Exercise 1. List the elements of S_3 as 1, (1 2), (2 3), (1 3), (1 2 3), (1 3 2) and label these with integers 1,2,3,4,5,6 respectively. Exhibit the image of each element of S_3 under the **right** regular representation of S_3 into S_6 .

Solution. Of course, we have $\pi_1 = 1$. Next we see that

 $\pi_2(1) = 1(1\ 2) = (1\ 2) = 2$ $\pi_2(2) = (1\ 2)(1\ 2) = 1$ $\pi_2(3) = (2\ 3)(1\ 2) = (1\ 3\ 2) = 6$ $\pi_2(4) = (1\ 3)(1\ 2) = (1\ 2\ 3) = 5$ $\pi_2(5) = (1\ 2\ 3)(1\ 2) = (1\ 3) = 4$ $\pi_2(6) = (1\ 3\ 2)(1\ 2) = (2\ 3) = 3,$

and therefore $\pi_2 = (1 \ 2)(3 \ 6)(4 \ 5)$. Similarly, we see that $\pi_3 = (1 \ 3)(2 \ 5)(4 \ 6)$, $\pi_4 = (1 \ 4)(2 \ 6)(3 \ 5)$, $\pi_5 = (1 \ 5 \ 6)(2 \ 3 \ 4)$ and $\pi_6 = (1 \ 6 \ 5)(2 \ 4 \ 3)$.

Exercise 2. Suppose that the elements of S_4 are in some way labelled by the integers $1, 2, \ldots, 24$. Let S_4 act on itself by left multiplication and consider the associated homomoprhism into S_{24} . Find the cycle type of the image of $(1\ 2)(3\ 4)$. (Note that the cycle type is invariant under the earlier choice of labelling.)

Solution. We see that

$$1 \mapsto (1 \ 2)(3 \ 4) \mapsto 1$$

(1 2) $\mapsto (3 \ 4) \mapsto (1 \ 2)$
(1 3) $\mapsto (1 \ 4 \ 3 \ 2) \mapsto (1 \ 3)$
(1 4) $\mapsto (1 \ 3 \ 4 \ 2) \mapsto (1 \ 4)$
(2 3) $\mapsto (1 \ 2 \ 4 \ 3) \mapsto (2 \ 3)$
(2 4) $\mapsto (1 \ 2 \ 3 \ 4) \mapsto (2 \ 4)$
(1 2 3) $\mapsto (2 \ 4 \ 3) \mapsto (1 \ 2 \ 3)$
(1 3 2) $\mapsto (1 \ 4 \ 3) \mapsto (1 \ 3 \ 2)$
(1 2 4) $\mapsto (2 \ 3 \ 4) \mapsto (1 \ 3 \ 2)$
(1 3 4) $\mapsto (1 \ 4 \ 2) \mapsto (1 \ 3 \ 4)$
1 3 2 4) $\mapsto (1 \ 3 \ 2 \ 4) \mapsto (1 \ 3 \ 2 \ 4)$
1 4 2 3) $\mapsto (1 \ 3 \ 2 \ 4) \mapsto (1 \ 4 \ 2 \ 3)$

The cycle type is (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2). (We could also guess this pattern immediately, given that (1 2)(3 4) is self-inverse.)

((

Exercise 3. Use the left regular representation of Q_8 to produce two elements of S_8 which 4.2.4 generate a subgroup of S_8 isomorphic to Q_8 .

Solution. We have $Q_8 = \langle i, j \rangle$. Let the elements of Q_8 : 1, -1, i, j, k, -i, -j, -k be labeled as 1, 2, 3, 4, 5, 6, 7, 8, respectively. Then, we have

$$\pi_i(1) = i \cdot 1 = 3$$

$$\pi_i(2) = i \cdot -1 = -i = 6$$

$$\pi_i(3) = i \cdot i = -1 = 2$$

$$\pi_i(4) = i \cdot j = k = 5$$

$$\pi_i(5) = i \cdot k = -j = 7$$

$$\pi_i(6) = i \cdot -i = 1 = 1$$

$$\pi_i(7) = i \cdot -j = -k = 8$$

$$\pi_i(8) = i \cdot -k = j = 4.$$

So, $\pi_i = (1\ 3\ 2\ 6)(4\ 5\ 7\ 8)$. Similarly $\pi_j = (1\ 4\ 2\ 7)(3\ 8\ 6\ 5)$. We have seen that these left representations are injective into the symmetric group. Therefore, $\langle (1\ 3\ 2\ 6)(4\ 5\ 7\ 8), (1\ 4\ 2\ 7)(3\ 8\ 6\ 5) \rangle \in S_8$ is isomorphic to D_8 .