Exercise 1. Show that if $x, y \in G$ then $[y, x]=[x, y]^{-1}$.
Solution. We have

$$
[y, x]=y^{-1} x-1 y x=\left(x^{-1} y-1 x y\right)^{-1}=[x, y]^{-1} .
$$

Exercise 2. Let $a, b, c \in G$. Show that $[a, b c]=[a, c]\left(c^{-1}[a, b] c\right)$ and that $[a b, c]=\left(b^{-1}[a, c] b\right)[b, c ⿻$. 4.3
Solution. We have

$$
\begin{aligned}
{[a, b c] } & =a^{-1}(b c)^{-1} a b c \\
& =a^{-1} c^{-1} b^{-1} a b c \\
& =a^{-1} c^{-1} b^{-1} b a[a, b] c \\
& =a^{-1} c^{-1} a c c^{-1}[a, b] c \\
& =[a, c]\left(c^{-1}[a, b] c\right),
\end{aligned}
$$

and

$$
\begin{align*}
{[a b, c] } & =(a b)^{-1} c^{-1} a b c \\
& =b^{-1} a^{-1} c^{-1} a b c \\
& =b^{-1} a^{-1} c^{-1} a c b[b, c] \\
& =[a b, c]=\left(b^{-1}[a, c] b\right)[b, c] .
\end{align*}
$$

Exercise 3. Find the commutator subgroups of S_{4} and A_{4}.
Solution. First, note that all commutators are even permutations in S_{4}. Therefore, their cycle types are 3 or $2+2$. Consider any 3 -cycle (x, y, z). Then

$$
[(x, y),(x, z)]=(x, y)^{-1}(x, z)^{-1}(x, y),(x, z)=(x, y, z)
$$

Therefore, all 3 -cycles are in the commutator subgroup. Now consider any permutation of the form $(x, y)(z, w)$. Then

$$
[(x, w, z),(w, z, y)]=(x, w, z)^{-1}(w, z, y)^{-1}(y, w, z)(w, z, y)=(x, y)(z, w)
$$

and therefore all of those permutations are also in the commutator subgroup. We see that the commutator subgroup of S_{4} is all of A_{4}.
A_{4} has elements of the cycle type 3 or $2+2$. We have that

$$
[(x, y, z),(x, y)(z, w)]=(x, y, z)^{-1}(z, w)^{-1}(x, y)^{-1}(x, y, z)(x, y)(z, w)=(x, w)(y, z)
$$

and

$$
[(x, z)(y, w),(x, y)(z, w)]=(y, w)^{-1}(x, z)^{-1}(z, w)^{-1}(x, y)^{-1}(x, z)(y, w)(x, y)(z, w)=1 .
$$

By symmetry, we have now checked every possibility. Therefore, the commutator subgroup of A_{4} is the set of elements consisting of the identity and all elements of the form $(x, y)(w, z)$.

Exercise 4. Show that $C_{G}(H) \cap K=\operatorname{ker} \phi$.

Solution. We have $G=H \rtimes_{\phi} K$.Suppose that $(1, x) \in C_{G}(H) \cap K$ and $(h, 1) \in H$. Then $(h, 1)(1, x)=(h, x)$ and $(1, x)(h, 1)=(x \cdot h, x)$. Since $(h, 1)(1, x)=(1, x)(h, 1)$, we have that $x \cdot h=h$ for all $h \in H$ ad therefore $x \in \operatorname{ker} \phi$.
Conversely, suppose that $(1, x) \in \operatorname{ker} \phi$. Then, by a similar (reverse) argument, we must have that $(1, x) \in C_{G}(H) \cap K$.

Exercise 5. Show that $C_{G}(K) \cap H=N_{G}(K) \cap H$.
Solution. Clearly, we have $C_{G}(K) \cap H \subseteq N_{G}(K) \cap H$. Let $(y, 1) \in N_{G}(K) \cap H$. Then for any $(1, k) \in K$, we have

$$
(y, 1)(1, k)(y, 1)^{-1}=\left(y\left(k \cdot y^{-1}\right), k\right)
$$

We must have $\left(y\left(k \cdot y^{-1}\right), k\right) \in K$ and therefore $\left(y\left(k \cdot y^{-1}\right), k\right)=(1, k)$, which implies that $(y, 1) \in C_{G}(K) \cap H$.

