Groups acting on themselves by left multiplication

In earlier lectures we already touched on a fundamental and perhaps surprising concept: the symmetric groups contain all possible groups. More precisely

Theorem (Cayley's Theorem). Every group is isomorphic to a subgroup of some symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of S_{n}.

We proved this by letting G act on itself by left multiplication and noticing that this action is faithful. Then, we obtain an injective permutation homomorphism of G into S_{n}. Now we generalize this by cnsidering the left multiplication action of G on the set of cosets of a subgroup $H \leq G$.

Theorem. Let G be a group, H any subgroup of G and let G act on the set A of left cosets of H by left multiplication. Let π_{H} be the associated permutation representation. Then
(1) G acts transitively on A,
(2) the stabilizer G_{H} is the subgroup H itself,
(3) the kernel of π_{H} is $\cap_{g \in G} g H^{-1}$, and this is the largest normal subgroup contained in H.

Finally, we obtain a nice little corollary that generalizes the result that subgroups of index 2 are normal in G. We will walk through the proof together in class.

Corollary. If G is a finite group of order n and p is the smallest prime dividing n, then any Cor. 5 subgroup of index p is normal.
p. 120

Conjugacy Classes

We consider the action of G on itself via conjugation. Let G be a group and let the action be given by

$$
g \cdot h=g h g^{-1}, \quad g, h \in G .
$$

Then the orbit of an element $a \in G$ is given by

$$
O_{h}=\left\{a \in G \mid a=g h g^{-1}\right\} .
$$

And the stabilizer is given by

$$
G_{h}=\left\{g \in G \mid g h g^{-1}=h\right\}=C_{G}(h) .
$$

Therefore, by the previous section, we have

$$
\left|O_{h}\right|=\left|G: C_{G}(h)\right| .
$$

We have seen that the orbits partition the group into classes, which we will call the conjugacy classes. The classes of size 1 are exactly the elements that commute with everything, i.e. $Z(G)$. We can now count the elements of G by adding up the cardinalities of the classes, which is summarized in the Class Equation.

Theorem (Class Equation.). Let G be a finite group and let g_{1}, \ldots, g_{r} be representatives of Thm. 7 the distinct conjugacy classes not contained in $Z(G)$. Then

$$
|G|=|Z(G)|+\sum_{i=1}^{r}\left|G: C_{G}\left(g_{i}\right)\right|
$$

We can think of the conjugacy classes of an element as elements that are "the same from a different perspective", similarly to a change of basis in linear algebra. For example, in D_{6}, the elements r and r^{2} are conjugate via a reflection (rotation 120° clockwise is the same as a rotation -120° if we reflect). Similarly, the reflections $s, s r, s r^{2}$ are all similar and conjugate via a rotation.

Below are the conjugacy classes for D_{12}. Can you visualize these?

The symmetric group S_{n} has a nice description of its conjugacy classes.
Proposition. Let $\sigma, \tau \in S_{n}$ and suppose σ has cycle decomposition

$$
\left(a_{1} a_{2} \ldots a_{k_{1}}\right)\left(b_{1} b_{2} \ldots b_{k_{2}}\right) \ldots
$$

Then $\tau \sigma \tau^{-1}$ has cycle decomposition

$$
\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \ldots \tau\left(a_{k_{1}}\right)\right)\left(\tau\left(b_{1}\right) \tau\left(b_{2}\right) \ldots \tau\left(b_{k_{2}}\right)\right) \ldots
$$

Because of this, permutations in S_{n} are conjugate if and only if they have the same cycle

Prop. 10
p. 125

Prop. 11
p. 126

Definition. (1) If $\sigma \in S_{n}$ is the product of disjoint cycles of lengths $n_{1}, n_{2}, \ldots, n_{r}$ with $n_{1} \leq n_{2} \leq \cdots \leq n_{r}$ (including 1-cycles) then the integers $n_{1}, n_{2}, \ldots, n_{r}$ are calledd the cycle type of σ.
(2) If $n \in \mathbb{Z}^{+}$, an integer partition of n is any nondecreasing sequence of positive integers whose sum is n.
For example, these are the conjugacy classes of S_{4}. Its possible cycle types are $1+1+1+1$, $1+1+2,2+2,1+3,4$.

For the alternating group A_{4}, we have to be careful. Here permutations of the same cycle type need not be conjugate, since a permutation that conjugates one to the other need not be even. A_{4} has the following cycle types.

Exercises

Exercise 1. List the elements of S_{3} as 1, (1 2 $)$, (2 3 3), (1 3), ($\left.\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array} 2\right)$ and label these with integers $1,2,3,4,5,6$ respectively. Exhibit the image of each element of S_{3} under the right regular representation of S_{3} into S_{6}.
Exercise 2. Suppose that the elements of S_{4} are in some way labelled by the integers $1,2, \ldots, 24$. Let S_{4} act on itself by left multiplication and consider the associated homomoprhism into S_{24}. Find the cycle type of the image of (12)(34). (Note that the cycle type is invariant under the earlier choice of labelling.)
Exercise 3. Use the left regular representation of Q_{8} to produce two elements of S_{8} which 4.2.4 generate a subgroup of S_{8} isomorphic to Q_{8}.
Exercise 4. Find all conjugacy classes and their sizes in $D_{8}, S_{3} \times S_{2}$ and A_{4}.

