
MATH 251 Abstract Algebra Week 12 Puck Rombach

Exercise 1. Show that the center of a direct product is the direct product of the centers 5.1.1

Z(G1 ×G2 × · · · ×Gn) = Z(G1)× Z(G2)× · · · × Z(Gn).

Deduce that a direct product of groups is abelian if and only if each of the factors is abelian.

Solution. Suppose that (z1, . . . , zn) ∈ Z(G1)×Z(G2)×· · ·×Z(Gn). Then, for any (g1, . . . , gn) ∈
G1 × · · · ×Gn, we have

(z1, . . . , zn)(g1, . . . , gn) = (z1g1, . . . , zngn) = (g1z1, . . . , gnzn) = (g1, . . . , gn)(z1, . . . , zn).

Therefore
Z(G1)× Z(G2)× · · · × Z(Gn) ⊆ Z(G1 ×G2 × · · · ×Gn).

Furthermore, if (z1, . . . , zn) ∈ Z(G1×G2×· · ·×Gn). Then, for any (g1, . . . , gn) ∈ G1×· · ·×Gn,
we have

(z1g1, . . . , zngn) = (z1, . . . , zn)(g1, . . . , gn) = (g1, . . . , gn)(z1, . . . , zn) = (g1z1, . . . , gnzn).

Therefore
Z(G1 ×G2 × · · · ×Gn) ⊆ Z(G1)× Z(G2)× · · · × Z(Gn).

This establishes the result. Since any group G is abelian if and only if Z(G) = G this implies
the second claim.

Exercise 2. Let A and B be finite groups and let p be a prime. Prove that any Sylow 5.1.4

p-subgroup of A×B is of the form P ×Q where P ∈ Sylp(A) and Q ∈ Sylp(B).

Solution. Let |G| = pαm, where p 6 |m. We also have that |G| = |A| · |B|. Therefore, we have
that |A| = pα1m1 and |B| = pα2m2 with α1 + α2 = α. Clearly, there exists Sylow p-subgroups
of G of the form P ×Q where P ∈ Sylp(A) and Q ∈ Sylp(B). The only part to show is that
no other Sylow p-subgroups of G exist.
Let A = {(a, 1) | a ∈ A} ≤ G, and similarly for B. Suppose that H is a Sylow p-subgroup of
G. Then H ∩A is a Sylow p-subgroup of A, and H ∩B is a Sylow p-subgroup of B. If both
H ∩A and H ∩B are maximal, then H must be of the form P ×Q where P ∈ Sylp(A) and
Q ∈ Sylp(B). Suppose that H ∩ A is not maximal. Then if P ∈ Sylp(A), we obtain a new
p-subgroup P ×H ∩B, such that

|H| ≤ |H ∩A| · |H ∩B| < |P ×H ∩B|,

which is a contradiction.

Exercise 3. Give the number of non-isomorphic abelian groups of the following orders: (a) 5.2.1

225, (b) 1600, (c) 1155.

Solution. Let p(n) denote the integer partition number of n, i.e. the number of ways that
n can be written as a sum of positive integers a1 + · · ·+ ak with a1 ≤ · · · ≤ ak.

(a) We have that 225 = 32 ·52. Using the fundamental theorem of finitely generated abelian
groups, we see that the number of abelian groups is p(2) · p(2) = 2 · 2 = 4.

(b) We have 1600 = 26·52. Similarly, the number of abelian groups is p(6)·p(2) = 11·2 = 22.

(c) We have 1155 = 3 · 5 · 7 · 11. There is only one abelian group on 1155 elements.
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Exercise 4. Give the list of invariant factors for all abelian groups of the following orders: 5.2.2

(a) 270, (b) 9801, (c) 165.

Solution. Let p(n) denote the integer partition number of n, i.e. the number of ways that
n can be written as a sum of positive integers a1 + · · ·+ ak with a1 ≤ · · · ≤ ak.

(a) We have that 270 = 2 · 33 · 5. The integer partitions of 3 are 3, 2 + 1, 1 + 1 + 1.
Therefore, we have the following groups on 270 elements (the invariant factors are the
indices):

Z270, Z90 × Z3, Z30 × Z3 × Z3.

(b) We have 9801 = 34 · 112. The integer partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 +
1 + 1 + 1. The integer partitions of 2 are 2, 1 + 1. Therefore, we have the following
groups on 9801 elements:

Z9801, Z891 × Z11, Z3267 × Z3, Z297 × Z33, Z1089 × Z9,

Z99 × Z99,Z1089 × Z3 × Z3,Z99 × Z33 × Z3, Z363 × Z3 × Z3 × Z3,Z33 × Z33 × Z3 × Z3.

(c) We have 165 = 3 · 5 · 11. There is only one abelian group on 165 elements: Z165.

Exercise 5. Give the list of elementary divisors for all abelian groups of the following orders: 5.2.3

(a) 270, (b) 9801, (c) 165.

Solution.

(a) We have that 270 = 2 · 33 · 5. The integer partitions of 3 are 3, 2 + 1, 1 + 1 + 1.
Therefore, we have the following groups on 270 elements, in terms of their elementary
divisors:

(Z2)× (Z27)× (Z5), (Z2)× (Z9 × Z3)× (Z5), (Z2)× (Z3 × Z3 × Z3)× (Z5).

(b) We have 9801 = 34 · 112. The integer partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 +
1 + 1 + 1. The integer partitions of 2 are 2, 1 + 1. Therefore, we have the following
groups on 9801 elements:

(Z81)× (Z121), (Z81)× (Z11 × Z11)

(Z27 × Z3)× (Z121), (Z27 × Z3)× (Z11 × Z11)

(Z9 × Z9)× (Z121), (Z9 × Z9)× (Z11 × Z11)

(Z9 × Z3 × Z3)× (Z121), (Z9 × Z3 × Z3)× (Z11 × Z11)

(Z3 × Z3 × Z3 × Z3)× (Z121), (Z3 × Z3 × Z3 × Z3)× (Z11 × Z11).

(c) We have 165 = 3 ·5 ·11. There is only one abelian group on 165 elements: (Z3)× (Z5)×
(Z11).


