Simple groups and composition series

Definition. A simple group is a group that has no non-trivial, proper normal subgroups. In other words, if G is simple and $H \leq G$, then $H \in \{\langle 1 \rangle, G\}$.

We can think of simple groups somewhat analoguously to prime numbers: they are not "divisible" in any non-trivial way. Indeed, any group of prime order is simple, but this is not a necessary condition. We put together a lot of our tools so far to show the following result.

Theorem. The alternating group A_n is simple for all $n \ge 5$.

The following notion is then analoguous to prime decomposition of natural numbers.

Definition. In a group G a sequence of subgroups

$$1 = N_0 \trianglelefteq N_1 \trianglelefteq N_2 \trianglelefteq \cdots \trianglelefteq N_{k-1} \trianglelefteq N_k = G$$

is called a *composition series* if $N_i \leq N_{i+1}$ and N_{i+1}/N_i is a simple group for $0 \leq i \leq k-1$. If the above sequence is a composition series, then the quotient groups N_{i+1}/N_i are called composition factors of G.

Theorem (Jordan-Hölder). Let G be a finite group with $G \neq 1$. Then

- (1) G has a composition series.
- (2) The composition factors in a composition series are unique, namely, if $1 = N_0 \leq N_1 \leq \cdots \leq N_r = G$ and $1 = M_0 \leq M_1 \leq \cdots \leq M_s = G$ are two composition series for G, then r = s and there is some permutation $\pi \in S_r$ such that, for $0 \leq i \leq r 1$,

$$M_{\pi(i)+1}/M_{\pi(i)} \simeq N_{i+1}/N_i.$$

We will prove this theorem in class and in the exercises below.

Exercises

Exercise 1. Show that A_i	n does not have a proper	r subgroup of index $<$	$n \text{ for all } n \geq 5.$	4.6.1
------------------------------------	--------------------------	-------------------------	--------------------------------	-------

Exercise 2. Find all normal subgroups of S_n for all $n \ge 5$.	4.6.2
---	-------

Exercise 3. Show that A_n is the only proper subgroup of index < n in S_n for all $n \ge 5$. 4.6.3

Exercise 4. Prove part (1) of the Jordan-Hölder Theorem.

Exercise 5. If G is a finite group and $H \leq G$, prove that there is a composition series of G, 3.4.7 one of whose terms is H.

Exercise 6. Prove the following special case of part (2) of the Jordan-Hölder Theorem. 3.4.9 Assume the finite group G has two composition series

$$1 = N_0 \leq N_1 \leq \cdots \leq N_r = G$$
 and $1 = M_0 \leq M_1 \leq M_2 = G$.

Show that r = 2 and that the list of composition factors is the same.

PUCK ROMBACH

Thm. 22

Thm. 24 p149

3.4.6