251 Abstract Algebra - Midterm 1 - Practice - Solutions

Question 1

Let $\sigma \in S_6$ be the following permutation:

$$1 \mapsto 3 \quad 4 \mapsto 1$$

$$2 \mapsto 4 \quad 5 \mapsto 6$$

$$3 \mapsto 2 \quad 6 \mapsto 5.$$

- (a) Find the cycle decomposition of σ and σ^{-1} .
- (b) Find $|\sigma|$.
- (c) Consider the element $\tau=(1\ 2\ 3)$. Find two elements $\tau_1,\tau_2\in S_6$ such that $|\tau_1|=|\tau_2|=2$ and $\tau=\tau_1\tau_2$.

• • • • • • •

Solution.

(a) From reading the mapping (backwards and forwards), we see that

$$\sigma = (1 \ 3 \ 2 \ 4)(5 \ 6)$$
$$\sigma^{-1} = (1 \ 4 \ 3 \ 2)(5 \ 6).$$

- (b) We can do this by writing out σ, σ^2, \ldots , but we have also learned that the order of an element in S_n is the LCM of the lengths of the cycles in its cycle decomposition. Therefore, we see that $|\sigma| = lcm(4, 2) = 4$.
- (c) There are multiple solutions to this, which we can find by trial and error:

$$\tau = (1\ 2\ 3) = (1\ 3)(1\ 2) = (2\ 3)(1\ 3) = (1\ 2)(2\ 3).$$

As a general question: try to write a single cycle $(1 \dots k)$ as a product of transpositions.

Question 2

Let *H* be a nonempty subset of a group *G*, and suppose that for all $x, y \in H$, we have $xy^{-1} \in H$. Show that for all $x \in H$, we have $x^{-1} \in H$. (This is part of the proof of the Subgroup Criterion.)

• • • • • • • •

Solution. First, we know that H is nonempty, so we can let x be an element of H (which we know exists). If we let x = y, we obtain that $xx^{-1} = 1 \in H$. So, H contains the identity. This means that for any $x \in H$, we have $1, x \in H$ and therefore $1x^{-1} = x^{-1} \in H$.

Ouestion 3

For a group G and subset $A \subseteq G$, let $C_G(A)$ be the centralizer of A in G, and let Z(G) be the center. Show that $C_G(Z(G)) = G$.

.

Solution. The centralizer is defined as

$$C_G(A) = \{g \in G \mid gag^{-1} = a \text{ for all } a \in A\},$$

and the center as

$$Z(G) = \{ h \in G \mid hbh^{-1} = b \text{ for all } b \in G \}.$$

If $a \in Z(G)$ and any $g \in G$, then we know that $aga^{-1} = g$ by the definition of Z(G). However we can rewrite this as ag = ga which implies $a = gag^{-1}$. Since this holds for every $g \in G$, we have

$$C_G(Z(G)) = G.$$

Question 4

Find an injective homomorphism $\phi: C_3 \to S_4$, by giving an explicit injective map and showing that it is indeed a homomorphism.

• • • • • • •

Solution. The group $C_3 = \{1, r, r^2\}$ consists of one element of order 3 and its powers. So, a good place to start is an element in S_4 of order 3, such as $(1\ 2\ 3)$. We let $\phi: C_3 \to S_4$ be defined by

$$1 \mapsto 1$$

 $r \mapsto (1 \ 2 \ 3)$
 $r^2 \mapsto (1 \ 2 \ 3)^2 = (1 \ 3 \ 2).$

To show that this is a homomorphism, we need to show that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in C^3$.

$$\phi(1r) = 1(1\ 2\ 3) = (1\ 2\ 3) = \phi(r)$$

$$\phi(r1) = (1\ 2\ 3)1 = (1\ 2\ 3) = \phi(r)$$

$$\phi(1r^2) = 1(1\ 3\ 2) = (1\ 3\ 2) = \phi(r^2)$$

$$\phi(r^21) = (1\ 3\ 2)1 = (1\ 3\ 2) = \phi(r^2)$$

$$\phi(rr^2) = (1\ 2\ 3)(1\ 3\ 2) = 1 = \phi(1)$$

$$\phi(r^2r) = (1\ 3\ 2)(1\ 2\ 3) = 1 = \phi(1),$$

as needed.

Question 5

- (a) For a group G acting on a set S. Let G_s be the stabilizer of $s \in S$ of the action. Show that G_s is closed under multiplication. (This is part of the proof of showing that the stabilizer is a subgroup of G.)
- (b) Let D_8 act on the corners of a square in the usual way. Number the corners in clockwise order as $\{1, 2, 3, 4\}$. Then $\sigma_r = (1\ 2\ 3\ 4)$ and $\sigma_s = (1\ 2)(3\ 4)$. Find $(D_8)_1$, i.e. the stabilizer of 1 in D_8 .

• • • • • • • •

Solution.

(a) We know (by the definition of a group action) that the identity of G is always in the stabilizer of s, so G_s is nonempty. Suppose that $g, h \in G_s$. Then

$$(gh) \cdot s = g \cdot (h \cdot s) = g \cdot s = s,$$

by the definition of the group action and the fact that $g, h \in G_s$. Therefore, $gh \in G_s$.

(b) The only rotation that leaves any corner in place is the identity. Of the reflections, the only one that leaves a particular corner in place is one whose axis passes through that corner. In this case, we can write out the permutations σ_g for all $g \in D_8$ explicitly:

$$\sigma_1 = 1$$
 $\sigma_s = (1\ 2)(3\ 4)$ $\sigma_r = (1\ 2\ 3\ 4)$ $\sigma_{sr} = (1\ 2)(3\ 4)(1\ 2\ 3\ 4) = (2\ 4)$ $\sigma_{r^2} = (1\ 2\ 3\ 4)^2 = (1\ 3)(2\ 4)$ $\sigma_{sr^2} = (1\ 2)(3\ 4)(1\ 3)(2\ 4) = (1\ 4)(2\ 3)$ $\sigma_{r^3} = (1\ 2\ 3\ 4)^3 = (1\ 4\ 3\ 2)$ $\sigma_{sr^3} = (1\ 2)(3\ 4)(1\ 4\ 3\ 2) = (1\ 3).$

From this, it is even easier to see that the set of permutations that fix 1 is $\{1, \sigma_s r\}$ and therefore $G_s = \{1, sr\}$.