Group Actions and Orbits

We let a group G act on a set A. Sometimes, we may not be able to get from any set element to any other set element via the group action. For example, if we let D_{8} act on the set below, we cannot turn a square with 2 blue quarters into a square with 1 blue quarter.

We call the connected sets orbits. More precisely, the orbit of an element $a \in A$ is defined as

$$
O_{a}=\{b \mid b=g \cdot a, g \in G\} .
$$

These orbits turn out to partition the set A.
Proposition. Let G be a group acting on the nonempty set A. The relation on A defined by $a \sim b$ if and only if $a=g \cdot b$ for some $g \in G$ is an equivalence relation. For each $a \in A$, the number of elements in the equivalence class containing a is $\left|G: G_{a}\right|$, the index of the stabilizer. In other words,

$$
\left|O_{a}\right|=\left|G: G_{a}\right| .
$$

For example, consider the following two elements in the group action mentioned above.

Then $G_{a}=\left\{1, r^{3} s\right\}$ and $\left|D_{8}: G_{a}\right|=4$, while $G_{a}=\left\{1, r^{2}, r^{3} s, r s\right\}$ and $\left|D_{8}: G_{a}\right|=2$.

Exercises

Exercise 1. Let G be a group and $H \leq G$. Show that

$$
N=\bigcap_{g \in G} g H g^{-1}
$$

is a normal subgroup of G.
Exercise 2. Let G act on a set A. Prove that if $a, b \in A$ annd $b=g \cdot a$ for some $g \in G$, then $G_{b}=g G_{a} g^{-1}$. Deduce that if G acts transitively on A then the kernel of the action is $\bigcap_{g \in G} g G_{a} g^{-1}$.

Exercise 3. Show that the set of rigid motions of the tetrahedron is isomorphic to A_{4}.
Exercise 4. Show that, for all $n \geq 2$,

$$
S_{n}=\left\langle(12),\left(\begin{array}{llll}
1 & 2 & 3 & \ldots
\end{array}\right)\right\rangle .
$$

