251 Abstract Algebra - Midterm 2

Name:

Justify all of your answers.

This exam has 5 questions. Your score will be determined by your 3 best questions. (Max score: 30.)

Let $\phi: G \to H$ be a homomorphism and let E be a subgroup of H.

(a) Prove that $\phi^{-1}(E) \leq G$.

[7 points]

(b) Let $N = \langle r^2 \rangle$ be a subgroup of D_8 . You may assume $N \leq D_8$. Consider the projection homomorphism $\phi : D_8 \to D_8/N$, which maps g to gN for each $g \in D_8$. What is $\phi^{-1}(\langle sN \rangle)$?

[3 points]

• • • • • • • •

List all subgroups of S_3 and draw the subgroup lattice for S_3 . Choose one non-trivial subgroup and give [10 points] its normalizer.

.

Prove that if H is a subgroup of G, then $\langle H \rangle = H$.

[10 points]

Lagrange's Theorem states that if G is a finite group and $H \le G$, then the order of H divides the order of G. You may assume that the left cosets of H form a partition of G. From here, finish the proof of Lagrange's Theorem (i.e. show that all left cosets have the same number of elements).

• • • • • • • •

(a) Show that if G is an abelian group, every subgroup N of G is normal.

[6 points]

(b) Show that for any G (not necessarily abelian) if $N \le Z(G)$ then N is normal.

[4 points]

• • • • • • • • •