Exercise 1. Show that the center of a direct product is the direct product of the centers

$$
Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)
$$

Deduce that a direct product of groups is abelian if and only if each of the factors is abelian.
Solution. Suppose that $\left(z_{1}, \ldots, z_{n}\right) \in Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)$. Then, for any $\left(g_{1}, \ldots, g_{n}\right) \in$ $G_{1} \times \cdots \times G_{n}$, we have

$$
\left(z_{1}, \ldots, z_{n}\right)\left(g_{1}, \ldots, g_{n}\right)=\left(z_{1} g_{1}, \ldots, z_{n} g_{n}\right)=\left(g_{1} z_{1}, \ldots, g_{n} z_{n}\right)=\left(g_{1}, \ldots, g_{n}\right)\left(z_{1}, \ldots, z_{n}\right)
$$

Therefore

$$
Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right) \subseteq Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)
$$

Furthermore, if $\left(z_{1}, \ldots, z_{n}\right) \in Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)$. Then, for any $\left(g_{1}, \ldots, g_{n}\right) \in G_{1} \times \cdots \times G_{n}$, we have

$$
\left(z_{1} g_{1}, \ldots, z_{n} g_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)\left(g_{1}, \ldots, g_{n}\right)=\left(g_{1}, \ldots, g_{n}\right)\left(z_{1}, \ldots, z_{n}\right)=\left(g_{1} z_{1}, \ldots, g_{n} z_{n}\right)
$$

Therefore

$$
Z\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right) \subseteq Z\left(G_{1}\right) \times Z\left(G_{2}\right) \times \cdots \times Z\left(G_{n}\right)
$$

This establishes the result. Since any group G is abelian if and only if $Z(G)=G$ this implies the second claim.

Exercise 2. Let A and B be finite groups and let p be a prime. Prove that any Sylow 5.1.4 p-subgroup of $A \times B$ is of the form $P \times Q$ where $P \in \operatorname{Syl}_{p}(A)$ and $Q \in \operatorname{Syl}_{p}(B)$.

Solution. Let $|G|=p^{\alpha} m$, where $p \nmid m$. We also have that $|G|=|A| \cdot|B|$. Therefore, we have that $|A|=p_{1}^{\alpha} m_{1}$ and $|B|=p_{2}^{\alpha} m_{2}$ with $\alpha_{1}+\alpha_{2}=\alpha$. Clearly, there exists Sylow p-subgroups of G of the form $P \times Q$ where $P \in \operatorname{Syl}_{p}(A)$ and $Q \in S y l_{p}(B)$. The only part to show is that no other Sylow p-subgroups of G exist.
Let $A=\{(a, 1) \mid a \in A\} \leq G$, and similarly for B. Suppose that H is a Sylow p-subgroup of G. Then $H \cap A$ is a Sylow p-subgroup of A, and $H \cap B$ is a Sylow p-subgroup of B. If both $H \cap A$ and $H \cap B$ are maximal, then H must be of the form $P \times Q$ where $P \in S y l_{p}(A)$ and $Q \in S y l_{p}(B)$. Suppose that $H \cap A$ is not maximal. Then if $P \in S y l_{p}(A)$, we obtain a new p-subgroup $P \times H \cap B$, such that

$$
|H| \leq|H \cap A| \cdot|H \cap B|<|P \times H \cap B|
$$

which is a contradiction.
Exercise 3. Give the number of non-isomorphic abelian groups of the following orders: (a) 5.2.1 225 , (b) 1600 , (c) 1155.

Solution. Let $p(n)$ denote the integer partition number of n, i.e. the number of ways that n can be written as a sum of positive integers $a_{1}+\cdots+a_{k}$ with $a_{1} \leq \cdots \leq a_{k}$.
(a) We have that $225=3^{2} \cdot 5^{2}$. Using the fundamental theorem of finitely generated abelian groups, we see that the number of abelian groups is $p(2) \cdot p(2)=2 \cdot 2=4$.
(b) We have $1600=2^{6} \cdot 5^{2}$. Similarly, the number of abelian groups is $p(6) \cdot p(2)=11 \cdot 2=22$.
(c) We have $1155=3 \cdot 5 \cdot 7 \cdot 11$. There is only one abelian group on 1155 elements.

Exercise 4. Give the list of invariant factors for all abelian groups of the following orders:
(a) 270, (b) 9801, (c) 165.

Solution. Let $p(n)$ denote the integer partition number of n, i.e. the number of ways that n can be written as a sum of positive integers $a_{1}+\cdots+a_{k}$ with $a_{1} \leq \cdots \leq a_{k}$.
(a) We have that $270=2 \cdot 3^{3} \cdot 5$. The integer partitions of 3 are $3,2+1,1+1+1$. Therefore, we have the following groups on 270 elements (the invariant factors are the indices):

$$
\mathbb{Z}_{270}, \mathbb{Z}_{90} \times \mathbb{Z}_{3}, \mathbb{Z}_{30} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

(b) We have $9801=3^{4} \cdot 11^{2}$. The integer partitions of 4 are $4,3+1,2+2,2+1+1,1+$ $1+1+1$. The integer partitions of 2 are $2,1+1$. Therefore, we have the following groups on 9801 elements:

$$
\begin{aligned}
& \mathbb{Z}_{9801}, \mathbb{Z}_{891} \times \mathbb{Z}_{11}, \mathbb{Z}_{3267} \times \mathbb{Z}_{3}, \mathbb{Z}_{297} \times \mathbb{Z}_{33}, \mathbb{Z}_{1089} \times \mathbb{Z}_{9} \\
& \mathbb{Z}_{99} \times \mathbb{Z}_{99}, \mathbb{Z}_{1089} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{99} \times \mathbb{Z}_{33} \times \mathbb{Z}_{3}, \mathbb{Z}_{363} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{33} \times \mathbb{Z}_{33} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}
\end{aligned}
$$

(c) We have $165=3 \cdot 5 \cdot 11$. There is only one abelian group on 165 elements: \mathbb{Z}_{165}.

Exercise 5. Give the list of elementary divisors for all abelian groups of the following orders: 5.2.3 (a) 270, (b) 9801, (c) 165.

Solution.

(a) We have that $270=2 \cdot 3^{3} \cdot 5$. The integer partitions of 3 are $3,2+1,1+1+1$. Therefore, we have the following groups on 270 elements, in terms of their elementary divisors:

$$
\left(\mathbb{Z}_{2}\right) \times\left(\mathbb{Z}_{27}\right) \times\left(\mathbb{Z}_{5}\right),\left(\mathbb{Z}_{2}\right) \times\left(\mathbb{Z}_{9} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{5}\right),\left(\mathbb{Z}_{2}\right) \times\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{5}\right)
$$

(b) We have $9801=3^{4} \cdot 11^{2}$. The integer partitions of 4 are $4,3+1,2+2,2+1+1,1+$ $1+1+1$. The integer partitions of 2 are $2,1+1$. Therefore, we have the following groups on 9801 elements:

$$
\begin{aligned}
& \left(\mathbb{Z}_{81}\right) \times\left(\mathbb{Z}_{121}\right),\left(\mathbb{Z}_{81}\right) \times\left(\mathbb{Z}_{11} \times \mathbb{Z}_{11}\right) \\
& \left(\mathbb{Z}_{27} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{121}\right),\left(\mathbb{Z}_{27} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{11} \times \mathbb{Z}_{11}\right) \\
& \left(\mathbb{Z}_{9} \times \mathbb{Z}_{9}\right) \times\left(\mathbb{Z}_{121}\right),\left(\mathbb{Z}_{9} \times \mathbb{Z}_{9}\right) \times\left(\mathbb{Z}_{11} \times \mathbb{Z}_{11}\right) \\
& \left(\mathbb{Z}_{9} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{121}\right),\left(\mathbb{Z}_{9} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{11} \times \mathbb{Z}_{11}\right) \\
& \left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{121}\right),\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{11} \times \mathbb{Z}_{11}\right)
\end{aligned}
$$

(c) We have $165=3 \cdot 5 \cdot 11$. There is only one abelian group on 165 elements: $\left(\mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{5}\right) \times$ $\left(\mathbb{Z}_{11}\right)$.

