251 Abstract Algebra - Midterm 1 - Practice

Name:

Justify all of your answers.

Let $\sigma \in S_6$ be the following permutation:

$$\begin{array}{ccc}
1 \mapsto 3 & 4 \mapsto 1 \\
2 \mapsto 4 & 5 \mapsto 6 \\
3 \mapsto 2 & 6 \mapsto 5.
\end{array}$$

- (a) Find the cycle decomposition of σ and σ^{-1} .
- (b) Find $|\sigma|$.
- (c) Consider the element $\tau=(1\ 2\ 3)$. Find two elements $\tau_1,\tau_2\in S_6$ such that $|\tau_1|=|\tau_2|=2$ and $\tau=\tau_1\tau_2$.

• • • • • • • • •

Let H be a nonempty subset of a group G, and suppose that for all $x, y \in H$, we have $xy^{-1} \in H$. Show that for all $x \in H$, we have $x^{-1} \in H$. (This is part of the proof of the Subgroup Criterion.)

.

For a group G and subset $A \subseteq G$, let $C_G(A)$ be the centralizer of A in G, and let Z(G) be the center. Show that $C_G(Z(G)) = G$.

• • • • • • • •

Find an injective homomorphism $\phi: C_3 \to S_4$, by giving an explicit injective map and showing that it is indeed a homomorphism.

• • • • • • • •

- (a) For a group G acting on a set S. Let G_s be the stabilizer of $s \in S$ of the action. Show that G_s is closed under multiplication. (This is part of the proof of showing that the stabilizer is a subgroup of G.)
- (b) Let D_8 act on the corners of a square in the usual way. Number the corners in clockwise order as $\{1, 2, 3, 4\}$. Then $\sigma_r = (1\ 2\ 3\ 4)$ and $\sigma_s = (1\ 2)(3\ 4)$. Find $(D_8)_1$, i.e. the stabilizer of 1 in D_8 .

• • • • • • • •