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Exercise 1. Let G be a group and H ≤ G. Show that

N =
⋂
g∈G

gHg−1

is a normal subgroup of G.

Solution. This is one part of the proof of Theorem 4.2.3 on page 119.

Exercise 2. Let G act on a set A. Prove that if a, b ∈ A and b = g · a for some g ∈ G, 4.1.1

then Gb = gGag
−1. Deduce that if G acts transitively on A then the kernel of the action is⋂

g∈G gGag
−1.

Solution. We have

Gb = {h ∈ G | h · b = b}
= {h ∈ G | h · (g · a) = g · a}
= {h ∈ G | (hg) · a = g · a}
= {h ∈ G | g−1(hg) · a = g−1g · a}
= {h ∈ G | (g−1hg) · a = a}
= {h ∈ G | g−1hg ∈ Ga}
= {h ∈ G | h ∈ gGag

−1}
= gGag

−1.

Exercise 3. Show that the set of rigid motions of the tetrahedron is isomorphic to A4. 3.5.7

Solution. The tetrahedron has two types of symmetries (in addition to the identity): a
rotation of 120◦ or 240◦ around an axis that passes through one of the corners and the center
of the opposite face (there are 4 such axes), and a rotarion of 180◦ around an axis that
passes through the centers of two opposite edges (3 such axes). This gives us indeed all even
permutations of S4:

Exercise 4. Show that, for all n ≥ 2, 3.5.4

Sn = 〈(1 2), (1 2 3 . . . n)〉.

Solution. We have seen in Section 3.5 that all permutations can be written as products
of transpositions. So, all we need to show is that we can obtain all transpositions in this
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manner. First we show that any transposition of the form (i i + 1), 1 ≤ i ≤ n − 1 can be
generated by (1 2), (1 2 3 . . . n). We have

(1 2 3 . . . n)i−1(1 2)(1 2 3 . . . n)−(i−1) = (i i + 1).

Now, we can achieve any transposition (i j), by a series of adjacent transpositions: fist i
moves to the position of j by swapping with i + 1, i + 2, . . . , j and then j moves to the
position of i by swapping with j − 1, . . . , i + 1. Therefore, we have

(i j) = (i i+1)(i+1 i+2) . . . (j−2 j−1)(j−1 j)(j−2 j−1) . . . (i+1 i+2)(i i+1).


