Simple groups and composition series

Definition. A simple group is a group that has no non-trivial, proper normal subgroups. In other words, if G is simple and $H \unlhd G$, then $H \in\{\langle 1\rangle, G\}$.

We can think of simple groups somewhat analoguously to prime numbers: they are not "divisible" in any non-trivial way. Indeed, any group of prime order is simple, but this is not a necessary condition. We put together a lot of our tools so far to show the following result.

Theorem. The alternating group A_{n} is simple for all $n \geq 5$.
Thm. 24
p149

Thm. 22
p103
(1) G has a composition series.
(2) The composition factors in a composition series are unique, namely, if $1=N_{0} \unlhd N_{1} \leq$ $\cdots \unlhd N_{r}=G$ and $1=M_{0} \unlhd M_{1} \unlhd \cdots \unlhd M_{s}=G$ are two composition series for G, then $r=s$ and there is some permutation $\pi \in S_{r}$ such that, for $0 \leq i \leq r-1$,

$$
M_{\pi(i)+1} / M_{\pi(i)} \simeq N_{i+1} / N_{i}
$$

We will prove this theorem in class and in the exercises below.

Exercises

Exercise 1. Show that A_{n} does not have a proper subgroup of index $<n$ for all $n \geq 5$.
Exercise 2. Find all normal subgroups of S_{n} for all $n \geq 5$.
Exercise 3. Show that A_{n} is the only proper subgroup of index $<n$ in S_{n} for all $n \geq 5$.
Exercise 4. Prove part (1) of the Jordan-Hölder Theorem.
Exercise 5. If G is a finite group and $H \unlhd G$, prove that there is a composition series of G, one of whose terms is H.

Exercise 6. Prove the following special case of part (2) of the Jordan-Hölder Theorem. 3.4.9 Assume the finite group G has two composition series

$$
1=N_{0} \unlhd N_{1} \leq \cdots \unlhd N_{r}=G \quad \text { and } \quad 1=M_{0} \unlhd M_{1} \unlhd M_{2}=G .
$$

Show that $r=2$ and that the list of composition factors is the same.

