Exercise 1. If $\sigma \in \operatorname{Aut}(G)$ and ϕ_g is conjugation by g prove $\sigma \phi_g \sigma^{-1} = \phi_{\sigma(g)}$. Deduce that 4.4.1 $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$.

Solution. For any $h \in G$, we have

$$\sigma \phi_g \sigma^{-1}(h) = \sigma \phi_g(\sigma^{-1}(h))$$
$$= \sigma(g\sigma^{-1}(h)g^{-1})$$
$$= \sigma(g)h\sigma(g^{-1})$$
$$= \sigma(g)h\sigma(g)^{-1}$$
$$= \phi_{\sigma(g)}(h),$$

by the properties of automorphisms. Therefore, the subgroup Inn(G) is preserved under conjugation and is therefore normal in Aut(G).

Exercise 2. Prove that if G is an abelian group of order pq, where p and q are distinct 4.4.2 primes, then G is cyclic.

Solution. By Cauchy's Theorem, we have that G has an element, say x, of order p and an element, say y, of order q. Then $(xy)^{pq} = 1$. This implies that the order of xy divides pq. Then, the only options for |xy| are 1, p, q, pq. Since inverses have the same order, x and y are not inverses and $|xy| \neq 1$. Furthermore, $(xy)^p = y^p \neq 1$, since p does not divide q or vice versa. So $|xy| \neq p$ and similarly $|xy| \neq q$.

Exercise 3. Show that under any automorphism of D_8 , r has at most 2 possible images and 4.4.3 s has at most 4 possible images. Deduce that $|\operatorname{Aut}(D_8)| \leq 8$.

Solution. Since order of elements is preserved under automorphisms, the element r must map to an element of order 4, of which there are only two: r and r^3 . Similarly, s must map to an element of order 2, of which there are five: r^2 , s, sr, sr^2 , sr^3 . However, we have $r^2 \in Z(G)$ and $s \notin Z(G)$, so therefore s has at most 4 possible images. Since r and s generate D_8 , their mapping determines the full automorphism. Therefore, $|\operatorname{Aut}(D_8)| \leq 2 \cdot 4 = 8$.