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Basic Axioms and definitions

We start with a set of definitions that will help us define the main object of interest this
semester: a group.
A binary operation ∗ on a set G is a function of the form ∗ : G×G→ G. We write a ∗ b or
ab for short (since groups will only have one binary operation associated with them).

Definition. A group is a pair (G, ∗) where G is a set and ∗ is a binary operation on G if Def. 1.1
p.16

(0) G is closed under ∗. This is included in the definition of ∗ but it is often good to check
explicitly.

(i) ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c), for all a, b, c ∈ G.

(ii) G has an identity element: ∃e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G. (e is
often written as 1 even when elements of G are not real numbers, since we tend to call
∗ multiplication.)

(iii) G has inverses: for every a ∈ G there is an element a−1 ∈ G such that a ∗ a−1 =
a−1 ∗ a = e. (Again, the notation a−1 suggests that ∗ is multiplication but we use it
for any binary group operation.)

The group G is said to be abelian or commutative if ∗ is commutative: a ∗ b = b ∗ a for all
a, b ∈ G.

Note that we usually write G to mean both the group and the set interchangeably. Technically
the group is the pair (G, ∗), but usually we assume that ∗ is understood or only needs to
be mentioned once. For the following proposition, practice writing out the proofs yourself,
either before reading the proofs in the book, or a few hours or days after reading them.

Proposition 1. If G is a group under the operation ∗, then p.18

(1) the identity of G is unique

(2) for each a ∈ G, a−1 is uniquely determined

(3) (a−1)−1 = a for all a ∈ G

(4) (a ∗ b)−1 = b−1 ∗ a−1 for all a, b ∈ G

(5) for any a1, . . . , an ∈ G, the value of a1 ∗ · · · ∗ an is idnependent of how the expression is
bracketed: generalized associativity.

Definition. We have two definitions of order, one for a group itself and one for individual
elements:

• The order |G| of a group G is the number of elements. This notation is the usual
notation for cardinality of a set.

• The order |x| of an element x is the smallest n ∈ N such that xn = e. Note that this
could be infinite.

Exercise 1. For x an element of a group G, show that x and x−1 have the same order. 1.1.20

Exercise 2. If x is an element of finite order n in G, prove that the elements 1, x, x2, . . . , xn−1 1.1.32

are all distinct. We can deduce that |x| ≤ |G|.
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Cyclic Group

The cyclic group is in many ways the simplest group structure we have. We can think of it
as the set of rotational symmetries of an n-gon.

Example. The cyclic group C4 can be described as the symmetries of a Dutch windmill. We
Let r denote a rotation of the square over 90◦ clockwise. Then the other rotations over 180◦

and 270◦ can be expressed as r2 and r3 respectively. Then C4 = {1, r, r2, r3}.

The integers modulo n

Consider the integers Z, and define an equivalence relation a ∼ b if a = b+kn, for a, b, k ∈ Z. Sec. 0.3
p.8This generates a partition of the integers into residue classes modulo n. Denote the residue

class of an integer a by a. We can now do modular arithmetic as follows:

a + b = a + b and a · b = a · b.

It is not immediately obvious that this is well-defined, but stated in the following Theorem
(and proven in the book).

Theorem. The operations of addition and multiplication on Z/nZ defined above are both Thm. 3
p.9well-defined: they do not depend on the choice of representatives for the residue classes in-

volved.

Exercise 3. Show that Z/nZ is a group under addition of residue classes. You may notice a
similarity to the cyclic group described in the previous section. These groups are isomorphic,
which is a concept that we’ll define formally later on in Chapter 1.

Exercise 4. Show that multiplication of residue classes in Z/nZ is associative. Then, show 1.1.4
1.1.5that, for n > 1, Z/nZ is not a group under multiplication of residue classes.

Exercise 5. Find the orders of each element of the additive group Z/8Z. 1.1.11

Multiplication Tables, Generators and Cayley Diagrams

Given a group G, we need a way to define or present the group. Sometimes it is straighforward
to define the binary operation. For example, if we have the group Z under addition. Other
times, for small groups, we may write out a full multiplication table, which has rows and
columns for each element of G, and shows the value of gigj in entry ij. Such a table may
be helpful at times, but it is usually more cumbersome and less informative than other
respresentations.

A set of generators of a group G is a set of elements of G such that every other element can p.26

be expressed in terms of the generators and their inverses. You can compare this (somewhat)
to a basis of a vector space in linear algebra. This often makes it easier to understand the
structure of the group. Note that groups may have many different possible sets of generators,
and that minimal generator sets may have different cardinalities for the same group. We call
an equation that is satisfied by the generators a relation. If we take a set of generators and
a set of relations, such that any other relation in G can be deduced from them, we have a
presentation of G (i.e. a way to define G). Again, note that presentations are not unique.
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One important note about presentations is that when we write xn = e as one of the relations,
this means that |x| = n.

Cayley diagrams give us a nice way to visually represent a group. We draw the group elements
as points, and then draw an arrow a→ b of label (or color) c if ac = b (or if ca = b depending
on which direction we “read” the binary operation). It makes sense to only draw arrows for
a set of generators of the group.

Example. Consider the cyclic group C4 = {1, r, r2, r3}. Clearly, this group can be generated
by r, and the only relation we need to know is that r4 = e. Everything else can be deduced
from this. Therefore, we write

C4 = 〈r | r4 = 1〉.

We can also write out the full multiplication table:

1 r r2 r3

1 1 r r2 r3

r r r2 r3 1
r2 r2 r3 1 r
r3 r3 1 r r2

.

Or the Cayley Diagram:

Dihedral Group

The dihedral group D2n can be thought of as the set of symmetries of the n-gon, which has p.23

both rotational and reflectional symmetry. Note that many other authors use the notation
Dn for this group, so be careful. The n-gon has n rotations, over 360◦

k , for 0 ≤ k ≤ n − 1,
denoted by 1, r, . . . , rn−1, respectively. And n reflections. We will call one of them s, usually.
These reflections look slightly different for odd versus even n-gons. Even n-gons have two
types of symmetry axes, while odd n-gons have only one type:

This group is not abelian, and is generated by

D2n = 〈r, s | rn = s2 = 1, rs = sr−1〉.

For reasons that will become clear later, we read the order of operations from right to left.
So, rs means that we reflect first, and then rotate.
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Example. The dihedral group D8 can be described as the symmetries of a square. We Let
r denote a rotation of the square over 90◦ clockwise. Then the other rotations over 180◦ and
270◦ can be expressed as r2 and r3 respectively. It is generated by

D8 = 〈r, s | r4 = s2 = 1, rs = sr−1〉.

It has Cayley diagram:

Exercise 6. Use generators and relations to show that if x is any element of D2n, which is 1.2.2

not a power of r, then rx = xr−1.

The symmetric group

The symmetric groups are some of the most useful and versatile groups. In some sense, which
we will see later, every group can be thought of as a subgroup of a symmetric group. So the
symmetric groups contain a lot of interesting structure.

Definition. The symmetric group of degree n, denoted Sn, is the group whose elements are p.29

the permutations on the set {1, . . . , n}, and the binary operation is function composition ◦.
Note that |Sn| = n!.

There are different conventions for writing down permutations. We will use the cycle decom-
position notation most of the time. First, notice that permutations consist of disjoint cycles
of the form a1 7→ a2, a2 7→ a3, . . . , ak 7→ a1. We write these cycles, starting at their minimum
element first. Then we order the cycles by their first element. Finally, we don’t write down
cycles of length 1 (fixed points), for simplicity of notation. You can find an explicit algorithm
and examples on pages 30-31 of D&F.

Example. The group S3 has 3! elements:

1

(1 2)

(1 3)

(2 3)

(1 2 3)

(1 3 2).
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We see that we can generate this group using elements (1 2) and (1 2 3), such that

1

(1 2)

(1 3) = (1 2)(1 2 3)2

(2 3) = (1 2)(1 2 3)

(1 2 3)

(1 3 2) = (1 2 3)2.

So, we can draw Cayley diagram:

Compare this to D6!


