependence when working with the expectation of
the sum of sets of random variables.

Lemma 2. We have linearity of expectation:

E

(∑
i

Xi

)
=
∑
i

E(Xi),

whether the events Xi are dependent or not.

Before we get into more complicated first-moment lemmas, we make a simple observation:

Proposition 3. We have

P(X ≤ E(X)) > 0,

P(X ≥ E(X)) > 0.

This simple observation gives us a powerful method of proving the existence of structures
without finding explicit constructions. If X(G) is an invariant of, for example, graphs, and we
sample graphs from some distribution, then we immediately know that graphs withX ≥ E(X)
as well as graphs with X ≤ E(X) exist.

Lemma 4 (Markov’s inequality). For a non-negative random variable, we have

P(X ≥ t) ≤ E(X)

t
.

The following is obtained from Markov by letting t = 1.
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Lemma 5 (First moment method). For a non-negative, integer-valued random variable, we
have

P(X > 0) ≤ E(X).

Let G = (V,E) be a graph, and let n = |V | be the number of vertices in G. A k-edge-coloring
of a graph is a coloring that uses k colors. We wish to find the largest n s.t. there exists a
2-edge coloring such that G contains no monochromatic Ks.

Exercise 5. Show that R(s, s) > n if
(
n
s

)
21−(s2) > 1. (Can you replace the > by ≥ in that 2

last inequality?)

Exercise 6. Show that R(s, s) > n−
(
n
s

)
21−(s2) for any n. 1
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