Exercise 1. Prove that if σ is the *m*-cycle $(a_1 \ a_2 \ \dots \ a_m)$, then for all $1 \le k \le m$, 1.3.10 $\sigma^i(a_k) = a_{k+i}$, where k+i is replaced by its least positive residue (mod *m*). Deduce that $|\sigma| = m$.

Solution. We have that

$$\sigma^{i}(a_{k}) = \sigma^{i-1}(\sigma(a_{k}))$$
$$= \sigma^{i-1}(a_{k+1})$$
$$= \sigma^{i-2}(\sigma(a_{k+1}))$$
$$= \sigma^{i-2}(a_{k+2})$$
$$\vdots$$
$$= a_{k+i}$$

where each index is replaced by its least positive residue (mod m). This implies that for $1 \le k \le m$, we have that m is the smallest positive integer value for i such that $\sigma^i(a_k) = a_k$. Therefore, $|\sigma| = m$.

Exercise 2. Let $\phi: G \to H$ be a homomorphism. Prove that $\phi(x^n) = \phi(x)^n$ for all $n \in \mathbb{Z}$. 1.6.1

Solution. We can show this by induction. Since ϕ is a homomorphism, we have that $\phi(ab) = \phi(a)\phi(b)$, for all $a, b \in G$. The case for n = 0 and n = 1 are straightforward. Suppose that the statement is true for $1, \ldots, n-1$. Then

$$\phi(x^n) = \phi(x^{n-1}x) = \phi(x^{n-1})\phi(x) = \phi(x)^{n-1}\phi(x) = \phi(x)^n,$$

as desired. For negative values of n, we note that the statement holds for any element of G, and therefore we may replace x by x^{-1} . Since $\phi(1) = 1$, we have that $\phi(xx^{-1}) = \phi(x)\phi(x^{-1}) = 1$, and therefore $\phi(x^{-1}) = \phi(x)^{-1}$. The result follows. Finally, for the case n = 0, we now have, for any $x \in G$

$$\phi(1) = \phi(xx^{-1}) = \phi(x)\phi(x^{-1}) = \phi(x)\phi(x)^{-1} = 1.$$

Exercise 3. Show that if $\phi: G \to H$ is a homomorphism, then |x| = k implies that $|\phi(x)|$ 1.6.2 divides k.

Solution. We first need the following claim. For any group H and element $a \in H$, we have that $a^k = 1$ implies that |a| divides k. Suppose that |a| = l and does not divide k. Then 1 < l < k. Let q be the greatest integer such that ql < k. Since l does not divide k, we have that k - ql < l. However, $x^{k-ql} = 1$, since $x^k = x^{ql} = 1$. This contradicts the fact that l is the order of x.

Homomorphisms must map identity elements to identity elements. If you don't show that carefully this time, it will be in the next homework. Then, $\phi(x^k) = \phi(1) = 1$, and also $\phi(x^k) = (\phi(x))^k = 1$. The result follows.

Exercise 4. Show that D_{24} and S_4 are not isomorphic.

Solution. The group D_{24} has an element of order 6, namely r^2 . The group S_4 has elements of order 2 (those of the form $(a \ b)$ and $(a \ b)(c \ d)$), order 3 (those of the form $(a \ b \ c)$) and order 4 (those of the form $(a \ b \ c \ d)$), and none of order 6.

By the previous question and the fact that an isomorphism is a bijective homomorphism, we see that if ϕ is an isomorphism then $|\phi(x)| = |x|$ for all x. Therefore, if $\phi: D_{24} \to S_4$ were an isomorphism, we would have $|\phi(r^2)| = 6$, which is not possible.