CHAPTER THIRTEEN SOLUTIONS

CHAPTER THIRTEEN SOLUTIONS

Using conservation of energy, we have: $\frac{1}{2}kx^2 = mgh$ 13.7 From which, $k = \frac{2mgh}{r^2} = \frac{2(0.100 \text{ kg})(9.80 \text{ m/s}^2)(0.600 \text{ m})}{(0.02 \text{ m})^2} = 2940 \text{ N/m}.$ In the presence of non-conservative forces, we use: 13.9 $W_{\rm nc} = \frac{1}{2} m v_{\rm f}^2 - \frac{1}{2} m v_{\rm i}^2 + m g y_{\rm f} - m g y_{\rm i} + \frac{1}{2} k x_{\rm f}^2 - \frac{1}{2} k x_{\rm i}^2$, or $(20 \text{ N})(0.30 \text{ m}) = \frac{1}{2} (1.5 \text{ kg}) v_{\text{f}}^2 - 0 + 0 - 0 + \frac{1}{2} (19.6 \text{ N/m})(0.30 \text{ m})^2 - 0.$ This gives: $v_f = 2.6$ m/s. **13.13** We use $v = \sqrt{\frac{k}{m}(A^2 - x^2)}$. Squaring gives: $v^2 = \frac{k}{m}(A^2 - x^2)$, yielding $v^2 = \frac{19.6 \text{ N/m}}{0.40 \text{ kg}} [(4.0 \text{ x } 10^{-2} \text{ m})^2 - x^2] = 49 \text{ s}^{-2}[1.6 \text{ x } 10^{-3} \text{ m}^2 - x^2].$ (1)(a) If x = 0, (1) gives: v = 0.28 m/s = 28 cm/s (as the maximum velocity) (b) If $x = -1.5 \times 10^{-2}$ m, (1) gives v = 0.26 m/s = 26 cm/s. (c) if $x = 1.5 \times 10^{-2}$ m, (1) gives v = 0.26 m/s = 26 cm/s. (d) One-half the maximum velocity is 0.14 m/s. (See part (a).) We use this for v in (1) and solve for x to find: x = 3.5 cm. **13.23** (a) We have: $x = (0.30 \text{ m}) \cos \frac{\pi t}{3}$. (1)At t = 0, $x = (0.30 \text{ m}) \cos 0 = 0.30 \text{ m}$. At t = 0.60 s: $x = (0.30 \text{ m}) \cos\left(\frac{\pi}{3} \frac{\text{r a d}}{\text{s}} 0.60 \text{ s}\right) = (0.30 \text{ m})\cos(0.628 \text{ rad}),$ or x = 0.24 m. (b) The general form for oscillatory motion is: $x = A \cos 2\pi ft$. (2)Thus, by comparing (1) to (2), we see that A = 0.30 m. (c) Using comparison as in (b), we see that: $2\pi f = \pi/3$, and f = 1/6 Hz. (d) $T = \frac{1}{f} = 6.0 \text{ s}$ **13.31** (a) The period of a pendulum is given by $T = 2\pi \sqrt{\frac{L}{g}}$, so $L = \frac{gT^2}{4\pi^2}$. On Earth, a 1-s pendulum has length $L = \frac{(9.80)(1.0)^2}{4\pi^2} = 0.248 \text{ m} = 25 \text{ cm}.$ On Mars, a 1-s pendulum has length $L = \frac{(3.7)(1.0)^2}{4\pi^2} = 0.0937 \text{ m} = 9.4 \text{ cm}.$ (b) The period of a mass on a spring is given by $T = 2\pi \sqrt{\frac{m}{k}}$. The mass for a 1-s oscillator is

CHAPTER THIRTEEN SOLUTIONS

$$m = \frac{kT^2}{4\pi^2} = \frac{(10 \text{ N/m})(1.0 \text{ s})^2}{4\pi^2} = 0.253 \text{ kg} = 0.25 \text{ kg}$$

This same mass works for both the Earth and Mars.

13.33 From
$$\lambda = \frac{v}{f}$$
, we get: $\lambda = \frac{340 \text{ m/s}}{60000 \text{ s}^{-1}} = 5.67 \text{ mm}.$

13.39 The speed of the wave is: v = d/t = 20.0 m/0.800 s = 25.0 m/s.We now use, $v = \sqrt{\frac{F}{\mu}}$. We have $\mu = \frac{0.35 \text{ kg}}{1.00 \text{ m}} = 0.35 \text{ kg/m}.$ Thus, $F = v^2 \mu = (25.0 \text{ m/s})^2 (0.35 \text{ kg/m}) = 219 \text{ N}.$

13.42 (a) The tension in the string is $F = (3.00 \text{ kg})(9.80 \text{ m/s}^2) = 29.4 \text{ N}.$ $\mu = \frac{F}{v^2} = \frac{29.4 \text{ N}}{(24.0 \text{ m/s})^2} = 5.10 \text{ x } 10^{-2} \text{ kg/m}.$ (b) If m = 2.0 kg, then F = 19.6 N, and $v = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{19.6 \text{ N}}{5.10 \text{ x } 10^{-2} \text{ kg/m}}} = 19.6 \text{ m/s}.$ (20 m/s)

ANSWERS TO EVEN ASSIGNED CONCEPTUAL QUESTIONS

14. If the tension remains the same, the speed of a wave on the string does not change. This means, from $v = f\lambda$, that if the frequency is doubled, the wavelength must decrease by a factor of two.

16. The speed of a wave on a string is given by $v = \sqrt{\frac{F}{\mu}}$. This says the speed is independent of the frequency of the wave. Thus, doubling the frequency leaves the speed unaffected.