Sylow's Theorem

Exercises

Let G be a finite group and let p be a prime.

Exercise 1. Prove that if $P \in Syl_p(G)$ and H is a subgroup of G containing P then $P \in 4.5.1$ $Syl_p(H)$.

Exercise 2. Give an example to show that, in general, a Sylow *p*-subgroup of a subgroup of 4.5.1 G need not be a Sylow *p*-subgroup of G.

Exercise 3. Use Sylow's Theorem to prove Cauchy's Theorem.	4.5.3
Exercise 4. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D_{12} .	4.5.4
Exercise 5. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of $S_3 \times S_3$.	4.5.4