Group Actions and Orbits

We let a group G act on a set A. Sometimes, we may not be able to get from any set element to any other set element via the group action. For example, if we let D_8 act on the set below, we cannot turn a square with 2 blue quarters into a square with 1 blue quarter.

We call the connected sets *orbits*. More precisely, the orbit of an element $a \in A$ is defined as p.115

$$O_a = \{ b \mid b = g \cdot a, \ g \in G \}$$

These orbits turn out to partition the set A.

Proposition. Let G be a group acting on the nonempty set A. The relation on A defined Prop. 2 by $a \sim b$ if and only if $a = g \cdot b$ for some $g \in G$ is an equivalence relation. For each $a \in A$, p.115 the number of elements in the equivalence class containing a is $|G : G_a|$, the index of the stabilizer. In other words,

$$|O_a| = |G: G_a|.$$

For example, consider the following two elements in the group action mentioned above.

Then $G_a = \{1, r^3s\}$ and $|D_8: G_a| = 4$, while $G_a = \{1, r^2, r^3s, rs\}$ and $|D_8: G_a| = 2$.

Exercises

Exercise 1. Let G be a group and $H \leq G$. Show that

$$N = \bigcap_{g \in G} g H g^{-1}$$

is a normal subgroup of G.

Exercise 2. Let G act on a set A. Prove that if $a, b \in A$ and $b = g \cdot a$ for some $g \in G$, 4.1.1 then $G_b = gG_ag^{-1}$. Deduce that if G acts transitively on A then the kernel of the action is $\bigcap_{a \in G} gG_a g^{-1}$.

Exercise 3. Show that the set of rigid motions of the tetrahedron is isomorphic to A_4 . 3.5.7

Exercise 4. Show that, for all $n \ge 2$,

$$S_n = \langle (1 \ 2), \ (1 \ 2 \ 3 \ \dots \ n) \rangle.$$

3.5.4