Exercise 1. Show that the center of a direct product is the direct product of the centers 5.1.1

$$Z(G_1 \times G_2 \times \cdots \times G_n) = Z(G_1) \times Z(G_2) \times \cdots \times Z(G_n).$$

Deduce that a direct product of groups is abelian if and only if each of the factors is abelian.

Solution. Suppose that $(z_1, \ldots, z_n) \in Z(G_1) \times Z(G_2) \times \cdots \times Z(G_n)$. Then, for any $(g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$, we have

$$(z_1, \ldots, z_n)(g_1, \ldots, g_n) = (z_1g_1, \ldots, z_ng_n) = (g_1z_1, \ldots, g_nz_n) = (g_1, \ldots, g_n)(z_1, \ldots, z_n).$$

Therefore

$$Z(G_1) \times Z(G_2) \times \cdots \times Z(G_n) \subseteq Z(G_1 \times G_2 \times \cdots \times G_n).$$

Furthermore, if $(z_1, \ldots, z_n) \in Z(G_1 \times G_2 \times \cdots \times G_n)$. Then, for any $(g_1, \ldots, g_n) \in G_1 \times \cdots \times G_n$, we have

$$(z_1g_1,\ldots,z_ng_n) = (z_1,\ldots,z_n)(g_1,\ldots,g_n) = (g_1,\ldots,g_n)(z_1,\ldots,z_n) = (g_1z_1,\ldots,g_nz_n).$$

Therefore

$$Z(G_1 \times G_2 \times \cdots \times G_n) \subseteq Z(G_1) \times Z(G_2) \times \cdots \times Z(G_n)$$

This establishes the result. Since any group G is abelian if and only if Z(G) = G this implies the second claim.

Exercise 2. Let A and B be finite groups and let p be a prime. Prove that any Sylow 5.1.4 p-subgroup of $A \times B$ is of the form $P \times Q$ where $P \in Syl_p(A)$ and $Q \in Syl_p(B)$.

Solution. Let $|G| = p^{\alpha}m$, where $p \not|m$. We also have that $|G| = |A| \cdot |B|$. Therefore, we have that $|A| = p_1^{\alpha}m_1$ and $|B| = p_2^{\alpha}m_2$ with $\alpha_1 + \alpha_2 = \alpha$. Clearly, there exists Sylow *p*-subgroups of *G* of the form $P \times Q$ where $P \in Syl_p(A)$ and $Q \in Syl_p(B)$. The only part to show is that no other Sylow *p*-subgroups of *G* exist.

Let $A = \{(a, 1) \mid a \in A\} \leq G$, and similarly for B. Suppose that H is a Sylow p-subgroup of G. Then $H \cap A$ is a Sylow p-subgroup of A, and $H \cap B$ is a Sylow p-subgroup of B. If both $H \cap A$ and $H \cap B$ are maximal, then H must be of the form $P \times Q$ where $P \in Syl_p(A)$ and $Q \in Syl_p(B)$. Suppose that $H \cap A$ is not maximal. Then if $P \in Syl_p(A)$, we obtain a new p-subgroup $P \times H \cap B$, such that

 $|H| \le |H \cap A| \cdot |H \cap B| < |P \times H \cap B|,$

which is a contradiction.

Exercise 3. Give the number of non-isomorphic abelian groups of the following orders: (a) 5.2.1 225, (b) 1600, (c) 1155.

Solution. Let p(n) denote the integer partition number of n, i.e. the number of ways that n can be written as a sum of positive integers $a_1 + \cdots + a_k$ with $a_1 \leq \cdots \leq a_k$.

- (a) We have that $225 = 3^2 \cdot 5^2$. Using the fundamental theorem of finitely generated abelian groups, we see that the number of abelian groups is $p(2) \cdot p(2) = 2 \cdot 2 = 4$.
- (b) We have $1600 = 2^6 \cdot 5^2$. Similarly, the number of abelian groups is $p(6) \cdot p(2) = 11 \cdot 2 = 22$.
- (c) We have $1155 = 3 \cdot 5 \cdot 7 \cdot 11$. There is only one abelian group on 1155 elements.

Exercise 4. Give the list of invariant factors for all abelian groups of the following orders: 5.2.2 (a) 270, (b) 9801, (c) 165.

Solution. Let p(n) denote the integer partition number of n, i.e. the number of ways that n can be written as a sum of positive integers $a_1 + \cdots + a_k$ with $a_1 \leq \cdots \leq a_k$.

(a) We have that $270 = 2 \cdot 3^3 \cdot 5$. The integer partitions of 3 are 3, 2 + 1, 1 + 1 + 1. Therefore, we have the following groups on 270 elements (the invariant factors are the indices):

$$\mathbb{Z}_{270}, \mathbb{Z}_{90} \times \mathbb{Z}_3, \mathbb{Z}_{30} \times \mathbb{Z}_3 \times \mathbb{Z}_3$$

(b) We have $9801 = 3^4 \cdot 11^2$. The integer partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. The integer partitions of 2 are 2, 1 + 1. Therefore, we have the following groups on 9801 elements:

 $\mathbb{Z}_{9801}, \ \mathbb{Z}_{891} \times \mathbb{Z}_{11}, \ \mathbb{Z}_{3267} \times \mathbb{Z}_3, \ \mathbb{Z}_{297} \times \mathbb{Z}_{33}, \ \mathbb{Z}_{1089} \times \mathbb{Z}_9, \\ \mathbb{Z}_{99} \times \mathbb{Z}_{99}, \mathbb{Z}_{1089} \times \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_{99} \times \mathbb{Z}_{33} \times \mathbb{Z}_3, \ \mathbb{Z}_{363} \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3, \mathbb{Z}_{33} \times \mathbb{Z}_3 \times \mathbb{Z}_3.$

(c) We have $165 = 3 \cdot 5 \cdot 11$. There is only one abelian group on 165 elements: \mathbb{Z}_{165} .

Exercise 5. Give the list of elementary divisors for all abelian groups of the following orders: 5.2.3 (a) 270, (b) 9801, (c) 165.

Solution.

(a) We have that $270 = 2 \cdot 3^3 \cdot 5$. The integer partitions of 3 are 3, 2 + 1, 1 + 1 + 1. Therefore, we have the following groups on 270 elements, in terms of their elementary divisors:

$$(\mathbb{Z}_2) \times (\mathbb{Z}_{27}) \times (\mathbb{Z}_5), \ (\mathbb{Z}_2) \times (\mathbb{Z}_9 \times \mathbb{Z}_3) \times (\mathbb{Z}_5), \ (\mathbb{Z}_2) \times (\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3) \times (\mathbb{Z}_5).$$

(b) We have $9801 = 3^4 \cdot 11^2$. The integer partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1. The integer partitions of 2 are 2, 1+1. Therefore, we have the following groups on 9801 elements:

 $\begin{aligned} & (\mathbb{Z}_{81}) \times (\mathbb{Z}_{121}), \ (\mathbb{Z}_{81}) \times (\mathbb{Z}_{11} \times \mathbb{Z}_{11}) \\ & (\mathbb{Z}_{27} \times \mathbb{Z}_3) \times (\mathbb{Z}_{121}), \ (\mathbb{Z}_{27} \times \mathbb{Z}_3) \times (\mathbb{Z}_{11} \times \mathbb{Z}_{11}) \\ & (\mathbb{Z}_9 \times \mathbb{Z}_9) \times (\mathbb{Z}_{121}), \ (\mathbb{Z}_9 \times \mathbb{Z}_9) \times (\mathbb{Z}_{11} \times \mathbb{Z}_{11}) \\ & (\mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_3) \times (\mathbb{Z}_{121}), \ (\mathbb{Z}_9 \times \mathbb{Z}_3 \times \mathbb{Z}_3) \times (\mathbb{Z}_{11} \times \mathbb{Z}_{11}) \\ & (\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3) \times (\mathbb{Z}_{121}), \ (\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3) \times (\mathbb{Z}_{11} \times \mathbb{Z}_{11}). \end{aligned}$

(c) We have $165 = 3 \cdot 5 \cdot 11$. There is only one abelian group on 165 elements: $(\mathbb{Z}_3) \times (\mathbb{Z}_5) \times (\mathbb{Z}_{11})$.