CHAPTER ONE SOLUTIONS

CHAPTER ONE SOLUTIONS

1.3 Substituting in dimensions, we have (T) = $\sqrt{\frac{(L)}{(L/T^2)}} = \sqrt{T^2} = (T)$ Thus, the dimensions are consistent. 1.7 (a) 78.9 ± 0.2 has 3 significant figures. (b) 3.788×10^9 has 4 significant figures. (c) 2.46×10^{-6} has 3 significant figures. (d) $0.0032 = 3.2 \times 10^{-3}$ has 2 significant figures. 1.23 Volume of cube = L^3 = 1 quart (Where L = length of one side of the cube.) Thus, $L^3 = (1 \text{ quart}) \left(\frac{1 \text{ gallon}}{4 \text{ quarts}}\right) \left(\frac{3.786 \text{ liters}}{1 \text{ gallon}}\right) \left(\frac{1000 \text{ cm}^3}{1 \text{ liter}}\right) = 946.5 \text{ cm}^3,$ and L = 9.82 cm **1.25** (a) mass = (density)(volume) = $\left(\frac{1.0 \times 10^{-3} \text{ kg}}{1.0 \text{ cm}^3}\right)(1 \text{ m}^3)$ = $(1.0 \text{ x } 10^{-3} \text{ kg/cm}^3)(1 \text{ m}^3) \left(\frac{10^2 \text{ cm}}{1 \text{ m}}\right)^3 = 1000 \text{ kg}$ (b) As rough calculation, treat as if 100% water. cell: mass = density x volume = $\left(\frac{10^3 \text{ kg}}{1 \text{ m}^3}\right) \frac{4}{3} \pi (0.5 \text{ x } 10^{-6} \text{ m})^3 = 5.2 \text{ x } 10^{-16} \text{ kg}$ kidney: mass = density x volume = $\left(\frac{10^3 \text{ kg}}{1 \text{ m}^3}\right) \frac{4}{3} \pi (4 \text{ x } 10^{-2} \text{ m})^3 = 0.27 \text{ kg}$ fly: mass = density x vol = $(density)(\pi r^2 h)$ $=\left(\frac{10^3 \text{ kg}}{1 \text{ m}^3}\right) \pi (10^{-3} \text{ m})^2 (4 \text{ x} 10^{-3} \text{ m}) = 1.3 \text{ x} 10^{-5} \text{ kg}$ number of pounds = (number of burgers)(weight/burger) 1.26

 $= (5 \times 10^{10} \text{ burgers})(0.25 \text{ lb/burger}) = 1.25 \times 10^{10} \text{ lb}$ number of head of cattle = (weight needed)/(weight per head) =(1.25 \times 10^{10} \text{ lb})/(300 \text{ lb/head}) = 4.17 \times 10^7 \text{ head} Assumptions are 0.25 lb of meat per burger and 300 lb of meat per head of cattle

1.29 The x coordinate is found as $x = r \cos\theta = (2.5 \text{ m})(\cos 35^\circ) = 2.1 \text{ m}$ and the y coordinate is $y = r \sin\theta = (2.5 \text{ m})(\sin 35^\circ) = 1.4 \text{ m}$

CHAPTER ONE SOLUTIONS

1.34 (a)
$$\sin \theta = \frac{\text{side opposite}}{\text{hypotenuse}}$$
 so, side opposite = $(\sin 30.0^{\circ})(3.00 \text{ m}) = 1.5 \text{ m}.$
(b) $\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$ so, adjacent side = $(\cos 30.0^{\circ})(3.00 \text{ m}) = 2.6 \text{ m}.$

1.48 The volume of oil equals
$$V = \frac{9.00 \times 10^{-7} \text{ kg}}{918 \text{ kg/m}^3} = 9.8 \times 10^{-10} \text{ m}^3$$
.
If the diameter of a molecule is d , then that same volume must equal $d(\pi r^2) = (\text{thickness of slick})(\text{area of oil slick})$ where $r = 0.418$ m. Thus,
 $d = \frac{9.80 \times 10^{-10} \text{ m}^3}{\pi (0.418 \text{ m})^2} = 1.78 \times 10^{-9} \text{ m}.$