CHAPTER FOURTEEN SOLUTIONS

CHAPTER FOURTEEN SOLUTIONS

14.3 The speed of sound at $\overline{27 \, ^{\circ}\text{C}}$ is: $v = (331 \text{ m/s}) \sqrt{1 + \frac{27}{273}} = 347 \frac{\text{m}}{\text{s}}$. Thus, the wavelengths are: $\lambda_{20} \text{ Hz} = \frac{v}{f} = \frac{347 \text{ m/s}}{20.0 \text{ Hz}} = 17.3 \text{ m}$, and $\lambda_{20,000 \text{ Hz}} = \frac{v}{f} = \frac{347 \text{ m/s}}{2.0 \text{ x} 10^4 \text{ Hz}} = 1.7 \text{ x} 10^{-2} \text{ m}.$

14.7 (a)
$$P = IA = I(5.0 \text{ x } 10^{-5} \text{ m}^2)$$
. At the threshold of hearing, $I = 10^{-12}$ W/m². Thus, $P = (10^{-12} \text{ W/m}^2)(5.0 \text{ x } 10^{-5} \text{ m}^2) = 5.0 \text{ x } 10^{-17} \text{ W}$.

(b) At the threshold of pain,
$$I = 1 \text{ W/m}^2$$
.
 $P = (1.0 \text{ W/m}^2)(5.0 \text{ x } 10^{-5} \text{ m}^2) = 5.0 \text{ x } 10^{-5} \text{ W}.$

14.12(a)
$$I = \frac{P}{4\pi r^2} = \frac{100 \text{ W}}{4\pi (10.0 \text{ m})^2} = 7.96 \text{ x } 10^{-2} \text{ W/m}^2.$$

(b) $\beta = 10 \log \left(\frac{7.96 \text{ x } 10^{-2}}{10^{-12}}\right) = 10 \log(7.96 \text{ x } 10^{10}) = 109 \text{ dB}$

(c) If $\beta = 120$ dB (the threshold of pain), I = 1 W/m², and from $I = \frac{P}{4\pi r^2}$, and we find: $r^2 = \frac{P}{4\pi I} = \frac{100 \text{ W}}{4\pi (1 \text{ W/m}^2)} = 7.96 \text{ m}^2$, giving: r = 2.82 m.

14.20 The wall will reflect a frequency of f_{wall} given by (source approaches a stationary observer): $f_{wall} = (40 \text{ kHz}) \frac{345 \text{ m/s}}{345 \text{ m/s}} = 40.6 \text{ kHz}.$ Treating the wall as a stationary source of sound having frequency 40.6 kHz, we have for the return signal (observer approaching stationary source):

$$f_{\text{bat}} = (40.6 \text{ kHz}) \frac{345 \text{ m/s} + 5.0 \text{ m/s}}{345 \text{ m/s}} = 41 \text{ kHz}.$$

14.21 When the train is moving toward the observer at a speed v, we have $442 \text{ Hz} = f \frac{345}{345 - v} . \tag{1}$

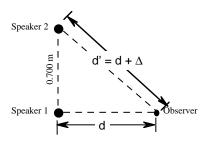
When the train is moving away from the observer, at v, we have $441 \text{ Hz} = f \frac{345}{345 + v} . \qquad (2)$

Divide equation (1) by (2), f cancels, and the resulting equation can be solved for v. We find: v = 0.391 m/s.

14.27 Since f = 690 Hz, we have $\lambda = \frac{345 \text{ m/s}}{690 \text{ Hz}} = 0.500 \text{ m}.$

CHAPTER FOURTEEN SOLUTIONS

(a) At the first relative maximum (constructive interference), $\Delta = \lambda = 0.500$ m. Thus, the Pythagorean theorem gives $(d + 0.500 \text{ m})^2 = (0.700 \text{ m})^2 + d^2$, or d = 0.240 m.



- (b) At the first relative minimum (destructive interference), $\Delta = \lambda/2 =$ 0.250 m. Therefore, $(d + 0.250 \text{ m})^2 = (0.700 \text{ m})^2 + d^2$, or d = 0.855 m.
- 14.37 (a) The space between successive resonance points is λ/2. Therefore, λ/2 = (0.24 m 0.080 m) = 0.16 m, or λ = 0.32 m. The third resonance point will be one-half wavelength further down the tube. This location is at 0.24 m + 0.16 m = 0.40 m.
 (b) f = v/λ = 345 m/s/0.32 m = 1.1 x10³ Hz.

14.38 For the open pipe (and the fundamental mode):

$$\lambda = \frac{v}{f} = \frac{345 \text{ m/s}}{261.6 \text{ Hz}} = 1.319 \text{ m}, \text{ and } L = \frac{\lambda}{2} = 0.659 \text{ m} = 65.9 \text{ cm}.$$
For the closed pipe (and the third harmonic), $\lambda = \frac{v}{f} = \frac{345 \text{ m/s}}{261.6 \text{ Hz}} = 1.319 \text{ m},$
and $L = \frac{3}{4} (1.319 \text{ m}) = 0.989 \text{ m} = 98.9 \text{ cm}.$
14.39 Hearing would be best at the fundamental resonance, so we take
$$f_n = \frac{nv}{4L} = \frac{(1)(340)}{4(0.028)} = 3.0 \text{ x}10^3 \text{ Hz}$$

14.43 The speed of transverse waves in a string is
$$v = \sqrt{\frac{T}{\mu}}$$
.
Thus for $T = 200$ N, $v = \sqrt{\frac{200 \text{ N}}{\mu}}$, and for $T = 196$ N, $v' = \sqrt{\frac{196 \text{ N}}{\mu}}$.
Since $v = \lambda f$ and the length of the string (and hence λ) does not change:
 $\frac{f'}{f} = \frac{v'}{v}$, or $f' = \sqrt{\frac{196 \text{ N}}{\mu} \frac{\mu}{200 \text{ N}}}$, $f = 0.99(523 \text{ Hz})$, giving $f' = 517.7$ Hz
The beat frequency is $f_{\text{beat}} = f \cdot f' = (523 - 517.7)$ Hz = 5.26 Hz
ANSWERS TO EVEN ASSIGNED CONCEPTUAL OUESTIONS

8. Refer to Table 14.2 to see that a rock concert has an intensity level of about 120 dB, the turning of a page in a textbook about 30 dB, a normal conversation is about 50 dB, background noise at a church is about 30 dB. This leaves a cheering crowd at a football game to be about 60 dB.

CHAPTER FOURTEEN SOLUTIONS

12. A beam of radio waves of known frequency is sent toward a speeding car, which reflects the beam back to a detector in the police car. The amount the returning frequency has been shifted depends on the velocity of the oncoming car.