Exercise 1. Let $\phi: G \to H$ be a homomorphism with kernel K and let $a, b \in \phi(G)$. Let $X \in G/K$ be the fiber above a and Y the fiber above b. Fix an element $u \in X$. Prove that if XY = Z in the quotient group G/K and w any member of Z, then there is some $v \in Y$ such that uv = w.

Solution. We have that X, Y, Z are all cosets of K. Fix an element $u \in X$ and $w \in Z$. Then X = uK and Z = wK. Now XY = Z and therefore $Y = X^{-1}Z$. Therefore, $Y = u^{-1}KwK = (u^{-1}w)K$. Then, $u^{-1}w \in Y$ and clearly $uu^{-1}w = w$.

Exercise 2. Let A be an abelian group and B a subgroup of A. Show that A/B is abelian. 3.1.3 Give an example of a non-abelian group G with a proper normal subgroup N such that G/N is abelian.

Solution. Since A is abelian, we have for any $x, y \in A$ that (xB)(yB) = xyB = yxB = (yB)(xB), which implies that A/B is abelian.

We have seen that $D_6/\langle r \rangle \simeq Z_2$, and therefore $D_6/\langle r \rangle$ is abelian even though D_6 is not.

Exercise 3. Let G be a group, let N be a normal subgroup of G and let $\overline{G} = G/N$. Prove that if $G = \langle x, y \rangle$ then $\overline{G} = \langle \overline{x}, \overline{y} \rangle$. (It is true more generally that if $G = \langle S \rangle$ for any subset S of G then $\overline{G} = \langle \overline{S} \rangle$.)

Solution. Suppose that $G=\langle x,y\rangle$, and consider the subgroup $\langle \overline{x},\overline{y}\rangle$ of \overline{G} . By the Fourth Isomorphism Theorem, this subgroup is of the form $\overline{A}=A/N$ for a subgroup A of G containing N. Since, by definition, $\overline{x},\overline{y}\in\overline{A}$, we therefore have $x,y\in A$. The subgroup $\langle x,y\rangle$ is defined as the smallest (by set inclusion) subgroup of G that contains x,y, so therefore we must have that A=G, which implies that $\langle \overline{x},\overline{y}\rangle=\overline{A}=\overline{G}$.

Exercise 4. Let $H \leq G$ and fix some element $g \in G$. Prove that gHg^{-1} is a subgroup of G 3.2.5 of the same order as H.

Solution. Suppose that $x, y \in gHg^{-1}$. Then we have $x = gh_1g^{-1}$ and $y = gh_2g^{-1}$ for some $h_1, h_2 \in H$. We have

$$xy^{-1} = gh_1g^{-1}(gh_2g^{-1})^{-1}$$

$$= gh_1g^{-1}gh_2^{-1}g^{-1}$$

$$= gh_1h_2^{-1}g^{-1}$$

$$\in gHg^{-1},$$

since $h_1h_2^{-1} \in H$ (H is a subgroup). By the subgroup criterion, we conclude that gHg^{-1} is a subgroup of G.

To show that this subgroup has the same order as H, we let $f: H \to gHg^{-1}$ be given by $h \mapsto ghg^{-1}$. By left/right cancellation we have that $h_1 = h_2 \Leftrightarrow gh_1g^{-1} = gh_2g^{-1}$. Therefore, f is one-to-one and in fact invertible by letting f^{-1} be given by $ghg^{-1} \mapsto g^{-1}(ghg^{-1})g = h$. Therefore, $|H| = |gHg^{-1}|$.

Exercise 5. Let $H \leq G$ and let $g \in G$. Prove that if the right coset Hg equals some left 3.2.6 coset of H in G then it equals the left coset gH and g must be in $N_G(H)$.

Solution. Suppose that $Hg = g_1H$ for some $g_1 \in G$. Since $1 \in H$, we have $1g = g \in Hg$, and since $Hg = g_1H$ we have $g \in g_1H$ and therefore $g_1H = gH$. Then, we have Hg = gH, which implies that $H = gHg^{-1}$ and $g \in N_G(H)$.

Exercise 6. Prove that if H and K are finite subgroups of G whose orders are relatively 3.2.8 prime, then $H \cap K = \{1\}$.

Solution. By Lagrange, we have that $H \cap K$ is a subgroup of both H and K and therefore its order divides both the order of H and K. Since the orders of H and K are relatively prime we must have $|H \cap K| = 1$ and therefore $H \cap K = \{1\}$.