Practice Problems Chapter 34

Electromagnetic Waves

Multiple Choice

- 1. The Earth is 1.49×10^{11} meters from the sun. If the solar radiation at the top of the Earth's atmosphere is 1340 W/m², what is the total power output of the sun?
 - **a.** 7.10×10^{27} W
 - **b.** 2.20×10^{30} W
 - **c.** 6.62×10^{26} W
 - **d.** 3.74×10^{26} W
 - **e.** 2.98×10^{25} W
- 4. Find the force exerted by reflecting sunlight off a reflecting aluminum sheet in space if the area normal to the sunlight is $10\ 000\ \text{m}^2$ and the solar intensity is $1350\ \text{W/m}^2$.
 - **a.** 0.72 N
 - **b.** 0.09 N
 - **c.** 9 N
 - **d.** 45 N
 - **e.** 0.18 N
- 5. What is the average value of the magnitude of the Poynting vector **S** at 1 meter from a 100-watt lightbulb radiating in all directions?
 - **a.** $1 W/m^2$
 - **b.** 4 W/m^2
 - c. $2 W/m^2$
 - **d.** $8 W/m^2$
 - **e.** 12 W/m^2
- **10.** What is the maximum radiation pressure exerted by sunlight in space $(S = 1350 \text{ W}/\text{m}^2)$ on a highly polished silver surface?
 - **a.** 1.4×10^{-2} Pa
 - **b.** 0.12 Pa
 - **c.** 9.0×10^{-6} Pa
 - **d.** 4.5×10^{-5} Pa
 - **e.** 2.3×10^{-6} Pa

2 CHAPTER 34

17. The magnetic field of a plane-polarized electromagnetic wave moving in the *z*-direction is given by $B = 1.2 \times 10^{-6} \sin \left[2\pi \left(\frac{z}{240} - \frac{t \times 10^7}{8} \right) \right]$ in SI units. What is

the wavelength of the EM wave?

- **a.** 120 m
- **b.** 240 m
- **c.** 60 m
- **d.** 100 m
- **e.** 360 m
- **20.** A solar cell has a light-gathering area of 10 cm² and produces 0.2 A at 0.8 V (DC) when illuminated with $S = 1000 \text{ W/m}^2$ sunlight. What is the efficiency of the solar cell?
 - **a.** 16%
 - **b.** 7%
 - **c.** 23%
 - **d.** 4%
 - **e.** 32%
- **21.** High frequency alternating current is passed through a solenoid that contains a solid copper core insulated from the coils of the solenoid. Which statement is correct?
 - **a.** A copper core remains cool no matter what the frequency of the current in the solenoid is.
 - **b.** The copper core remains cool because the induced emf is parallel to the solenoid axis and fluctuates rapidly.
 - **c.** The copper core heats up because an emf parallel to the solenoid axis is induced in the core.
 - **d.** The copper core heats up because circular currents around its axis are induced in the core.
 - **e.** The copper core heats up because the electric field induced in the copper is parallel to the magnetic field produced by the solenoid.
- **22.** In an electromagnetic wave, 1) how are the electric and magnetic field directions related and 2) how is the direction of travel determined from their directions? (**c** is the velocity of the light wave.)

a.
$$E \parallel B; \frac{c}{c} = \frac{E \times B}{|E \times B|}.$$

b. $E \parallel B; \frac{c}{c} = \frac{B \times E}{|B \times E|}.$
c. $E \perp B; \frac{c}{c} = \frac{E \times B}{|E \times B|}.$
d. $E \perp B; \frac{c}{c} = \frac{B \times E}{|B \times E|}.$
e. $E = B/c; \frac{c}{c} = \frac{B \times E}{|B \times E|}.$

- 23. The intensity of radiation reaching the earth from the sun is 1350 W/m^2 . The earth's radius is $6.4 \times 10^6 \text{ m}$. How big a force does this radiation exert on the earth? (Assume it is all absorbed.)
 - **a.** 5.8×10^8 N
 - **b.** 1.2×10^9 N
 - **c.** 2.3×10^9 N
 - **d.** 4.6×10^9 N
 - **e.** 1.7×10^{17} N

Open-Ended Problems

- **31.** Near the surface of the planet, the Earth's magnetic field is about 0.5×10^{-4} T. How much energy is stored in 1 m³ of the atmosphere because of this field?
- **32.** The sun radiates energy at a rate of 3.86×10^{26} W. Its radius is 7.0×10^{8} m. If the distance from the Earth to the sun is 1.5×10^{11} m, what is the intensity of solar radiation at the top of the Earth's atmosphere?
- **33.** A possible means of spaceflight is to place a perfectly reflecting aluminized sheet into Earth orbit and use the light from the sun to push this solar sail. If a huge sail of area 6×10^5 m² and mass 6000 kg were placed into orbit and turned toward the sun, what would be the force exerted on the sail? (Assume a solar intensity of 1380 W/m².)

Chapter 34

Electromagnetic Waves

1.	d	18.	a
2.	b	19.	b
3.	С	20.	а
4.	b	21.	d
5.	d	22.	с
6.	a	23.	a
7.	a	24.	с
8.	b	25.	a
9.	d	26.	с
10.	С	27.	b
11.	a	28.	e
12.	a	29.	a
13.	с	30.	с
14.	d	31.	$9.9 imes 10^{-4} ext{ J}$
15.	d	32.	1400 W/m^2
16.	с	33.	5.52 N
17.	b		