251 Abstract Algebra - Midterm 2 Practice - Solutions

Question 1

Let *H* be a subgroup of *G* and fix some element $g \in G$.

(a) Prove that gHg^{-1} is a subgroup of G.

[4 points]

(b) Prove that $|gHg^{-1}| = |H|$.

[3 points]

(c) Describe the subgroup $s\langle r \rangle s^{-1}$ of D_8 .

[3 points]

• • • • • • •

Solution.

(a) Suppose $x, y \in gHg^{-1}$. Then $x = gag^{-1}$ and $y = gbg^{-1}$ for some $a, b \in H$. Then

$$xy^{-1} = gag^{-1}(g^{-1})^{-1}b^{-1}g^{-1} = gag^{-1}(g^{-1})^{-1}b^{-1}g^{-1} = gab^{-1}g^{-1} \in gHg^{-1},$$

since $ab^{-1} \in H$. Since the subgroup criterion holds, gHg^{-1} is a subgroup of G.

- (b) Consider the map $h \mapsto ghg^{-1}$ for $h \in H$, by left/right cancelation, we see that $h_1 = h_2 \Leftrightarrow gh_1g^{-1} = gh_2g^{-1}$, so the map is injective. It is also surjective since gHg^{-1} is exacty the set of elements that can be written as ghg^{-1} for $h \in H$. Since this describes a bijection between H and gHg^{-1} , we have $|gHg^{-1}| = |H|$.
- (c) This is the subgroup on the set of elements $\{s1s^{-1}, srs^{-1}, sr^2s^{-1}, sr^3s^{-1}\} = \{1, r^3, r^2, r\}$. We see that $s\langle r\rangle s^{-1} = \langle r\rangle$. (This is true in general since $\langle r\rangle$ is a normal subgroup of D_8 .)

Question 2

Prove that if H and K are both normal subgroups of G then their intersection $H \cap K$ is also a normal [10 points] subgroup.

• • • • • • • •

Solution. Define the homomorphism $\phi: G \to G/H \times G/K$ as $g \mapsto (gH, gK)$. Since G/H and G/K are both quotient groups this defines a homomorphism with

$$\phi(g_1g_2) = (g_1g_2H, g_1g_2K) = (g_1H, g_1K)(g_2H, g_2K) = \phi(g_1)\phi(g_2).$$

The kernel of ϕ is exactly those elements $g \in G$ such that (gH, gK) = (1H, 1K) = (H, K), which is exactly when $g \in H \cap K$. Therefore, $H \cap K$ is a normal subgroup.

Ouestion 3

Let H and K be subgroups of G. Draw all possible lattices on the set $G, 1, H, K, H \cap K, \langle H, K \rangle$.

[10 points]

• • • • • • •

Solution. We distinguish between the cases $H \le K$, $K \le H$ and neither of those two, to get the following 3 scenarios:

$$g$$

$$K = \langle H, K^{2} \rangle$$

$$H = H n K$$

$$K = H n K$$

$$H = K$$

$$K = H n K$$

$$K = H n K$$

Question 4

Consider the subgroup H of S_5 generated by (1 2) and (1 5).

(a) What is the order of H?

[5 points]

(b) Is H normal in S_5 ?

[5 points]

.

Solution.

- (a) We see that H has elements (1 2), (1 5) and (1 2)(1 5) = (1 5 2). We have seen that the elements (a,b), (a,b,c) generate the full symmetric group on the set $\{a,b,c\}$. So, H has all permutations of $\{1,2,5\}$ and must therefore have 6 elements. (It cannot have more since no elements other than 1,2,5 are involved in (1 2) and (1 5).)
- (b) H is not normal. For example, the element $(1\ 3)(1\ 2)(1\ 3)^{-1}=(2\ 3)$ is not in H.

Question 5

Let G be a group and suppose that $gNg^{-1} \subseteq N$ for all $g \in G$.

(a) Find a homomorphism $\phi: G \to G/N$ such that N is the kernel of ϕ .

[6 points]

(b) Show that the left and right cosets of N induce the same partition of G.

[4 points]

.

Solution. First, we showed in question 1 that we have a bijection between N and gNg^{-1} , so we may conclude that $gNg^{-1} = N$.

(a) We let $\phi(g) = gN$. Then the kernel of ϕ is all elements of G such that gN = 1N = N, i.e. such that $g \in N$. We check that ϕ is well-defined:

$$\phi(g_1g_2)=(g_1g_2)N=g_1g_2NN=g_1g_2g_2^{-1}Ng_2N=g_1Ng_2N=\phi(g_1)\phi(g_2).$$

(b) We saw that $gNg^{-1} = N$, which directly implies that gN = Ng, i.e. the left and right cosets are equal.