Exercise 1. Let A and B be groups. Show that $\{(a,1) \mid a \in A\}$ is a normal subgroup of 3.1.37 $A \times B$ and the quotient of $A \times B$ by this group is isomorphic to B.

Solution. Let's answer both questions at once. Let $A' = \{(a,1) \mid a \in A\}$. Let $\phi : A \times B \to B$ be the homomorphism defined by $(a,b) \mapsto b$. (If needed, check explicitly that this is a group homomorphism). Then it is easy to see that $\ker \phi = A'$. By the definition of $A \times B$, for every $b \in B$ there is an element in $A \times B$ that is mapped to b by ϕ . For example, the element $(1,b) \in A \times B$. Therefore, ϕ is surjective and the result follows from the First Isomorphism Theorem.

Exercise 2. Show that if $n \in \mathbb{Z}^+$ and H is the unique subgroup of G of order n then $H \subseteq G$. 3.2.5

Solution. For every $g \in G$, we have gHg^{-1} is a subgroup of G with $|H| = |gHg^{-1}|$. Therefore if H is the unique subgroup of G of order n we must have that $H = gHg^{-1}$ for every $g \in G$, which is equivalent to $H \leq G$ (by definition or by Theorem 6 p.82).

Exercise 3. Let $H \leq G$ and define a relation \sim on G by $a \sim b$ if and only if $ab^{-1} \in H$. 3.2.7 Prove that this is an equivalence relation and describe the equivalence classes.

Solution. We need to check the three properties of an equivalence relation:

(reflexive) For any $a \in G$, we have $aa^{-1} = 1 \in H$, since H is a subgroup of G.

(symmetric) Suppose that $a, b \in G$ and that $a \sim b$. Then $ab^{-1} \in H$. Since H is a subgroup, we have $(ab^{-1})^{-1} = ba^{-1} \in H$, which implies that $b \sim a$.

(transitive) Suppose that $a,b,c\in G$ and that $a\sim b,b\sim c$. Then $ab^{-1},bc^{-1}\in H$. Since H is a subgroup, we have $ab^{-1},bc^{-1}=ac^{-1}\in H$, which implies that $a\sim c$.

We have seen that $a \sim b$ iff $ab^{-1} \in H$ iff $Hab^{-1} = H$ iff Ha = Hb. Therefore $a \sim b$ when a and b are elements of the same right coset of H. In other words, the equivalence classes are the right cosets of H.

Exercise 4. Prove that if H is a normal subgroup of G of prime index p, then for all $K \leq G$ 3.3.3 either

- (i) $K \leq H$ or
- (ii) G = HK and $|K : K \cap H| = p$.

Solution. Suppose that $K \not\leq H$. Then there is some $k \in K \setminus H$. Then kH is a nonidentity element in G/H. Since G/H has prime order, it is generated by any non-identity element (since $\langle gH \rangle$ has order 1 or p = |G/H| for any $g \in G$, and the former case is only when gH = H is the identity element). Therefore $G/H = \langle kH \rangle$, and any element in G/H can be written as k^ih for $h \in H$. This shows that G = KH = HK. Then, by the Second Isomorphism Theorem we have that $G/H \simeq K/K \cap H$, which shows that $|K:K \cap H| = |G:H| = p$.

Exercise 5. Let M and N be normal subgroups of G such that G = MN. Prove that 3.3.7

$$G/(M \cap N) \simeq (G/M \times G/N).$$

Solution. We will show this by finding a surjective homomorphism $\phi: G \to G/M \times G/N$ with kernel $M \cap N$. Then the result follows from the First Isomorphism Theorem. Let ϕ be defined by $g \mapsto (gM, gN)$. (It is easy to check that this is indeed a homomorphism.) Then $g \in \ker \phi$ if $g \mapsto (1M, 1N)$, i.e. if and only if $g \in M \cap N$. Therefore $\ker \phi = M \cap N$. To show that this map is surjective, consider any $(g_1M, g_2N) \in G/M \times G/N$. Then $g_1 = m_1n_1$ and $g_2 = m_2n_2$ for some $m_1, m_2 \in M$ and $n_1, n_2 \in N$, since G = MN. Let $g = n_1m_2$. Then $gM = n_1m_2M = n_1M = g_1M$ and $gN = Ng = Nn_1m_2 = Nm_2 = m_2N = g_2N$. Therefore, this homomorphism is surjective as needed.

Exercise 6. Prove that σ^2 is an even permutation for every permutation σ .

oer-

3.5.2

Solution. There are different ways of answering this question. If we use the view of permutation parity that we described in class, we saw that every permutation can be written as a product of transpositions, and that the parity of the number of transpositions in such a representation is fixed and determines the parity of the permutation. The result follows.