1 Introduction

This paper establishes a sound and complete semantics for the impure logic of ground. Fine [2012a] sets out a system for the pure logic of ground, one in which the formulas between which ground-theoretic claims hold have no internal logical complexity; and it provides a sound and complete semantics for the system. Fine [2012b, §§6-8] sets out a system for an impure logic of ground, one that extends the rules of the original pure system with rules for the truth-functional connectives, the first-order quantifiers, and λ-abstraction. However, it does not provide a semantics for this system. The present paper partly fills this lacuna by providing a sound and complete semantics for a system GG containing the truth-functional operators that is closely related to the truth-functional part of the system of [Fine, 2012b].

The reader may find it helpful to have the above two papers at hand, but let us remind her of some key features of the earlier systems. A distinction is drawn between weak and strict ground. Intuitively, we might think of a strict ground as being on a lower explanatory level than what it grounds, while a weak ground can also be at the same explanatory level. Thus A will always be a weak ground for itself though never a strict ground. We also introduce the notion of a partial, as opposed to a full, ground. A weak partial ground is a part of a weak full ground, while a strict partial ground is a weak partial ground which cannot be reversed. Thus A, B, together, will be a strict full ground for $A \land B$, while A or B on their own will be strict partial grounds for $A \land B$ though not, in general, strict full grounds; and if it is granted that, for distinct bodies x, y and z, x being of the same mass as y and y the same mass as z weakly fully grounds x being of the same mass as z, then x being of the same mass as y will be a weak partial ground for x being of the same mass as z without being either a strict partial ground or a weak full ground. We are thereby led to a fourfold classification of ground - strict full, weak full, strict partial, and weak partial - for which we use the respective symbols $<, \leq, <,$, and \preceq and the systems we consider will treat each of these four types of ground as syntactic primitives.

1The main differences between the two systems are that we now only allow finitely many formulas to occur to the left of the ground-theoretic operator and that we have added the Irreversibility Rule, which should have been part of the original system.
In the impure system, there are two principal sets of rules concerning the interaction between ground and the truth-functional connectives. There are, first of all, the introduction rules, which specify the grounds for a truth-functionally complex statement of a given form in terms of simpler statements. Thus the fact that A, B strictly grounds $A \land B$ serves as an introduction rule for conjunction. There are, in the second place, the elimination rules, which tell us how an arbitrary ground for a truth-functionally complex statement of a given form must be related to the grounds for simpler statements. Thus in the case of conjunction, the elimination rule will tell us that when a set of statements Δ strictly grounds $A \land B$, it must be possible to split Δ into two (perhaps overlapping) parts, one of which weakly grounds A and the other of which weakly grounds B.

The development of a semantics for the logic of ground faces two main tasks: it must provide an account of the content of the statements that go to make up a grounding claim; and it must provide an account of the ground-theoretic connection that should hold among the contents of those statements when the claim is true. The two tasks go hand in hand, since the account of content should be precisely what is needed to provide the resources by which a suitable account of the ground-theoretic connections might be given.

In dealing with these two tasks, we have found it convenient to adopt a form of truthmaker semantics. The main idea behind such a semantics is that truthmaking should be exact, i.e., a truthmaker should bear as a whole upon the statement that it makes true. Since ground is also exact, which is to say that the grounds should bear as a whole upon what is grounded, it is perhaps no surprise that a semantics for the logic of ground should also be exact. The exactitude of ground will be mirrored in the exactitude of the truth-makers.

Another feature of truthmaker semantics – at least within the setting of classical logic – is that it is bilateral. The full content, or meaning, of a statement is not simply given by its truth-makers but also by its falsity-makers. Thus we may take the truth-condition (sometimes called the *positive content*) of a statement to be given by the set of its truth-makers, the falsity-condition (or *negative content*) to be given by the set of its falsity-makers, and its content (or *full content*) to be given by the ordered pair consisting of its truth-condition, or positive content, and its falsity-condition, or negative content.

Our semantics for the impure logic of ground will take over these features; it will be both exact and bilateral. However, the standard “flat” form of truthmaker semantics, described in [Fine, 2017a], will not serve our purpose, since it does not provide us with a sufficiently fine-grained conception of content. The problem is that our impure logic of ground is highly hyper-intensional; it distinguishes in a very radical way between logically equivalent statements. Thus: even though $A \land B$ is logically equivalent to $B \land A$, $A \land B$ will be a weak ground for $A \land B$ but not generally for $B \land A$; even though $A \lor B$ is logically equivalent to $B \lor A$, $A \lor B$ is a weak ground for $A \lor B$ but not generally for $B \lor A$; and, even though A is logically equivalent to $\neg\neg A$, $\neg\neg A$ will be a weak ground for

2 A survey of this style of semantics can be found in [Fine, 2017a].

3 This connection between ground and truthmaking is further discussed in [Fine, 2020].
Now the standard truthmaker semantics is indeed hyper-intensional; it will distinguish, for example, between the truthmakers for A and for $A \lor (A \land B)$, since the fusion of a truth-maker for A and for B will be a truth-maker for $A \land B$ and hence for $A \lor (A \land B)$, yet not in general for A. However, it is not hyper-intensional enough. For under the standard semantics, the truth- and falsity-makers of $A \land B$ and $B \land A$, and of $A \lor B$ and $B \lor A$, and of A and $\neg \neg A$ will be the same. We therefore require a more fine-grained conception of content and a more refined conception of truth- and falsity-making by which it might be defined.

To this end, it will be helpful to see how this more refined conception of truth-making of our semantics might have evolved, through successive differentiation, from the original, less refined, notion of truthmaking of the standard semantics. (This reflects the actual development of our semantics). Consider first the relationship between $A \land B$ and $B \land A$. Under the standard semantics, the truthmakers for $A \land B$ are the fusions of the form $(a \sqcup b)$ and the truthmakers for $B \land A$ are the fusions of the form $(b \sqcup a)$, for a a truthmaker for A and b a truthmaker for B, and, since $(a \sqcup b)$ is assumed to be the same as $(b \sqcup a)$, the truthmakers for $A \land B$ and for $B \land A$ will be the same. It turns out that the falsity-makers for $A \land B$ and for $B \land A$ are also the same; and so the standard semantics will be incapable of distinguishing, as it should, between the contents of $A \land B$ and $B \land A$.

We may overcome this problem by adopting a more fine-grained conception of fusion, which we now call combination and which is not subject to the usual “leveling” constraints, such as associativity, commutativity and idempotence. The combination $[a.b]$ of a and b, for example, need not be taken to be the same as the combination $[b.a]$ of b and a. We also allow, in the spirit of generality, for combination to apply to any finite number of elements (or to an infinite number of elements in some further applications we will consider). In the special case in which combination applies to zero items, we will get a null item, which corresponds to the fusion of zero states in the standard semantics; and, in the special case of the unit combination of a single item a, combination will take us up a level to a “raised” version $[a]$ of the item, which, in contrast to the unit fusion, is never the same as the item itself. The semantics for conjunction is now explained in terms of combination rather than fusion and, since the combination $[a.b]$ of a and b need not be the same as the combination $[b.a]$ of b and a, the previous difficulty is avoided.

Similar problems beset the relationship between $(A \lor B)$ and $(B \lor A)$. Under the standard semantics, the truthmakers for $(A \lor B)$ are the truthmakers for A and for B (and possibly also for $A \land B$) and so will be the same as the truthmakers for $(B \lor A)$. It turns out that the falsity-makers for $(A \lor B)$ and for $(B \lor A)$ are also the same; and so the standard semantics will be incapable of distinguishing, as it should, between the contents of $(A \lor B)$ and $(B \lor A)$.

We overcome this problem by supposing that, in addition to the operation of combination, there is an operation of choice which applies to any finite number (or, more generally, to any number) of items and which is, again, not subject
to leveling. The choice \([a + b]\) between \(a\) and \(b\), for example, need not be the same as the choice \([b + a]\) between \(b\) and \(a\). Choices are in general different from combinations but, in the special case of a single element \(a\), we shall find no need to distinguish between the unit choice of \(a\) and the unit combination \([a]\). The semantics for disjunction is now explained in terms of choice and, since the choice \([a + b]\) between \(a\) and \(b\) need not be the same as the choice \([b + a]\) between \(b\) and \(a\), we will be in a position to distinguish between the contents of \((A \lor B)\) and \((B \lor A)\).

This change to the standard semantics brings a more sweeping change in its wake. Before, we could identify the truth-condition of a statement with the set of its truth-makers and the falsity-condition of the statement with the set of its falsity-makers and we were able, moreover, to provide a recursive specification of the truth-and falsity-makers of a conjunction or disjunction in terms of the truth- and falsity-makers of their immediate components (and their fusions). We could therefore take as our semantic primitives the notions of a state being a truth-maker for a given statement and of a state being a falsity-maker for a given statement. This is no longer possible, for the difference between \((A \lor B)\) and \((B \lor A)\), for example, will lie not in the truth-makers for their components, which are the same, but in the order in which they are given. Thus the semantics must proceed by providing a recursive specification of the truth- and falsity-conditions, rather than the truth- and falsity-makers, and combination and choice must be regarded (at least for now) as operations on truth- and falsity-conditions without there necessarily being any explanation of the operations solely in terms of the truth- and falsity-makers by which the conditions are constituted.

Negation introduces a further complication. Under the standard semantics, the truth-condition for \(\neg A\) is the falsity-condition for \(A\) and the falsity-condition for \(\neg A\) is the truth-condition for \(A\). This means that \(A\) and \(\neg \neg A\) will have the same truth-condition and the same falsity-condition; and so the semantics will be incapable of distinguishing, as it should, between the contents of \(A\) and \(\neg \neg A\).

Let us grant that the falsity-condition for \(A\) is indeed the truth-condition for \(\neg A\). (Indeed, we might even take the falsity-condition for \(A\) to be, by definition, the truth-condition for \(\neg A\).) Is it then so clear that the falsity-condition for \(\neg A\) will be the truth-condition for \(A\)? For the falsity-condition for \(\neg A\), we have already assumed, is the truth-condition for \(\neg \neg A\). But the direct truth-condition \(a\) for \(A\) is only an indirect truth-condition for \(\neg \neg A\); it makes \(\neg \neg A\) true through first making \(A\) true. And we may mark this difference by making the direct truth-condition for \(\neg \neg A\) to be, not \(a\), but the unit combination \([a]\) (cf. [Krämer, 2018b, 10-12]). Thus in providing a semantics for \(\neg A\), there is not simply a reversal of the truth- and falsity-conditions but a raised reversal, in which the truth-condition \(a\) for \(A\) is converted into a raised falsity-condition \([a]\) for \(\neg A\). We can then distinguish between \(A\) and \(\neg \neg A\) since, when \(a\) is the truth-condition for \(A\), it is \([a]\) rather than \(a\) that will be the truth-condition for \(\neg \neg A\) and, in general, when \((a, a')\) is the content of \(A\) then \(([a], [a'])\) will be the content of \(\neg \neg A\).

We are not yet done. We have so far assumed that the truth-condition for
A ∧ B is the combination of the truth-conditions for A and B respectively and that the truth-condition for A ∨ B is the choice between the truth-conditions for A and B; and similarly for the other cases. But this leads to unwanted results. For suppose that (a, a') is the content of A and (b, b') the content of B. Then the content of A ∨ B is ([a + b], [a' b']), so the content of ¬(A ∨ B) is ([a' b'], [[a + b]]), and so the content of ¬¬¬(A ∨ B) is ([[a' b']], [[a + b]]); and the respective contents of ¬A and ¬B are (a', [a]) and (b', [b]), so the content of (¬A ∧ ¬B) is ([a' b'], [[a] + [b]]), and so the content of ¬¬¬(¬A ∧ ¬B) is ([[a' b']], [[a] + [b]]).

Now (¬A ∨ B) is a strict full ground for ¬¬¬(A ∨ B) and so we will want an appropriate ground-theoretic connection to hold between the content (a' b'), ([a + b]]) of ¬A ∨ B) and the content (a' b', [[a + b]]) of ¬¬¬(A ∨ B). But in the semantics, we will want the grounding connection between the contents of some grounds and a grounded statement to depend only upon the positive content of the grounded statement (we might call this ‘positive bias’, since only the positive content of the grounded statement is taken into account).

Such a view might plausibly be taken to be built into our conception of positive content, which concerns the ways in which a proposition might be true, but not the ways in which it might be false, i.e. its negative content. (It will also receive some support from the idea, developed below, of contents as bilateral menus.) But this means, in the particular case above, that it is only the positive content=[[a' b']] of ¬¬¬(A ∨ B) that is relevant to ¬(¬A ∨ B) grounding ¬¬¬(A ∨ B). So the same ground-theoretic connection should hold between the content (a' b'], [[a + b]]) of ¬A ∨ B) and the content (a' b', [[a + b]]) of ¬¬¬(¬A ∧ ¬B) and, consequently, ¬A ∨ B) should also be a strict ground for ¬¬¬(¬A ∧ ¬B). But our system leaves open whether this is so.

We solve this problem by supposing that combination and choice are operations, not on conditions, but on contents. Thus the truth-condition for (A ∧ B) will be the combination of the respective contents (not truth-conditions) of A and B, the truth-condition for (A ∨ B) will be the choice of the respective contents of A and B, the falsity-condition for ¬A will be the unit combination of the content of A, and similarly for the other cases. There is thus an interplay between conditions and contents, with contents formed through the pairing of conditions and conditions formed through the combination and choice of contents. The previous problem will not then arise since ¬¬¬(A ∨ B) and ¬¬¬¬(¬A ∧ ¬B) will end up having different truth-conditions.

We come to the second task, of providing an account of ground-theoretic connection. We here appeal to the abstract theory of menus gestured at in §4 of [Fine, 2017b]. A menu provides a vehicle for selection. Thus from the two-item menu listing eggs-and-bacon and porridge, one can select either eggs-and-bacon or porridge and, from the one-item menu listing eggs-and-bacon, one can select the two component items, eggs and bacon, and consequently, from the original two-item menu, one can select either eggs and bacon or porridge.

The theory of menus provides a general abstract account of selection. Within such a theory, we take the domain of items to be closed under combination and choice. Thus, given any finite number of items a₁, a₂, . . . of the domain, the choice [a₁ + a₂ + ···] and the combination [a₁’a₂ ···] of those items will also
be items of the domain. Menus are either combinations or choices and so may themselves figure as items on a menu.

There are two main principles governing the immediate selection of items from a menu. In the case of a choice $[a_1 + a_2 + \cdots]$, each of a_1, a_2, \ldots is an immediate selection; and in the case of a combination $[a_1, a_2, \cdots]$, a_1, a_2, \ldots (together) is an immediate selection. A simple account of selection (later to be modified) can then be obtained through the repeated chaining of immediate selection: $[a + b], c$, for example, will be an immediate selection from $[[a + b], c]$ and a an immediate selection from $[a + b]$; and so a, c will be a selection from $[[a + b], c]$.

It is important to bear in mind that we have done nothing to rule out non-trivial identities between combinations or choices. Some of these identities may be structural in origin. Thus we might think of a menu not as a list but as a set of items. We would then want $[a, b]$ for example, to be identical to $[b, a]$ and for $[a + b]$ to be identical to $[b + a]$. But other identities may have a more substantive basis. When one orders eggs and bacon at a restaurant, one is served particular eggs and particular rashers of bacon (and, indeed, might be disappointed to be served the types rather than the tokens). Consider now the combination $[e_1, e_2, r_1, r_2]$ of some particular eggs e_1, e_2 and some particular rashers of bacon r_1, r_2 and some other combination $[e_3, e_4, r_3, r_4]$ of particular eggs and rashers. Then even though the items from which the combinations are formed are different one might still want to treat the combinations as the same since it is a matter of indifference, if one is offered the combination $[e_1, e_2, r_1, r_2]$, whether one is served c_1, c_2, r_1, r_2 or e_3, e_4, r_3, r_4. This means that even though a, b, for example, is an immediate selection from $[a, b]$ and each of a and b is an immediate selection from $[a + b]$, $[a, b]$ and $[a + b]$ may, through their identity with other forms of combination and choice, enjoy other immediate selections as well.

The application of the theory of menus to the current semantics will rest upon taking truth- and falsity-conditions to be menus and taking ground to be selection. However, the viability of this application will depend upon making two significant modifications to the simple account of selection presented above.

We must, in the first place, allow two-sided menus, which we might represent as ordered pairs (a, b) of items a and b; and we might, in a more general context, allow vector menus (a, b, \ldots) of arbitrary length. We might, intuitively, think of a two-sided menu as a ‘positive’ menu of items to be included, on the one side, and a ‘negative’ menu of items to be excluded, on the other side (as in a kosher chicken platter which includes the combination of items making up the chicken platter while excluding dairy products). Within the intended semantical

4One possible application of vector menus is to many valued logics where, for each truth-value v, there should be a v-maker. Another possible application is to voting. Suppose n people vote on the options a_1, a_2, \ldots, a_m. Then the menu in this case is the n-dimensional vector $[a_1 + a_2 + \cdots + a_n], [a_1 + a_2 + \cdots + a_m], \ldots, [a_1 + a_2 + \cdots + a_m]$ and an immediate selection is of the form $(a_{k_1}, a_{k_2}, \ldots, a_{k_n})$. Of course, the options a_1, a_2, \ldots, a_m may themselves take the form of further menus, as when a_1, a_2, \ldots, a_m are representatives who must themselves choose among different options.
application, conditions will correspond to one-sided menus and contents to two-sided menus, with truth-conditions on the one side and falsity-conditions on the other side.

However, allowing two-sided menus calls for a slight complication in our account of selection. For immediate selection is most naturally defined as a relation between two-sided menus (or contents) and a one-sided menu (or condition). So, for example, in making a selection from a kosher chicken platter, all that counts is what may be selected from the chicken platter. But we would like selection to be a relation between two-sided menus so that it can be repeatedly chained. We do this by appeal to the following principle (corresponding to ‘Basis’ in Definition 2.1 below):

Positive Bias Some two-sided menus (or contents) will be an immediate selection from a given two-sided menu (or content) just in case they are an immediate selection from its positive side (or truth-condition).

We can still say that a two-sided menu \((a, b)\) (or content) is a selection from a one-sided menu \(c\) (or condition), but this must now be taken to mean that \((a, b)\) is a selection from \((c, d)\) for some item \(d\).

The other modification is more radical. For we want to introduce a notion of weak selection, corresponding to weak ground, in addition to the previous notion of strict selection, which corresponded to strict ground. Weak selection, however exactly it is understood, is plausibly taken to be subject to the following principle (corresponding to ‘Subsumption’ in Definition 2.1):

Subsumption Any case of strict selection is a case of weak selection.

Weak selection is also plausibly taken to be subject to a principle of Cut (corresponding to Lower and Upper Cut in Definition 2.1). Say that the set of (two-sided) menus \(G\) is a strict (or weak) selection from the set of menus \(H = \{v_1, v_2, \ldots\}\) if \(G\) can be split up into subsets \(G_1, G_2, \ldots\) such that \(G_1\) is a strict (weak) selection from \(v_1\), \(G_2\) is a strict (weak) selection from \(v_2\), \ldots. Thus the menus \(G\) must, collectively, be a distributive selection from \(H\). The principle then states:

Cut if \(G\) is a weak selection from \(H\) and \(H\) a strict selection from \(v\) then \(G\) is a strict selection from \(v\), and if \(G\) is a strict selection from \(H\) and \(H\) a weak selection from \(v\) then \(G\) is a strict selection from \(v\).

Thus items that are strictly selected from a given item can be replaced by weak selections and items from which a strict selection is made can be replaced by an item from which they are weakly selected — in each case preserving strict selection.

These principles do not, of course, provide us with a definition, or even an implicit definition, of weak selection in terms of strict selection. Indeed, they are compatible with weak and strict selection being the same thing. However, there is a further plausible assumption we may make, which does allow us to define the one in terms of the other. This is the following maximality principle:
Any items that constitute a strict selection from \([v]\) will constitute a weak selection from \(v\) (where the corresponding ground-theoretic principle is that if \(\Delta\) strictly grounds \(\neg\neg A\) then \(\Delta\) weakly grounds \(A\)).

Now we know that \(v\) is a strict selection from \([v]\); and so this assumption tells us that \(v\) is the maximal such item in the sense that any other items that constitute a strict selection from \([v]\) will constitute a weak selection from it. One cannot do better than \(v\), so to speak, in making a strict selection from \([v]\). The converse of this assumption:

any menus that constitute a weak selection from \(v\) will constitute a strict selection from \([v]\)

follows from the other assumptions. For \(v\) is a strict selection from \([v]\) and so, given that \(G\) is a weak selection from \(v\), it is, by Cut, a strict selection from \([v]\).

On the basis of these assumptions, we are therefore justified in adopting the following definition of weak selection in terms of strict selection:

\[(W/S)\quad G\text{ is a weak selection from } v \iff G\text{ is a strict selection from } [v]\text{ (or, to put it ground-theoretically, } \Delta\text{ weakly grounds } A \iff \Delta\text{ strictly grounds } \neg\neg A)\]

5We should note that this definition of weak ground will imply the purely ground-theoretic definition of weak ground proposed in [Fine, 2012b, 52], viz. that \(\Delta\) weakly grounds \(A\) iff \(\Delta, \Gamma\) strictly grounds \(B\) whenever \(A, \Gamma\) strictly grounds \(B\). For the left-to-right direction of the definition follows from Cut. Suppose now that the right-hand side of the definition holds. Since \(A\) strictly grounds \(\neg\neg A\), \(\Delta\) strictly grounds \(\neg\neg A\) and so, by (W/S) \(\Delta\) weakly grounds \(A\). As [deRosset, 2013, 16], [deRosset, 2014, 727-8] observes, the purely ground-theoretic definition is not compatible with the “flat” semantics that [Fine, 2012a] provides for the pure logic of ground.

Irreversibility Any irreversible weak selection is a strict selection (where the corresponding ground-theoretic principle is that any irreversible weak ground is a strict ground).

We might take the converse:

Any strict selection from an item is an irreversible weak selection

as an additional assumption (as in definition 2.1). Alternatively, it might be derived from some further assumptions. For suppose the menus \(G\) are a strict selection from \(v\). By the above principle of Subsumption, \(G\) is a weak selection from \(v\). Now suppose, for reductio, that \(v\) is a weak partial selection from some item \(w\) in \(G\). By Cut, \(v\) is a strict selection, on its own or with other items, from \(v\). But this, given:

8
Non-Circularity No item is part of a strict selection of itself is a contradiction.

We are therefore justified in adopting the following definition of strict selection in terms of weak selection:

(S/W) The strict selections are the irreversible weak selections (or, put ground-theoretically, \(\Delta \) strictly grounds \(A \) iff \(\Delta \) irreversibly weakly grounds \(A \)).

Thus, given these various assumptions, weak and strict selection – and also weak and strict ground – will be inter-definable.

There are two other assumptions we will need to make, connecting weak and strict selection to combination and choice:

Maximality

Any items which constitute a strict selection from \([v^0, v^1, \ldots]\) will constitute a weak selection from \(v^0, v^1, \ldots\):

Any items which constitute a strict selection from \([v^0 + v^1 + \ldots]\) will constitute a weak selection from some subset of \(v^0, v^1, \ldots\).

These assumptions generalize the previous maximality principle for \([v]\) and state, in the case of the combination \([v^0, v^1, \ldots]\), that \(v^0, v^1, \ldots\) constitute a maximal strict ground and, in the case of the choice \([v^0 + v^1 + \ldots]\), that the subsets of \(v^0, v^1, \ldots\) constitute a maximal strict “cover”.

In the above account of the semantics, we have listed various assumptions which we would like to hold. These, in addition to Maximality, are:

Positive Bias The immediate selections from a given two sided menu are the immediate selections from its first component;

Subsumption Any strict selection is a weak selection;

Cut any weak selection from a strict selection and any strict selection from a weak selection of a given item is a strict selection from that item;

Irreversibility The strict and the irreversible weak selections coincide.

However, we have provided no assurance that these assumptions do, or even can, hold.

It is actually rather easy to provide a model in which they hold. For we might take combinations to be formulas of the form \(\bigwedge(A_1, A_2, \ldots, A_n)\) and choices to be formulas of the form \(\bigvee(A_1, A_2, \ldots, A_n)\) (for \(n \geq 0\) and with \(\bigwedge(A) = \bigvee(A)\)) and with \(G\) a weak selection from \(A\) when it is a strict selection from \(\bigwedge(A)\). It is then relatively straightforward to show that the various conditions on selection that we have laid down will be satisfied.

Unfortunately, such a model is not enough for the purposes of establishing completeness, for we need to show that, for any consistent set of ground-theoretic claims, there should be a model in which they are true. It is consistent, for
example, to suppose that \((A \land A), (A \lor A)\) and \(\neg \neg A\) are ground-theoretically equivalent or that there is an infinite descending chain of grounds, with \(A_2\) a strict ground of \(A_1\), \(A_3\) a strict ground of \(A_2\), and so on \textit{ad infinitum}. But neither set of claims can be satisfied in the “canonical” model above. We therefore need to allow for a more flexible conception of propositional identity; and, indeed, a large part of the difficulty in the completeness proof results from our having to show how underlying identities in the combinations and choices are capable of accounting for the required ground-theoretic truths.

Let us conclude this section by briefly comparing our system and its semantics to two other approaches to be found in the literature, those of Krämer [2018a, 2018b] and Correia [2017]. What these three approaches most significantly have in common is their conformity to the basic structural rules of the pure logic of ground in [Fine, 2012a] and the basic introduction and elimination rules for the truth-functional connectives of the impure logic of ground in [Fine, 2012b]. Beyond that, there are some further points of contact and several points of contrast, largely relating to (i) the underlying conception of propositional content, (ii) the semantical treatment of the truth-functional connectives, (iii) the account of strict ground and its relation to weak ground, and (iv) the resulting logic of ground.

Correia [2017] works with a very fine-grained conception of propositions; they essentially have the same structure as formulas but for the fact that conjunction and disjunction are taken to be commutative (519). He assumes, in particular, that the classes of disjunctive, conjunctive and negative propositions are pairwise disjoint. Such a fine-grained approach is compatible with our approach but is not required, since, as we have already noted, we allow a range of further propositional identities to hold. We can allow, for example, for \((A \lor B), (A \land A)\) and \(\neg \neg A\) to be ground-theoretically equivalent when \(B\) weakly grounds \(A\).

For Correia, the semantics for the truth-functional connectives is given by primitive algebraic operations on propositional contents that correspond to the various connectives whilst, for us, these operations are explained in terms of the underlying operations of combination and choice.

When it comes to strict ground, then, as with the connectives, Correia also posits a semantic primitive. But it is a simple notion of ground that merely connects simple propositions (atomic propositions or their negations); and, given the simple notion, he then shows how it can be used to define a general notion of ground, that is applicable to all propositions whatever (520). Our approach is quite different. The notion of ground is not given externally, so to speak, but is defined, via the mechanism of selection, on the basis of the internal structure of the propositions.

Correia adopts the following characterization of weak ground in terms of strict (516):\footnote{A form of definition first mooted in [deRosset, 2013, 13], though only to be rejected. Although Correia’s logic embodies this definition (516), it should be noted that he is in a position to accept the previous definition (W/S) of weak ground and also the previous definition (S/W) of strict ground.}
Some propositions weakly ground a given proposition iff either (i) they are all ground-theoretically equivalent to the proposition or (ii) they all strictly ground the proposition or (iii) some are ground-theoretically equivalent to the proposition and the rest strictly ground the proposition.

We can see this definition as arising from the following line of thought: all that weak grounding essentially adds to strict ground is the fact that a proposition is to ground itself; add this fact to the strict grounding facts, close under chaining (and ground-theoretic equivalence), and we get the weak notion.

However, it is not clear that this is an acceptable definition or line of thought, since, in line with our previous example, we would like to be able to say that, for distinct bodies x, y, and z, x being of the same mass as y and y the same mass as z weakly grounds x being of the same mass as z. But neither x being of the same mass as y nor y being of the same mass as z is ground-theoretically equivalent to x being of the same mass as z and nor do they strictly ground x being of the same mass as z. Or to take an example from [deRosset, 2013, 13], [deRosset, 2014, 722], we would like to be able to say its being chilly, its being windy, and its being chilly, windy, and sunny weakly grounds its being chilly, windy, and sunny, and yet its being chilly and its being windy does not strictly ground its being chilly, windy and sunny. Thus there is more to what weak grounding adds to strict ground than just identity or equivalence.

Of course, Correia could just stipulate that this is what he means by weak ground. But then the elimination rules for negation (and also the other connectives) would, from our own point of view, no longer be valid. For x being of the same mass as y and y being of the same mass as z will strictly ground that $\neg\neg(x$ is the same mass as $z)$ even though, for Correia, they do not weakly ground that x is of the same mass as z. We see from such examples that Correia’s definition of weak ground is not without its consequences and that it will lead, in conjunction with the elimination rules, to a very severe restriction on the notion of strict ground. Our own semantics is built around the idea that neither the weak nor the strict notions are to be restricted in this way.

There are a number of relatively superficial differences between Correia’s logic of ground and our own. He adopts strict ground, weak ground, ground-theoretic equivalence and their negations as primitives, while we adopt strict and weak full ground and strict and weak partial ground as primitives and do not allow these notions to be negated (which makes it somewhat harder to establish completeness). He adopts, moreover, a view of sentence-letters under which they stand for atomic propositions, while we adopt a view under which they stand for arbitrary propositions. Thus what should be taken to correspond to the derivable inferences of our system are the derivable inferential-schemes of his

7 Though we might note that the alternative account of weak ground proposed in [deRosset, 2013, 17],[deRosset, 2014, 722] – according to which the ‘rest’ in clause (iii) of the previous characterization need only be strict partial grounds – will not take care of the mass-equality example.
system, for which each substitution-instance should be derivable. Even under this correspondence, however, there will be a mismatch between the two systems.

But there are some differences that go beyond ideology. For Correia would be willing to accept the purely structural principle that if Δ, A weakly grounds A then Δ alone weakly grounds A and the principles connecting weak and strict ground, and he would also be willing to accept that $(A \land B)$ is never ground-theoretically equivalent to $(C \lor D)$ – while we would not be willing to accept such principles. One might perhaps attribute the difference on this latter point to a difference in aim. Fine [2012b, 67] notes a lacuna in the system GG in regard to questions of propositional identity (or ground-theoretical equivalence). But whereas Correia’s target is a maximal system in which all such questions are settled in favor of a highly fine-grained conception of propositional identity or equivalence, our target is a minimal system, such as GG, in which all such questions are as far as possible left open.

Of course, Correia could move in the direction of our own approach and drop the strict conditions that he imposes on the identity of propositions. But his definition of general ground in terms of simple ground would no longer work, since this depends upon his propositions having a well-founded logical structure; and so it looks as if he would be forced to adopt the general notion of ground as a semantical primitive. Since he would then need to impose conditions on the general notion corresponding to the rules of inference of his favored system, the semantics would end up being a mere rewrite of the proof theory in quasi-algebraic terms.

We turn to the “mode-ified” semantics of Krämer [2018a] (and also of Krämer [2018b]). Like us, he adopts a bilateral conception of propositions under which they may be regarded as ordered pairs of unilateral contents – a truth-condition, or positive content, on the one side and a falsity-condition, or negative content on the other side. However, his conception of the truth- and falsity-conditions is rather different from ours. A truth-condition for him is a set of modes of verification and a falsity-condition a set of modes of falsification, where, intuitively, a mode of verification is not simply given by a verifier, or some verifiers, but also by the manner in which they verify (and similarly for modes of falsification). But for us truth- and falsity-conditions are either combinations, choices or the more basic “urelements” from which they may be composed.

Moreover, he adopts what one might call a cumulative conception of truth-conditions, under which they are composed of the modes of verification which correspond to both the immediate and the mediate grounds for the given proposition. Our view, by contrast, is one in which the truth-condition for a given proposition corresponds to its immediate grounds. We can, of course, derive the mediate grounds for a proposition through chaining but it is not in general possible to recover the immediate grounds from the total grounds, since there is nothing in principle to stop them from coinciding.

Krämer adopts somewhat similar semantical clauses for the connectives

8[Krämer, 2018b, §§1-2-4] contains a comparison between his semantics and that of [Correia, 2017]. He also compares his semantics with the fundamentality-based account of [Correia, 2018] and the syntactic account of [Poggiolesi, 2016, 2018]).
Thus the falsity-condition for \(\neg A \) will involve “raising” the truth-condition of \(A \); and the truth-conditions for conjunction and disjunction will involve operations of combination and choice (\(\sqcup \) and +) that need not be commutative. But there are some significant differences. For us, the truth-condition for \(A \land B \), for example, will be the combination of the bilateral contents of \(A \) and \(B \), whereas for him it will be the combination of the positive unilateral contents of \(A \) and \(B \); and similarly for the other connectives. Also, he does not adopt a primitive operation of choice but takes the choice of two unilateral contents to be the union of those contents (which, recall, are sets of modes of verification) along with the combinations of those modes.

Krämer – like us, but in contrast to Correia – adopts a flexible approach to propositional identity (although he also argues for a particular conception of propositional identity). If, for example, modes of verification are insensitive to order, so that modes corresponding to the sequences of propositions \(P, Q \) and \(Q, P \) are the same, then it will turn out that the positive and negative contents of \((A \land B) \) and \((B \land A) \) will be the same; and otherwise not. Similarly, if modes of verification are insensitive to repetition, then it will turn out that the positive and negative contents of \((A \lor A) \), \((A \land A) \) and \(\neg \neg A \) will be the same [2018b, 3,17]. How exactly the two approaches compare in regard to which propositional identities they allow is not altogether clear and is worthy of further study.

When it comes to ground, Krämer adopts essentially the same definition of weak ground in terms of strict as Correia: he takes some unilateral propositions to strictly ground a given unilateral proposition just in case they correspond to a mode of verification for the given proposition; and he takes some bilateral propositions to strictly ground a given bilateral proposition just in case the corresponding relation of strict ground holds among their positive contents (17). Thus his notion of ground is positively biased both to the left and to the right of the grounding relation, whereas ours is only positively biased to the right. Also, given his cumulative conception of propositional content, the grounds for a given proposition can be directly read off from its modes of verification whereas, for us, they can only be indirectly ascertained via the selections from its positive content.

Krämer does not attempt to axiomatize his semantics (although in [Krämer, 2018b], he does axiomatize various notions of propositional identity). However, it should be clear that the logic resulting from his semantics will be significantly stronger than our own. For one thing, he adopts the same restrictive account of weak ground as Correia, and so there will be the same addition in the structural principles for weak ground and its relation to strict ground. But there are also differences in the principles governing strict ground. For, harking back to our previous example, \(\neg(A \lor B) \) will have the same positive content as \(\neg(A \land \neg B) \) (25) and, in general, if \(C \) and \(D \) have the same positive content then so do \(\neg \neg C \) and \(\neg \neg D \) (26) and so, in particular, \(\neg \neg(A \lor B) \) will have the same positive content as \(\neg\neg(\neg A \land \neg B) \). But \(\neg(A \lor B) \) is a strict ground for \(\neg\neg(\neg A \lor B) \) and so, since strict ground only depends upon positive content, \(\neg(A \lor B) \) will be a strict ground for \(\neg\neg(\neg A \land \neg B) \). But this is exactly the kind of conclusion we wished to avoid by making combination and choice a function of (bilateral) propositions
rather than conditions. Thus even though the bilateral contents of \(\neg (A \lor B)\) and
\((\neg A \land \neg B)\) are not the same under Krämer’s semantics (26), he still does not provide us with the means to distinguish between their ground-theoretic roles.

A further peculiarity of his semantics might be noted. For its ability to distinguish the positive content of \((A \lor B)\) and \((B \lor A)\) depends upon adopting an inclusive interpretation of disjunction under which the modes of verification for the conjunction are among those for the disjunction. But under a non-inclusive interpretation of disjunction, the positive contents of \((A \lor B)\) and \((B \lor A)\) will be the same and so will play the very same ground-theoretic role. Thus, given that \((A \lor B)\) is a strict ground for \(\neg \neg (A \lor B)\), \((B \lor A)\) will also be a strict ground for \(\neg \neg (A \lor B)\), which is a conclusion we may wish to avoid. We see, in this way, the role that our operation of choice might play in providing somewhat different accounts for the semantics of disjunction.

In sum, we may say that the main differences between our semantics and those of Correia and Krämer arise from our adopting a more liberal conception of how strict and weak ground might be related and a more flexible approach to the question of ground-theoretic equivalence. These differences then allow us to target a minimal system of ground, such as GG, rather than one of the stronger systems favored by them.

The remainder of the paper specifies the semantics we have sketched and the system GG, and establishes the soundness and completeness of GG for that semantics. In §§2 and 3 we formally specify the semantics and the system GG, respectively, establish the soundness of GG for the semantics, and establish the consistency of GG. The proof of completeness is Henkin-style. In §4, we define the canonical model for a given set of grounding claims \(S\), and discuss its principal features. §§5-7 establish the adequacy of the construction. §8 proves completeness, and §9 describes directions for further work.

2 Semantics

We set out the proposed semantics in terms of selection systems, define the notion of a model, the content of a truth-functional formula in a model, and the truth of a grounding claim in a model.

A selection system is a triple \(\mathfrak{S} = \langle \Sigma, \Pi, F \rangle\), where \(\Sigma\) and \(\Pi\) are each operations on finite sequences (including the empty sequence) of ordered pairs of members of \(F\), taking each such sequence into a member of \(F\), with \(\Sigma((v)) = \Pi((v))\). We use lower case letters ‘\(a\)’-‘g’ (sometimes with numerical superscripts) for members of \(F\), lower case letters ‘\(u\)’-‘z’ (sometimes with numerical superscripts) for pairs of members of \(F\), and upper case letters ‘\(G\)’-‘K’ (sometimes with numerical subscripts or superscripts) for sets of pairs of members of \(F\). Thus, if \(G = F \times F\), then \(\Sigma, \Pi : G^{\leq \omega} \to F\). For a pair \(v\), we write \(v_0\) for \(v\)’s first element, and \(v_1\) for its second element. Intuitively, \(F\) is a set of conditions, and pairs of such conditions are contents. Abusing notation, we indicate unions of sets of contents by comma-separated lists, and we often omit brackets for singletons of contents in these lists. So, for instance, \(G, H, v\) is used for \(G \cup H \cup \{v\}\).
Write \([v^0 + v^1 + \cdots]\) for \(\Sigma((v^0, v^1, \ldots))\) and \([v^0.v^1. \ldots]\) for \(\Pi((v^0, v^1, \ldots)).\) \([v^0 + v^1 + \cdots]\) is the choice of \(v^0, v^1, \ldots,\) and \([v^0.v^1. \ldots]\) the combination of \(v^0, v^1, \ldots.\) Distinct sequences of contents can be taken by each of the operations to the same condition, the same sequence can be taken by the two operations to distinct conditions, and the two operations can take distinct sequences to the same condition. So, choices and combinations need not be uniquely decomposable into (sequences of) contents. We use ‘≪\(\)' to indicate the relation of immediate selection between sets (not sequences) of contents and choices and combinations, where \(v^i ≪ F \) for each \(i, \) and \(v, w, \ldots \not\approx F (v.w, \ldots)\) (and that is all). We drop the suffix ‘\(F\)' on ‘≪\(F\)’ when it is evident from context (and will likewise drop suffixes on the other notions of selection defined below when no confusion will result). Since the choice of a single content \(v\) is just the same as the combination of \(v\), we denote it by \([v]\), which is neutral between the ‘+’ notation for choice and the ‘.’ notation for combination.

Given a selection system \(F = (\Sigma, \Pi, F)\), the relation of strict selection \(\prec\) between a set of contents \(G\) and a content \(v\) is defined inductively in terms of immediate selection. In this definition, the weak selection relation \(G \preceq F (v, d)\):

Definition 2.1

1. **Basis:** if \(G \preceq F v\), then \(G \prec F v\);

2. **Subsumption:** if \(G \prec F w\) and \([w] = v\), then \(G \prec F v\);

3. **Lower Cut:** if \(G^0 \preceq F v^0, G^1 \preceq F v^1, \ldots, G^n \preceq F v^n\), and \(v^0, v^1, \ldots, v^n \not\approx F v\) \(v, \) then \(G^0, G^1, \ldots, G^n \prec F v\); and

4. **Upper Cut:** if \(G^0 \prec F v^0, G^1 \prec F v^1, \ldots, G^n \prec F v^n\) and \(v^0, v^1, \ldots, v^n \not\approx F v\) \(v, \) then \(G^0, G^1, \ldots, G^n \prec F v\).

Relations of partial selection are defined in terms of \(\prec\):

- \(w \preceq F v\) iff there is an \(H\) such that \(w, H \leq F v\); and
- \(w \prec F v\) iff \(w \preceq F v\) but \(v \not\preceq F w\).

Let a covering of \(G\) be a family of sets \(G_0, G_1, \ldots\) such that \(G = G_0 \cup G_1 \cup \ldots\).

Definition 2.2 A frame is a selection system \(F\) meeting two constraints:

1. **Irreversibility:** \(G \prec F v\) iff \(G \preceq F v\) and \((\forall w \in G) w \not\preceq F w\); and

2. **Maximality:**

 (a) \(G \preceq F [v^0, v^1, \ldots], d\) only if there is a covering \(G_0, G_1, \ldots\) of \(G\) such that \(G_i \preceq F v^i\), for each \(i\); and

 (b) \(G \prec F [v^0 + v^1 + \cdots], d\) only if there is a non-empty subset \(w^0, w^1, \ldots\) of \(v^0, v^1, \ldots\) and a covering \(G_0, G_1, \ldots\) of \(G\) such that \(G_i \preceq F w^i\) for each \(i\).
Suppose we are given a propositional language \mathcal{L}, whose connectives are conjunction, disjunction, and negation. We will identify \mathcal{L} with the set of its sentences. Let $<, \leq, \prec, \preceq$ be fresh symbols. (That is, they are pairwise distinct from one another and from every sentence of \mathcal{L}.) The grounding claims of \mathcal{L} then consist of the following:

$$\Delta < \phi \quad \Delta \leq \phi \quad \phi \prec \psi \quad \phi \preceq \psi$$

for any $\Delta \subseteq \mathcal{L}$ and any sentences ϕ, ψ of \mathcal{L}. We will continue to use the lower-case Greek letters $\phi, \psi, \delta, \theta$ (sometimes with superscripts) for sentences of \mathcal{L} and upper-case Greek letters $\Delta, \Gamma, \Sigma, \Theta$ (sometimes with superscripts) for sets of such sentences. The Greek letters σ and τ (sometimes with subscripts) are used for grounding claims of \mathcal{L}, and upper-case letters S, T, U (sometimes with subscripts or superscripts) for sets of grounding claims of \mathcal{L}.

An interpretation for a language \mathcal{L} into a frame $\mathfrak{F} = (\Sigma, \Pi, F)$ is a function $\overline{\cdot}$ mapping each atomic sentence ϕ in \mathcal{L} to a content $\overline{\phi}$. We extend interpretations to molecular sentences by means of the following recursive clauses:

1. $\overline{\neg \phi} = (\overline{\phi}_\ominus, [\overline{\neg \phi}])$;
2. $\overline{\phi \land \psi} = ([\overline{\phi}, \overline{\psi}], [\overline{\neg \phi} + \overline{\neg \psi}])$; and
3. $\overline{\phi \lor \psi} = ([\overline{\phi} + \overline{\psi}], [\overline{\neg \phi} \cdot \overline{\neg \psi}])$.

We extend the notion of an interpretation to sets of sentences of \mathcal{L} in the standard way: $\overline{\Delta} = \{\overline{\delta} | \delta \in \Delta\}$.

Definition 2.3 A model \mathfrak{M} for a language \mathcal{L} is a tuple $\langle \Sigma, \Pi, F, \overline{\cdot} \rangle$, where $\mathfrak{F} = (\Sigma, \Pi, F)$ is a frame, and $\overline{\cdot}$ is an interpretation for \mathcal{L} into \mathfrak{F}.

If $\mathfrak{M} = (\Sigma, \Pi, F, \overline{\cdot})$ is a model and \mathfrak{F} is the frame $\langle \Sigma, \Pi, F \rangle$, we write $\leq_{\mathfrak{M}}$ for $\leq_{\mathfrak{F}}$, and, similarly, for the other relations of ground.

Definition 2.4 Let \mathfrak{M} be a model $\langle \Sigma, \Pi, F, \overline{\cdot} \rangle$. Truth in a model for grounding claims is defined by the following clauses:

1. $\mathfrak{M} \models \Delta \leq \phi$ iff $\overline{\Delta} \leq_{\mathfrak{M}} \overline{\phi}$;
2. $\mathfrak{M} \models \Delta < \phi$ iff $\overline{\Delta} <_{\mathfrak{M}} \overline{\phi}$;
3. $\mathfrak{M} \models \phi \preceq \psi$ iff $\overline{\phi} \preceq_{\mathfrak{M}} \overline{\psi}$; and
4. $\mathfrak{M} \models \phi \prec \psi$ iff $\overline{\phi} \prec_{\mathfrak{M}} \overline{\psi}$.

$S \models T$ iff, for every model \mathfrak{M}, if $\mathfrak{M} \models \sigma$ for each $\sigma \in S$, then $\mathfrak{M} \models \tau$, for some $\tau \in T$. So, sets of grounding claims are treated conjunctively on the left-hand side and disjunctively on the right-hand side of \models. $\mathfrak{M} \models S$ iff $\mathfrak{M} \models \sigma$, for some $\sigma \in S$.

16
3 The System GG

We specify the system GG and establish soundness and consistency. The system comprises the following rules and axioms, which inductively define a derivability relation \(\vdash \) among finite sets of grounding claims:

Structural rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THINNING</td>
<td>If (T \vdash S), then (T, T' \vdash S, S')</td>
</tr>
<tr>
<td>SNIP</td>
<td>If (\sigma, S \vdash T) and (S' \vdash T', \sigma), then (S, S' \vdash T, T')</td>
</tr>
</tbody>
</table>

(In the statement of the structural rules, \(T' \) and \(S' \) are finite sets of grounding claims. Since \(\vdash \) relates sets, contraction and permutation rules are not needed.)

The Pure Logic of Ground:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTITY</td>
<td>(\sigma \vdash \sigma)</td>
</tr>
<tr>
<td>SUBSUMPTION</td>
<td>((\leq / \leq) : \Delta, \phi \leq \psi \vdash \phi \leq \psi) \quad \quad \quad (\prec / \equiv) : \Delta \leq \phi \vdash \Delta \leq \phi)</td>
</tr>
<tr>
<td>TRANSITIVITY</td>
<td>((\leq / \leq) : \phi \leq \psi; \psi \leq \theta \vdash \phi \leq \theta) \quad \quad \quad (\prec / \equiv) : \phi \leq \psi \vdash \phi \leq \psi)</td>
</tr>
<tr>
<td>IRREVERSIBILITY</td>
<td>(\phi \leq \psi \vdash \phi \leq \psi; \psi \leq \phi)</td>
</tr>
<tr>
<td>REFLEXIVITY</td>
<td>(\vdash \phi \leq \phi)</td>
</tr>
<tr>
<td>NON-CIRCULARITY</td>
<td>(\phi \leq \psi \vdash \phi \leq \psi; \psi \leq \phi)</td>
</tr>
<tr>
<td>CUT</td>
<td>(\Delta \leq \phi; \phi, \psi_0, \psi_1, \ldots, \psi_n \leq \psi \vdash \Delta, \psi_0, \psi_1, \ldots, \psi_n \leq \psi)</td>
</tr>
<tr>
<td>REVERSE SUBSUMPTION</td>
<td>(\phi_0, \phi_1, \ldots, \phi_n \leq \psi; \phi_0 < \psi; \phi_1 < \psi; \ldots; \phi_n < \psi \vdash \phi_0, \phi_1, \ldots, \phi_n < \psi)</td>
</tr>
</tbody>
</table>

The pure logic differs from Fine’s [2012a] system by the replacement of **TRANSITIVITY**\((\prec / \equiv)\) with **IRREVERSIBILITY**. The latter rule could not be formulated in the system of derivation used in [Fine, 2012a], which did not allow derivation of multiple conclusions. **TRANSITIVITY**\((\prec / \equiv)\) can be derived from the pure logic above using **IRREVERSIBILITY**, **SUBSUMPTION**\((\prec / \equiv)\), the other **TRANSITIVITY** rules, and **SNIP**.

Let \(S_0, S_1, \ldots \) be finite sets of grounding claims. Then \(S \vdash (S_0|S_1|\ldots) \) is defined to hold iff \(S \vdash \sigma_0, \sigma_1, \ldots \) for each set \(\sigma_0, \sigma_1, \ldots \) such that \(\sigma_i \in S_i \). It is easily shown that a model \(\mathcal{M} \) verifies every such set \(\sigma_0, \sigma_1, \ldots \) iff, for some \(S_i \), \(\mathcal{M} \) verifies every grounding claim in \(S_i \).

Introduction Rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vdash \phi < \neg \phi)</td>
<td>(\vdash \phi < (\phi \lor \psi) \quad \vdash \psi < (\phi \land \psi))</td>
</tr>
<tr>
<td>(\vdash \phi, \psi < (\phi \land \psi))</td>
<td>(\vdash \neg \phi < \neg (\phi \land \psi) \quad \vdash \neg \psi < \neg (\phi \land \psi))</td>
</tr>
</tbody>
</table>

Elimination Rules:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta < \neg \phi \vdash \Delta \leq \phi)</td>
<td>(\Delta < \neg (\phi \land \psi) \vdash (\Delta_\phi^0 \leq \phi; \Delta_\psi^0 \leq \psi) \quad \Delta_\phi^1 \leq \phi; \Delta_\psi^1 \leq \psi \quad \ldots)</td>
</tr>
<tr>
<td>(\Delta < (\phi \lor \psi) \vdash \Delta \leq \phi)</td>
<td>(\Delta < (\phi \lor \psi) \vdash \Delta \leq \psi \quad \Delta < (\phi \land \psi))</td>
</tr>
<tr>
<td>(\Delta < \neg (\phi \lor \psi) \vdash (\Delta_\phi^0 \leq \neg \phi; \Delta_\psi^0 \leq \neg \psi) \quad \Delta_\phi^1 \leq \neg \phi; \Delta_\psi^1 \leq \neg \psi \quad \ldots)</td>
<td></td>
</tr>
<tr>
<td>(\Delta < (\phi \land \psi) \vdash \Delta \leq \neg \phi \quad \Delta \leq \neg \psi \quad \Delta < (\neg \phi \land \neg \psi))</td>
<td></td>
</tr>
</tbody>
</table>

In the statement of the elimination rules for \(\lor \) and \(\neg \land \), \((\Delta_\phi^0, \Delta_\psi^0), (\Delta_\phi^1, \Delta_\psi^1), \ldots \).
are taken to be all of the ordered pairs \((\Delta^\phi, \Delta^\psi)\) for which \(\Delta = \Delta^\phi \cup \Delta^\psi\). For any sets \(S\) and \(T\) of grounding claims, let \(S \vdash T\) iff there are \(S' \subseteq S\) and \(T' \subseteq T\) such that \(S' \models T'\).

Theorem 3.1 (Soundness) If \(S \vdash T\), then \(S \models T\).

Proof. Suppose \(S \vdash T\), and let \(\mathcal{M} = (\Sigma, \Pi, F, \sigma)\) be a model such that \(\mathcal{M} \models \sigma\), for each \(\sigma \in S\). There are finite subsets \(S'\) and \(T'\) of \(S\) and \(T\), respectively, such that \(S' \models T'\). We show that \(\mathcal{M} \models T'\) (and hence \(M \models T\)) by induction on the derivation of \(S' \models T'\). The results in each of the basis cases are easy consequences of D2.1, D2.2, D2.3, and D2.4. We consider the cases of **Transitivity**\((\leq < \sim)\) and **\&-Elimination** by way of illustration.

Transitivity\((\leq < \sim)\): Suppose \(\mathcal{M} \models \phi \leq \psi\) and \(\mathcal{M} \models \psi < \theta\). By D2.1(2),

\[\mathcal{M} \models \psi \leq \theta\]

and so \(\tilde{\phi} \leq_{\tilde{\mathcal{M}}} \tilde{\theta}\). Suppose (for reductio) that \(\tilde{\theta} \not<_{\tilde{\mathcal{M}}} \tilde{\phi}\). Then we have \(\tilde{\theta} \leq_{\tilde{\mathcal{M}}} \tilde{\phi} \leq_{\tilde{\mathcal{M}}} \tilde{\psi}\). But, since \(\mathcal{M} \models \psi < \theta\), \(\tilde{\theta} \not<_{\tilde{\mathcal{M}}} \tilde{\psi}\).

\(\&\)-**Elimination**: Suppose \(\mathcal{M} \models \Delta = (\phi \& \psi)\), so that \(\tilde{\Delta} \leq_{\tilde{\mathcal{M}}} (\tilde{\phi} \& \tilde{\psi})\). By D2.3(Maximality), there is a covering \(\tilde{\Delta}_\phi, \tilde{\Delta}_\psi\) of \(\tilde{\Delta}\) such that \(\tilde{\Delta}_\phi \leq_{\tilde{\mathcal{M}}} \tilde{\phi}\) and \(\tilde{\Delta}_\psi \leq_{\tilde{\mathcal{M}}} \tilde{\psi}\). So, \(\mathcal{M} \models \Delta_\phi \leq \phi\) and \(\mathcal{M} \models \Delta_\psi \leq \psi\). Let \((\Gamma^0_\phi, \Gamma^0_\psi), \ldots, (\Gamma^n_\phi, \Gamma^n_\psi)\) be exactly the pairs of binary coverings of \(\Delta\). Then \((\Delta_\phi, \Delta_\psi) = (\Gamma_i^\phi, \Gamma_i^\psi)\) for some \(i (0 \leq i \leq n)\). As we observed when introducing the \(\models\) notation, it is then easily verified that \(\mathcal{M} \models \sigma^0, \ldots, \sigma^n\), for every set \(\sigma^0, \ldots, \sigma^n\) of grounding claims such that \(\sigma^i \in \{\Gamma_i^\phi \leq \phi; \Gamma_i^\psi \leq \psi\}\) for each \(i\).

The result in each of the cases of the structural rules is a trivial consequence of IH, using D2.3 and D2.4.

It turns out not to be altogether straightforward to show that GG is consistent. This could be shown by constructing a ‘free’ model along the lines of D4.2. But we can also make use of a simpler, less indirect, construction, which will have the additional benefit of presenting the rules in a way that highlights the affinities between GG and more familiar natural deduction systems.

We adopt the following introduction rules for the connectives (where ‘()’ indicates that either premise may be used):

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>(\phi, \psi)</th>
<th>(~\phi)</th>
<th>(\neg\phi)</th>
<th>(\phi (\psi))</th>
<th>(\neg\phi, \neg\psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg\phi)</td>
<td>(\neg\phi)</td>
<td>(\neg\phi (\neg\psi))</td>
<td>(\neg\phi (\neg\psi))</td>
<td>(\neg (\phi & \psi))</td>
<td>(\neg (\phi & \psi))</td>
</tr>
</tbody>
</table>

These rules correspond, of course, to the Introduction Rules of GG, though they have now been stated as direct rules of inference without the use of <.

A derivation of the formula \(\phi\) from the set of formulas \(\Delta\) is a sequence of formulas \(\phi_1, \phi_2, \ldots, \phi_n\), where \(\phi_n = \phi\) and \(\phi_k\), for each \(k = 1, 2, \ldots, n\), is either a member of \(\Delta\) or follows from preceding formulas in the sequence by one of the above rules. We should note that each of the formulas \(\phi_k\) in a derivation \(\phi_1, \phi_2, \ldots, \phi_n\) will have a justification (not necessarily unique), which consists of a status as assumed or derived and a specification, in case it is derived, of
the rule by which it is derived. Given a derivation \(\phi_1, \phi_2, \ldots, \phi_n \), say that \(\phi_k \) figures as a premise if, for some \(m > k \), \(\phi_k/\phi_m \) is an instance of one of the above rules or if, for some \(m > k \) and \(l < m \), \(\phi_k, \phi_l/\phi_m \) is an instance of one of the above rules. A derivation \(\phi_1, \phi_2, \ldots, \phi_n = \phi \) is said to be relevant when each non-terminal formula \(\phi_k \) for \(k < n \) figures as a premise in the derivation. The derivation \(\phi_1, \phi_2, \ldots, \phi_n = \phi \) of \(\phi \) from \(\Delta \) is said to be strict when it is relevant and when each formula of \(\Delta \) has a non-terminal occurrence in the derivation and it said to be weak when it is relevant and when each formula of \(\Delta \) has a terminal or non-terminal occurrence in the derivation. So, for instance, \(p, q \) is a non-relevant derivation of \(q \) from \(p, q \), while \(p, q \) is a strict derivation of \((p \land q) \) from \(p, q \) and also a weak derivation of \((p \land q) \) from \(p, q, (p \land q) \).

Note that a strict derivation may be annotated with justifications for each step in such a way that members of \(\Delta \) are derived and so do not figure as assumptions. For consider the following derivation \(p, q, (p \land q), r, (p \land q) \lor r \) of \((p \land q) \lor r \) from \(p, q, (p \land q), r \). We may here take the third formula \((p \land q) \) to be derived from the previous formulas \(p \) and \(q \). However, we still have a strict derivation of \((p \land q) \lor r \) from \(p, q, (p \land q), r \) since \((p \land q) \) is used as a premise in deriving \((p \land q) \lor r \). Note also that \(p, q, (p \lor q) \) is a strict derivation of \((p \lor q) \) from \(p, q \). Indeed, if \(\phi_1, \phi_2, \ldots, \phi_m = \phi \) is a strict (weak) derivation of \(\phi \) from \(\Delta \) and \(\psi_1, \psi_2, \ldots, \psi_n = \phi \) a strict (weak) derivation of \(\phi \) from \(\Gamma \) then \(\phi_1, \phi_2, \ldots, \phi_m-1, \psi_1, \psi_2, \ldots, \psi_n \) is a strict (weak) derivation of \(\phi \) from \(\Delta \cup \Gamma \) and so Amalgamation can be seen to be built into the definition of derivation.

We say that the formula \(\phi \) is (strictly, weakly) derivable from the set of formulas \(\Delta \) if there exists a (strict, weak) derivation of \(\phi \) from \(\Delta \); and we say that \(\phi \) is strictly (weakly) partially derivable from \(\psi \) if \(\phi \) is strictly (weakly) derivable from a set of formulas \(\Delta \) that includes \(\psi \).

It will be convenient to use a somewhat stronger notion of partial derivability. Suppose \(D = \phi_1, \phi_2, \ldots, \phi_n = \phi \) is an arbitrary sequence of formulas. We say \(\phi_k \) is of direct use in deriving \(\phi_m \) (in the sequence \(D \)) if \(k < m \leq n \) and either \(\phi_k/\phi_m \) is an instance of a one-premise rule or, for some \(l < m \), \(\phi_k, \phi_l/\phi_m \) is an instance of a two-premise rule; and we say \(\phi_k \) is of (indirect) use in deriving \(\phi_m \) (in \(D \)) if \(k < m \leq n \) and there is a sub-sequence \(\phi_k = \phi_k_1, \ldots, \phi_k_p = \phi_m \) in which each non-terminal term \(\phi_{k_j} \) is of direct use in deriving its successor \(\phi_{k_{j+1}} \).

We may also say that \(\phi \) is of use in deriving \(\psi \) if \(\phi = \phi_k \) is of use in deriving \(\psi = \phi_m \) in some sequence in \(D = \phi_1, \phi_2, \ldots, \phi_n \).

For later purposes, we note some basic facts about derivations.

Lemma 3.2

1. If \(\phi \) is of use in deriving \(\psi \) then \(\psi \) is strictly partially derivable from \(\phi \);

2. If \(\psi \) is strictly partially derivable from \(\phi \) then \(\phi \) is less complex (contains fewer occurrence of connectives) than \(\psi \).

Proof An easy induction in each case.
Lemma 3.3 In any relevant derivation $D = \phi_1, \phi_2, \ldots, \phi_n$, each ϕ_k for $k < n$ is of use in deriving ϕ_n.

Proof Take a ϕ_k for $k < n$ and set $k_1 = k$. Suppose ϕ_k is not of use in deriving ϕ_n in D. Since D is relevant, ϕ_{k_1} figures as a premise and so is of direct use in deriving ϕ_{k_2} for some $k_2 > k_1$. But ϕ_{k_2} cannot be identical to ϕ_n or of use in deriving ϕ_n in D; and so, for some $k_3 > k_2$, ϕ_{k_3} is of use in deriving ϕ_{k_3}. We produce in this way an infinite sequence $\phi_{k_1}, \phi_{k_2}, \ldots$ of members of D which, by the previous lemma, are of increasing complexity. But there are only finitely many formulas in D. \(\bot\).

Lemma 3.4 Suppose $D = \phi_1, \phi_2, \ldots, \phi_n = \phi$ is a derivation of ϕ from Δ. Let $D' = \phi_{k_1}, \phi_{k_2}, \ldots, \phi_{k_m}$ be the subsequence of formulas that are of use in deriving $\phi_n = \phi$ in D. Then D', ϕ is a weak (relevant) derivation of ϕ from $\Delta \cap \phi_{k_1}, \phi_{k_2}, \ldots, \phi_{k_m}, \phi$.

Proof D' is a derivation of ϕ from Δ and hence from $\Delta \cap \{\phi_{k_1}, \phi_{k_2}, \ldots, \phi_{k_m}\}$, since the justification of any formula of $\phi_1, \phi_2, \ldots, \phi_n$ that is identical to ϕ_n or of use in deriving ϕ_n in D will either be in terms of the formula being a member of Δ or by reference to previous formulas that are of use in deriving ϕ_n and hence the justification will carry over to D', ϕ. Moreover, D', ϕ is relevant. For any formula ϕ_{k_j} is of use in deriving ϕ_n and hence figures as a premise.

Lemma 3.5 Suppose that $\phi_1, \phi_2, \ldots, \phi_n$ is a relevant derivation. Then each ϕ_k for $k < n$ is distinct from ϕ_n.

Proof By L3.3, each ϕ_k for $k < n$ is of use in deriving ϕ_n and so, by L3.2, is distinct from ϕ_n.

We now introduce a notion of L-truth for grounding claims:

- $\phi_1, \phi_2, \ldots, \phi_n < \phi$ is L-true if ϕ is strictly derivable from $\phi_1, \phi_2, \ldots, \phi_n$;
- $\phi_1, \phi_2, \ldots, \phi_n \leq \phi$ is L-true if ϕ is weakly derivable from $\phi_1, \phi_2, \ldots, \phi_n$;
- $\phi \prec \psi$ is L-true if ψ is strictly partially derivable from ϕ;
- $\phi \preceq \psi$ is L-true if ψ is weakly partially derivable from ϕ.

In effect, we interpret ‘ground’ to mean ground in virtue of logical form.

Finally, given two sets of grounding claims T and S, we say that the sequent $T \vdash S$ is valid if either a member of T is not L-true or a member of S is L-true. This is a very weak “material” interpretation of validity. The sequent $T, p < q \vdash S$, for example, will always be valid since $p < q$ is not L-true.

We can establish by induction:

Theorem 3.6 Each derivable sequent of GG is valid.
Proof. We show that the axioms of GG are valid and that the rules of inference of GG preserve validity. THINNING, SNIP, and IDENTITY follow by truth-functional considerations alone. SUBSUMPTION, REFLEXIVITY, and IRREVERSIBILITY follow straightforwardly from the definitions of (full) derivability and partial derivability. The introduction rules fall out from our having adopted the corresponding introduction rules.

(Reverse Subsumption): Suppose \(\psi_1, \psi_2, \ldots, \psi_m = \psi \) is a weak derivation of \(\psi \) from \(\Delta = \{ \phi_1, \phi_2, \ldots, \phi_n \} \) and that \(\psi \) is strictly partially derivable from each \(\phi_k \) for \(k = 1, 2, \ldots, n \). By lemma 1(ii), \(\psi \) is distinct from each \(\phi_k \). But then \(\psi_1, \psi_2, \ldots, \psi_m \) is a strict derivation of \(\psi \) from \(\Delta \).

(Transitivity) \((\preceq / \preccurlyeq)\): Suppose that \(\phi_1, \phi_2, \ldots, \phi_m = \psi \) is a weak derivation of \(\psi \) from \(\Delta \) with \(\phi \in \Delta \) and that \(\psi_1, \psi_2, \ldots, \psi_n = \theta \) is a weak derivation of \(\theta \) from \(\Gamma \) with \(\psi \in \Gamma \). If \(\phi = \psi \) or if \(\psi = \theta \) then it trivially follows that \(\phi \preceq \theta \) is L-true. So suppose \(\phi \neq \psi \) and \(\psi \neq \theta \). Then \(\phi_1, \phi_2, \ldots, \phi_m \) is a strict derivation of \(\psi \) from \(\Delta \setminus \{ \psi \} \) with \(\phi \in \Delta \setminus \{ \psi \} \) and \(\psi_1, \psi_2, \ldots, \psi_n \) is a strict derivation of \(\theta \) from \(\Gamma \setminus \{ \theta \} \) with \(\psi \in \Gamma \setminus \{ \theta \} \). But then \(\phi_1, \phi_2, \ldots, \phi_m, \psi_1, \psi_2, \ldots, \psi_n \) is a strict derivation of \(\theta \) from \((\Delta \setminus \{ \psi \}) \cup (\Gamma \setminus \{ \theta \})\). The case \((\preceq / \preccurlyeq)\) is proved similarly.

(Non-Circularity): Suppose \(\phi_1, \phi_2, \ldots, \phi_n = \phi \) is a strict derivation of \(\phi \) from \(\Delta \). It then follows from lemma 3.5 that \(\phi \not\in \Delta \).

(Cut): Suppose \(\phi_1, \phi_2, \ldots, \phi_m = \phi \) is a weak derivation of \(\phi \) from \(\Delta \) and \(\psi_1, \psi_2, \ldots, \psi_n = \psi \) a weak derivation of \(\psi \) from \(\phi, \Gamma \). We show \(D = \phi_1, \phi_2, \ldots, \phi_m-1, \psi_1, \psi_2, \ldots, \psi_n = \psi \) is a weak derivation of \(\psi \) from \(\Delta \cup \Gamma \). Clearly, \(D \) is a derivation of \(\psi \) from \(\Delta \cup \Gamma \), since the occurrences of \(\phi \) among \(\psi_1, \psi_2, \ldots, \psi_n \) can be justified by appeal to the previous derivation \(\phi_1, \phi_2, \ldots, \phi_{m-1} \). \(D \) is also a relevant derivation. The only problem case is one in which \(\phi_k \) figures as a premise in \(\phi_1, \phi_2, \ldots, \phi_m \) to an inference whose conclusion is \(\phi_m = \phi \). But we know that \(\phi = \psi \) for some \(l \) and so we can appeal to \(\psi_l \) instead of \(\phi_m \). Finally, each member of \(\Delta \cup \Gamma \) occurs in \(D \) since each member of \(\Delta \) other than \(\phi \) occurs in \(\phi_1, \phi_2, \ldots, \phi_{m-1} \), while \(\phi \) and each member of \(\Gamma \) occurs in \(\psi_1, \psi_2, \ldots, \psi_n \).

Elimination Rules: We deal with \(\wedge \)-Elimination by way of illustration. Suppose that \(D = \phi_1, \phi_2, \ldots, \phi_n, \phi_{n+1} \) is a strict derivation of \((\phi \wedge \psi) \) from \(\Delta \). Then, for some \(k, l \leq n, \phi_k = \phi \) and \(\phi_l = \psi \). Choose \(k \) and \(l \) to be maximal. This means that one of \(k \) or \(l \) is \(n \), since otherwise \(\phi_n \) would not figure as a premise. By lemma 3.3, each \(\phi_j, j = 1, 2, \ldots, n \), is of use in deriving \(\phi_{n+1} = (\phi \wedge \psi) \) in \(D \). We may then show by an easy induction that each \(\phi_j \) is identical to \(\phi \) or to \(\psi \) or of use in deriving \(\phi_k = \phi \) or \(\phi_l = \psi \). Look now at the sub-sequence \(\phi_{p_1}, \phi_{p_2}, \ldots, \phi_{p_k} \) of formulas which can be used in deriving \(\phi_k = \phi \) and at the subsequence \(\phi_{q_1}, \phi_{q_2}, \ldots, \phi_{q_l} \) of formulas which can be used in deriving \(\phi_l = \psi \). Let \(\Delta_1 \) be the subset of members of \(\Delta \) that are identical to \(\phi_k \) or are of use in deriving \(\phi_k \) and \(\Delta_2 \) the subset of members of \(\Delta \) that are identical to \(\phi_l \) or are of use in deriving \(\phi_l \). Then
\[\Delta = \Delta_1 \cup \Delta_2 \] and it follows from lemma 3.4 that \(\phi_{p_1}, \phi_{p_2}, \ldots, \phi_{p_k}, \phi \) is a weak derivation of \(\phi \) from \(\Delta_1 \), and \(\phi_{q_1}, \phi_{q_2}, \ldots, \phi_{q_n}, \psi \) a weak derivation of \(\psi \) from \(\Delta_2 \).

Corollary 3.7

1. \(\emptyset \vdash \Delta < \phi \) iff \(\phi \) is strictly derivable from \(\Delta \);
2. \(\emptyset \vdash \Delta \leq \phi \) iff \(\phi \) is weakly derivable from \(\Delta \);
3. \(\emptyset \vdash \psi < \phi \) iff \(\phi \) is strictly partially derivable from \(\psi \);
4. \(\emptyset \vdash \psi \preceq \phi \) iff \(\phi \) is weakly partially derivable from \(\psi \).

Proof The right to left directions may be established by induction on the length of the relevant derivations. Suppose now that \(\emptyset \vdash \Delta < \phi \). By T3.6, \(\Delta < \phi \) is L-true and so \(\phi \) is strictly derivable from \(\Delta \). The left to right directions for the other cases are established similarly.

We also get:

Corollary 3.8 \(GG \) is consistent

Proof \(p < q \) is not L-true and so the sequent \(\emptyset \vdash p < q \) is not valid.

Indeed, we may use the theorem to establish a stronger consistency result. Say that a grounding claim \(\phi_1, \phi_2, \ldots, \phi_n < \psi \) is *simple* if \(n > 0 \) and each of \(\phi_1, \phi_2, \ldots, \phi_n, \psi \) is an atom; and say that a set \(S \) of grounding claims is *simple* if each of its members is simple. The set \(S \) of strict full grounding claims is said to be *closed* if it is closed under CUT (for strict full ground) and AMALGAMATION; and a closed set \(S \) of strict full grounding claims is said to be *acyclic* if it does not contain a grounding claim of the form \(\Delta < \phi \) with \(\phi \in \Delta \). Finally, given a set \(A \) of atoms, let \(S_A \) be the set of simple grounding claims that can be formed from the members of \(A \).

We may now show that, for suitable \(S \), we can consistently suppose that it is exactly the grounding claims of \(S \) that will hold:

Corollary 3.9 Suppose that \(S \) is a closed acyclic set of simple grounding claims formed from the atoms in \(A \). Then the sequent \(S \vdash (S_A \setminus S) \) is not derivable in \(GG \).

Proof It suffices to establish the result for finite \(S \).\(^9\) Given \(S \), say \(p \prec_S q \) if, for some \(\Delta, \ p \in \Delta \) and \(\Delta < q \in S \). Since \(S \) is acyclic, we can assign a depth \(d(p) \) to each atom \(p \) of \(A \), where \(d(p) = 0 \) if for no \(q \) is \(q \prec_S p \) and otherwise

\[d(p) = \max\{d(q) : q \prec_S p\} + 1 \]

With each atom \(p \) of \(A \), we associate a fresh atom \(p' \) not in \(A \). We now define a function \(f \) from the atoms of \(A \) to formulas:

1. when \(d(q) = 0 \), \(f(q) = q \);

\(^9\)See L8.2 below.
2. when $d(q) > 0$, $f(q) = (f(p_{11}) \land f(p_{12}) \land \ldots \land f(p_{1k_1})) \lor \ldots \lor (f(p_{n1}) \land f(p_{n2}) \land \ldots \land f(p_{nk_n})) \lor q'$

where $\{p_{11}, p_{12}, \ldots, p_{1k_1}\}, \ldots, \{p_{n1}, p_{n2}, \ldots, p_{nk_n}\}$ constitute the Δ for which $\Delta < q \in S$.

To guarantee the uniqueness of $f(q)$ in (2), we suppose that the atoms of A occur in a fixed order and that conjunctions and disjunctions are associated from left to right.

Let $f(\Delta) = \{f(q) : q \in \Delta\}$, and extend f to sets of grounding claims in the obvious way. We may then show that for any grounding claim $\Delta < q \in S_A$:

$$\Delta < q \in S \text{ iff } f(\Delta) < f(q) \text{ is } L\text{-true.}$$

Thus each grounding claim in $f(S)$ is L-true and each grounding claim in $f(S_A \setminus S)$ is not L-true. So the sequent $f(S) \vdash f(S_A \setminus S)$ is not valid and hence, by the theorem, is not derivable in GG. Since GG is closed under uniform substitutions, $S \not\vdash (S_A \setminus S)$.

It follows, in particular, that the closure of the set $\{p_2 < p_1, p_3 < p_2, \ldots\}$ is consistent. Indeed, we can consistently suppose that these are the only simple grounding claims to hold. It is turtles all the way down!

We might define a sequent $S \vdash T$ to be super-valid if every uniform substitution instance of it is valid. So, for example, $p < q \vdash \emptyset$ is valid though not super-valid, since the substitution instance $p < \neg\neg p \vdash \emptyset$ is not valid. By the theorem, the logic of super-validity is at least GG, since GG is closed under uniform substitution. In fact, it properly extends GG since $p \land (p \land p) \leq (p \land p) \land p \vdash \emptyset$ is super-valid and yet not derivable in GG. It would be interesting to determine the logic of super-validity. Indeed, there is a whole range of questions here, since we might add further principles, such as $\emptyset \vdash (\phi \land \psi) \leq (\psi \land \phi)$, to GG and then attempt to determine the logic for the resulting notion of super-validity. There is also an obvious connection here with the previously discussed semantics of Correia; for we might take him to be adopting a substitutional conception of validity under something akin to a free interpretation of the truth-functional formulas.

4 The Canonical Model: Definition and Elucidation

We define and motivate the canonical model that will be used to establish completeness. We first extend the language with witnessing constants and the like; we then define the notion of a “free” condition or content over the resulting set of sentences; and we finally specify the representative conditions in terms of which the canonical model is defined. We close the section by discussing some features of the construction.
In what follows, we will refer to an indexed set using standard notation, writing \((x_i)_{i<\alpha}\) for \(\{x_i\mid i<\alpha\}\). We will almost always omit the limit ordinal \(\alpha\), and we will often write \((x_i)\), omitting the subscripted restriction ‘\(i<\alpha\)’ entirely. We indicate co-indexed sets by using the same subscripts. Where there are two subscripts, the first subscript may sometimes depend on the second subscript, and these abbreviations may be embedded. Some examples:

Abbreviation
\((x_i)\)
\(x_0, x_1, \ldots\)

Expansion
\((\Delta \leq \phi_i)\)
\(\Delta_0 \leq \phi_0; \Delta_1 \leq \phi_1, \ldots\)

\((x_{ij})\)
\(x_{00}, x_{10}, \ldots; x_{01}, x_{11}, \ldots; x_{0j}, x_{1j}, \ldots, \ldots\)

\(((\delta_{ij})_1, \gamma_j)_j\)
\(\delta_{00}, \delta_{10}, \ldots, \gamma_0; \delta_{01}, \delta_{11}, \ldots, \gamma_1, \ldots\)

Suppose \(S\) is a set of grounding claims of \(\mathcal{L}\) that is prime (\(S \vdash T \Rightarrow (\exists \tau \in T)\tau \in S\)). The primeness of \(S\) implies that it is consistent (\(S' \not\vdash \emptyset\)) and that it is closed under derivability (if \(S \vdash \sigma\), then \(\sigma \in S\)). \(S\) will remain fixed for the discussion in this section and throughout §§5-7. In what follows, we will sometimes justify claims about \(S\)’s members by appeal to the closure of \(S\) under derivability.

We are going to conservatively extend \(S\) to a bigger set \(S^*\), which we call the canonical model basis for \(S\). Like \(S\), \(S^*\) will be prime and so consistent. \(S\), however, may contain partial weak grounding claims \(\phi \preceq \psi\) with no witnessing full weak grounding claim of the form \(\phi, \Delta \leq \psi\). \(S^*\), by contrast, will be witnessed: if \(\phi \preceq \psi \in S^*\), then there is a \(\Delta\) such that \(\phi, \Delta \leq \psi \in S^*\). Also, \(S\) may contain full strict grounding claims \(\Delta < \phi\), without there being a corresponding conjunction \(\bigwedge \Delta\) such that \(\bigwedge \Delta \leq \phi\). \(S^*\) adds in conjunctions of this right sort, so that \(\Delta < \phi\) can be derived from \(S^*\), using \(\wedge\)-introduction, **Subsumption**, **Cut**, and **Reverse Subsumption**, from \(\bigwedge \Delta \leq \phi\). Defining the canonical model basis for \(S\) will therefore require expanding our language to include witnessing constants and multigrade conjunctions, among other things.

We will then use \(S\) to define a selection space and an interpretation function whose selections correspond (under the interpretation) to the grounding claims in \(S^*\). We will show that that selection space is a frame, meeting the Irreversibility and Maximality constraints. That frame, together with the interpretation of \(S^*\), is the canonical model for \(S\), which verifies exactly the grounding claims of \(\mathcal{L}\) that are members of \(S\). Because adding new (full) grounding claims can require the addition of still further grounding claims to meet the demands of Irreversibility and Maximality, this construction is far from trivial.

We start by extending the language \(\mathcal{L}\) to \(\mathcal{L}^+\):

Definition 4.1 *The language \(\mathcal{L}^+\) is the smallest set of sentences such that:*

1. *If \(\phi\) is an atomic sentence of \(\mathcal{L}\), then \(\phi\) is an atomic sentence of \(\mathcal{L}^+\);*

2. *If \(\phi \in \mathcal{L}\) (whether atomic or molecular), then \(w^\phi\) is an atom of \(\mathcal{L}^+\);*

3. *\(\top^\land\) and \(\top^\lor\) are each fresh atomic sentences of \(\mathcal{L}^+\);*

4. *if \(\phi \in \mathcal{L}^+\), then \(\phi\) is a fresh atomic sentence of \(\mathcal{L}^+\);*
5. if $\phi \in \mathcal{L}^+$, then $\neg \phi \in \mathcal{L}^+$; and

6. if $1 \leq n \in \omega$ and $\phi^0, (\phi^i)_{1 \leq i \leq n}$ are each sentences of \mathcal{L}^+, then $(\phi^0 \land \phi^1 \land \ldots \land \phi^n)$ and $(\phi^0 \lor \phi^1 \lor \ldots \lor \phi^n)$ are each sentences of \mathcal{L}^+.

Remark: We add the witnessing atomic sentences w_ϕ for each sentence ϕ of \mathcal{L} (not \mathcal{L}^+). By contrast, we add atomic sentences $/\phi/$, which we will sometimes call a “shadow” of ϕ, for each sentence (atomic or molecular) of \mathcal{L}^+. The roles of our new atomic sentences w_ϕ, $/\phi/$, \top, and \bot are explained below.

Remark: Notice that clause (5.) applies to finite sequences of sentences of length ≥ 2 to yield conjunctions and disjunctions of any finite -arity ≥ 2. The symbols ‘\land’, ‘\lor’, ‘\langle’, and ‘\rangle’ mentioned in clause D4.1(5.) to specify n-ary conjunctions and disjunctions are the very same symbols used in the specification of the original language \mathcal{L}. So, for sentences ϕ^0 and ϕ^1 of \mathcal{L}, the conjunction $(\phi^0 \land \phi^1)$ of our original language \mathcal{L} is the very same string as the binary conjunction \mathcal{L}^+ specified in D4.1(5.) when $\phi^0, (\phi^i)$ is just the pair ϕ^0, ϕ^1. Similarly, disjunctions of \mathcal{L} are identical with corresponding binary disjunctions of \mathcal{L}^+. We do not allow conjunctions with fewer than 2 conjuncts, and, similarly, for disjunctions.

Definition 4.2 The Free Selection Space: Assume that $+\ldots\uparrow$, and the atomic sentences of \mathcal{L} are pair-wise distinct ur-elements. We define the notions of a free condition and a free content inductively:

1. If ϕ is an atomic sentence of \mathcal{L}^+, then ϕ and $\neg \phi$ are free conditions.

2. If a and b are free conditions, then the ordered pair (a, b) is a free content.

3. If $X = \langle v, w, \ldots \rangle$ is a sequence of free contents of length l ($l \neq 1, l \in \omega$), then $(+, X)$ and $(., X)$ are each free conditions (written $[v + w + \cdots]$ and $[v.w. \cdots]$, respectively, where convenient).

4. If v is a free content, then $(\uparrow, (v))$ is a free condition (written $[v]$).

For any free content $v = (a, b)$, $v_\Box = a$ and $v_\bot = b$.

Remark: We may think of \langle, $+$, and \uparrow as operations which take finite sequences X and Y of free contents of appropriate length into the free conditions $(., X)$, $(+, X)$, and (\uparrow, Y), respectively. The operations $.$ and $+$ can each be applied to the null sequence, so that $(., \emptyset)$ and $(+, \emptyset)$ are each free conditions.

Definition 4.3 We define a function $\overline{\cdot}$ from \mathcal{L}^+ into the set of free contents recursively as follows:

1. For ϕ atomic, $\overline{\phi} = (\phi, \neg \phi)$;

2. $\overline{\neg \phi} = (\overline{\phi}_0, [\overline{\phi}])$;

3. $\overline{(\phi \land \psi \land \ldots)} = ([\overline{\phi}, \overline{\psi}, \ldots]; [\overline{\neg \phi} + \overline{\neg \psi} + \cdots])$; and
4. \((\phi \lor \psi \lor \ldots) = ([\overline{\phi} + \overline{\psi} + \cdots], \overline{\phi \lor \psi \lor \cdots})\).

Definition 4.4 Fix an enumeration \((\phi^i)\) of the sentences of \(L\). We take the natural order on the sentences of \(L\) to be the corresponding ordering. If \(\Delta \subseteq L\), then we take \((\delta^i)\) to be the natural enumeration of \(\Delta\), i.e., the restriction of the natural order on \(L\) to \(\Delta\). If \((\delta^i)\) is the natural enumeration of \(\Delta\) and \(\Delta < \phi \in S\), set

\[v^\Delta,\phi = (\delta^0 \land \delta^1 \land \cdots \land (T^\lor / \phi) \land T^\lor). \]

We inductively define the relation \(\Rightarrow\) on sentences of \(L^+\) by:

(S): \(v^\Delta,\phi \Rightarrow \phi\), if \(\Delta < \phi \in S\);

(W): \((\psi \land w^\phi) \Rightarrow \neg\neg\phi\), if \(\psi \leq \phi \in S\);

(Max): \((w^\phi \land \phi) \Rightarrow \neg\neg w^\phi\) for \(\phi \in L\);

(S): \((T^\lor \land (T^\lor / \phi/)) \Rightarrow T^\lor\), if \(\phi \in L\) and

(Induction): if \(\phi \Rightarrow \psi\), then \((\psi \land / \phi/)) \Rightarrow \neg\neg\phi\) and \((\phi \land / \phi/) \Rightarrow \neg\neg\phi/\).

Remark: The definition of \(\Rightarrow\) says nothing in general about arbitrary atomic sentences, negations, conjunctions, or disjunctions. So, many sentences of \(L^+\) appear on neither the RHS nor the LHS of any instance of \(\Rightarrow\).

Remark: \(v^\Delta,\phi\) is the conjunction that we will use to enable the transparent derivation of \(\Delta < \phi\) from \(\Delta < v^\Delta,\phi \leq \phi \in S^*\); see discussion below. Note that \(v^\Delta,\phi = v^\Delta',\phi'\) if \(\Delta = \Delta'\) and \(\phi = \phi'\).

Remark: Intuitively, whenever \(\phi \Rightarrow \psi\), we will identify the truth-condition for \(\neg\neg\psi\) (which is the result \([\overline{\psi}]\) of “raising” the truth-condition for \(\psi\)) with the truth-condition \([\overline{\psi} + \phi]\) for \((\psi \lor \phi)\); see, in particular, D4.5 immediately below.

Definition 4.5 We inductively define a relation \(\sim\) as the smallest equivalence relation meeting the following conditions:

(T^\lor): \(\langle , \emptyset \rangle \sim T^\lor\);

(\Rightarrow): If \(\phi \Rightarrow \psi\), then \([\overline{\psi}] \sim [\overline{\psi} + \overline{\phi}]\);

(Pairing): if \(a \sim c\) and \(b \sim d\), then \((a, b) \sim (c, d)\);

(Comp):

1. if \((\nu^i \sim w^i)\), then \([\nu^0 + v^1 + \cdots] \sim [w^0 + w^1 + \cdots]\);

2. if \((\nu^i \sim w^i)\), then \([\nu^0, v^1, \cdots] \sim [w^0, w^1, \cdots]\);

3. if \(v \sim w\), then \([v] \sim [w]\).

Remark: An immediate import of D4.5(\(\Rightarrow\)) is that \(\overline{\neg\neg\psi} = \overline{\overline{\psi} + \overline{\phi}} = (\overline{\psi} \land \overline{\phi})_{\otimes}\), whenever \(\phi \Rightarrow \psi\).

Definition 4.6 The Canonical Model \(\mathfrak{M}_S\) is the ordered tuple \((F, \Sigma_S, \Pi_S, \gamma)\) whose elements are defined as follows. Pick a “representative” function \(g\) on free conditions \(a\), such that \(g(a) \in \{b | a \sim b\}\) and \(g(a) = g(b)\) if \(a \sim b\). Then:
1. F_S is the range of g.

2. The choice $\Sigma_S(X)$ of any length l sequence of $X = \langle v, w, \ldots \rangle$ of members of $F_S \times F_S$ ($l \neq 1, l \in \omega$) is $g([v + w + \cdots])$ (written as $[v + w + \cdots]_g$ when convenient).

3. The combination $\Pi_S(X)$ of any length l sequence of $X = \langle v, w, \ldots \rangle$ of members of $F_S \times F_S$ ($l \neq 1, l \in \omega$) is $g([v.w.\cdots])$ (written as $[v.w.\cdots]_g$ when convenient).

4. $\Sigma(\langle v \rangle) = \Pi(\langle v \rangle) = g([v])$ (written as $[v]_g$), for any member v of $F_S \times F_S$.

Let $g((a, b)) = (g(a), g(b))$ for all free contents (a, b). Then $\bar{\cdot}$ is the function from L^+ into $F_S \times F_S$ such that $\bar{\phi} = g(\bar{\phi})$.

Remark: Clearly, since Σ_S and Π_S are defined on all finite sequences of members of $F_S \times F_S$ and $\Sigma(v) = \Pi(v) = [v]_g$ for all $v \in F_S$, M_S is a selection system. The burden of the following three sections is to show that M_S is, in fact, a model, thereby meriting the label “canonical model”, and that a grounding claim σ of the original language L is true in M_S iff $\sigma \in S$.

Remark: \sim is stipulated to be an equivalence relation on free conditions. It then easily follows that it will also be an equivalence relation on free contents. The clauses (PAIRING) and (COMP) in D4.5 will ensure that \sim is a congruence under pairing, choice, and combination.

(T^\wedge): This clause will guarantee that $T^\wedge \emptyset$ is equivalent to the combination of nothing (the “zero-combination”). So, $\emptyset <_{M_S} T^\wedge <_{M_S} (T^\wedge \lor /\phi/)$.

(\Rightarrow): This clause is the key to the construction. First, it guarantees that $\phi \Rightarrow \psi$ implies $\bar{\phi} <_{M_S} \bar{\psi}$. A picture illustrates the structure:

```
\neg \psi = ([\psi]_g, [\neg \psi]_g) = ([\psi + \bar{\phi}]_g, [\neg \psi]_g)
```

The solid arrows indicate relations of strict selection. The dotted arrow indicates a relation of weak selection between $\bar{\phi}$ and $\bar{\psi}$, and is warranted by the definition of $\bar{\phi} <_{M_S} \bar{\psi}$ as $(\exists d)\bar{\phi} <_{M_S} ([\psi]_g, d)$.

Specific comment is merited on the consequences of the individual clauses in the definition D4.4 of (\Rightarrow). The top two levels of each of the pictures below have the general form indicated in the picture above.

$(\Rightarrow)(\emptyset)$: Since $(T^\wedge \land (T^\wedge \lor /\phi/)) \Rightarrow T^\wedge$ for each $\phi \in L$ we have
Here, the fact that solid arrows from \top and $(\top \land \top / \phi)$ meet at \circ indicates that they are jointly a strict selection from $(\top \land (\top \land \top / \phi))$. As the picture indicates, $\emptyset <_{M_{S}} (\top \land (\top \land \top / \phi)) \leq_{M_{S}} \top$. In effect, \top behaves like the disjunction of all $(\top \land \top / \phi)$, for $\phi \in \mathcal{L}$.

$(\Rightarrow)(W)$: This clause guarantees that $\bar{\psi}, \bar{w} \phi \leq_{M_{S}} \bar{\phi}$ whenever $\psi \preceq \phi \in S$:

Here, the dotted arrows from $\bar{\psi}$ and $\bar{w} \phi$ meet at \circ and continue to $\bar{\phi}$, indicating that $\bar{\psi}$ and $\bar{w} \phi$ are jointly a weak selection from $\bar{\phi}$. This weak selection is guaranteed by the fact that $\psi, w \phi <_{M_{S}} (\bar{\psi} \land w \phi) \leq_{M_{S}} \bar{\phi}$, together with the definition of $\bar{\phi} \leq_{M_{S}} \bar{\psi}$ as $(\exists d)d \phi <_{M_{S}} ([\bar{\psi}]_{g}, d)$. This ensures that any partial grounding claim $\psi \preceq \phi \in S$ has a corresponding partial weak selection in M_{S}.

$(\Rightarrow)(\text{Max})$: As in the previous case, this clause guarantees that $\bar{w} \phi, \bar{\phi} \leq_{M_{S}} \bar{w} \phi$. The picture above shows that $\psi, w \phi \leq_{M_{S}} \bar{\phi}$ whenever $\psi \preceq \phi \in S$. irre-
VERSIBILITY demands that that either ψ, w^ϕ is also a strict selection from ϕ, or that ϕ is a partial weak selection from one of ψ, w^ϕ. This clause satisfies IRREVERSIBILITY in this case by guaranteeing the latter alternative. The former alternative needs to be avoided. In particular, we need to avoid the strict selection $\psi, w^\phi <_{M_S} \phi$, since attempting to meet IRREVERSIBILITY by adding this strict selection might require further additions corresponding to grounding claims that are not in S. Suppose, to illustrate, that $\chi \preceq (\phi \land \psi) \in S$, but neither $\chi \preceq \phi$ nor $\chi \preceq \psi$ are in S. If we had (foolishly) attempted to satisfy IRREVERSIBILITY by adding the strict selection $\chi, w^{(\phi \land \psi)} <_{M_S} (\phi \land \psi)$, then MAXIMALITY would require us to add either $\chi \preceq_{M_S} \phi$ or $\chi \preceq_{M_S} \psi$ as well.

$(\Rightarrow) (S)$: This clause guarantees that $\nabla^\Delta, \phi \preceq_{M_S} \phi$ whenever $\Delta < \phi \in S$. We have thereby obtained the selection $\Delta \preceq_{M_S} \nabla^\Delta, \phi \preceq_{M_S} \phi$ whenever $\Delta < \phi \in S$.

In effect, ∇^Δ, ϕ behaves like the conjunction of the sentences in Δ, except that it has two “zero-grounded” conjuncts $(\top \land /\phi/)$ and \top. The inclusion of the “shadow” $/\phi/$ of ϕ as a disjunct in $(\top \land /\phi/)$ guarantees that $\nabla^\Delta, \phi \neq \nabla^\Delta, \psi$ when $\phi \neq \psi$.

$(\Rightarrow) (\text{Induction})$: Another function of (\Rightarrow) is to guarantee that $\nabla^\Delta, \phi \preceq_{M_S} \psi \preceq_{M_S} /\phi/ \preceq_{M_S} \nabla^\Delta, \phi$ whenever $\phi \Rightarrow \psi$. The first partial weak selection $\nabla^\Delta, \phi \preceq_{M_S} \psi$ is secured immediately, as illustrated by the first picture above.

The other weak selections require us to go up a level. By $(\Rightarrow) (\text{Induction})$, whenever $\phi \Rightarrow \psi$, we also have $(\psi \land /\phi/) \Rightarrow \neg \phi$. So, $[\neg \phi]_g = [\neg \phi + (\psi \land /\phi/)]_g$. Similarly, by $(\Rightarrow) (\text{Induction})$, $(\phi \land /\phi/) \Rightarrow \neg /\phi/$ and so $[\neg /\phi/]_g = [\neg /\phi/ + (\phi \land /\phi/)]_g$. These two facts secure the partial weak selection relations indicated. Again, pictures summarize the construction:
The partial weak selections

\[\bar{\psi} \leq_{M_S} \bar{\phi} \leq_{M_S} \bar{/\phi/} \leq_{M_S} \bar{\phi} \]

are represented in the bottom rows of the two pictures.

A special case of this circle of partial weak selections is that

\[\bar{\phi} \leq_{M_S} \bar{v\Delta,\phi} \leq_{M_S} \bar{/v\Delta,\phi/} \leq_{M_S} \bar{\phi} \].

Thus, the weak selection \(\bar{v\Delta,\phi} \leq_{M_S} \bar{\phi} \) is reversible: \(\bar{\phi}, \bar{/v\Delta,\phi/} \leq_{M_S} \bar{v\Delta,\phi} \). This enables \(M_S \) to simultaneously satisfy (irreversibility) and (maximality): if (irreversibility) had been satisfied instead by adding a strict selection \(\bar{v\Delta,\phi} <_{M_S} \bar{\phi} \), then the construction would not be a model. Consider, to illustrate, the case in which \(\phi \) is a conjunction \(\phi^1 \land \phi^2 \), and let \(\phi^1, \phi^2 = \Delta \). Then \(\Delta < (\phi^1 \land \phi^2) \in S \). If we had (foolishly) attempted to satisfy irreversibility by adding the selection \(\bar{v\Delta,\phi} <_{M_S} \bar{(\phi^1 \land \phi^2)} = \phi \), then (maximality) would require that we add a further selection, so that either \(\bar{v\Delta,\phi} \leq_{M_S} \bar{\phi^1} \) or \(\bar{v\Delta,\phi} \leq_{M_S} \bar{\phi^2} \). This is big trouble. In the former case, we would have

\[\bar{\phi^1}, \bar{\phi^2} <_{M_S} \bar{v\Delta,\phi} \leq_{M_S} \bar{\phi^1} \]

and we would have a similar violation of irreversibility in the latter case.

5 Witnessing, \(\top^\land \), \(\top^\lor \), and Theorems in \(\mathcal{L}^+ \)

Recall that \(S \) is a prime (and hence consistent) set of grounding claims. We use syntactic methods to extend \(S \). The ultimate goal is to get a well-behaved extension \(S^* \) which is prime (in \(\mathcal{L}^+ \)) and whose grounding claims exactly correspond to the selections of \(M_S \). This extension is described and its adequacy proved in the next two sections. In the present section, we expand \(S \) to include:

- full weak grounding claims \(\psi, \psi^\phi \leq \phi \) corresponding to the partial grounding claims \(\psi \leq \phi \in S \);
• the grounding claim $\emptyset \leq \top$;
• claims of the form $(\top \land (\top \lor /\phi/)) \leq \top$, for $\phi \in \mathcal{L}$; and
• theorems of \mathcal{L}^+, i.e., grounding claims of \mathcal{L}^+ derivable from the null set: $\phi^i < (\phi^1 \lor \phi^2 \lor \phi^3 \lor \cdots \lor \phi^n)$, $(\neg \phi^i) < (\neg \phi^1 \land \neg \phi^2 \land \cdots \land \neg \phi^n)$, $/\phi/ \leq /\phi/$, and the like.

Adding grounding claims corresponding to instances of \cong will be deferred until the next section.

Definition 5.1 The class of S-derivations is given by the following axioms and cut rule:

- **(S):** If $\Delta \leq \phi \in S$, then $\Delta, \top \lor \leq \phi$ is an axiom;
- **(W):** If $\delta \leq \phi \in S$, then $\delta, w^\phi \leq \phi$ is an axiom;
- **(Max):** $\phi, w^\phi \leq w^\phi$ is an axiom, for $\phi \in L$;
- **(T\top):** $\emptyset \leq \top$ is an axiom;
- **(T\lor):** If $\phi \in \mathcal{L}$, then $(\top \lor /\phi/) \leq \top$ is an axiom;
- **(ID):** $\phi \leq \phi$ is an axiom;
- **(Determination):** The following are axioms:
 \[
 \phi, \psi, \ldots \leq (\phi \land \psi \land \ldots) \quad \phi^i \leq (\phi^0 \lor \phi^1 \lor \ldots) \quad \phi \leq \neg \neg \phi \\
 \neg \phi, \neg \psi, \ldots \leq \neg (\phi \lor \psi \lor \ldots) \quad \neg \phi^i \leq \neg (\phi^0 \lor \phi^1 \lor \ldots)
 \]
- **(Cut):** $\frac{(\Delta^i \leq \psi^i)_{i \in \omega}}{(\Delta^\top), \Gamma \leq \phi}$

If $\Delta \leq \phi$ is the conclusion of an S-derivation, then it is said to be derivable or an S-connection. We will often simply write $\Delta \leq \psi$ to indicate that $\Delta \leq \psi$ is an S-connection. $(\Delta^i \leq \psi^i)$ are the minor premises of the application of (cut), $(\psi^i), \Gamma \leq \phi$ is its major premise, (ψ^i) are its cut formulae, and Γ contains its side formulae. The major premise of an S-derivation D that terminates in an application of (cut) is the major premise of that terminal application, and, similarly, for D’s minor premises, cut formulae, and side formulae. An S-derivation is an axiom iff it consists of a single application of an axiom rule.

Remark: Intuitively, $\delta \preceq \psi$ says that there is some H, such that $\delta, H \leq \psi$. Thus, w^ψ is a witnessing constant for a partial grounding claim of this form. \top is a (conjunctive) top, which we may regard as the conjunction of the elements of \emptyset, where a conjunction of a set Δ is true iff each element of Δ is true. We may think of $/\phi/$ as a “shadow” of ϕ. Shadows will play two key roles in the construction of the canonical model basis specified in the next section. Finally, \top behaves, intuitively, like the disjunction of sentences of the form $(\top \lor /\phi/)$, for $\phi \in \mathcal{L}$.
We will use calligraphic capital letters D, E, F and G (sometimes with subscripts or accents) for S-derivations. We will often represent the form of an S-derivation of $\Delta \leq \phi$ that is a subderivation of another S-derivation in tabular form, using

\[
\begin{array}{c}
D \\
\Delta \leq \phi \\
\end{array}
\]

So, for instance, if D is an axiom $\phi, \psi \leq (\phi \land \psi)$, then we may represent D in tabular form by

\[
\begin{array}{c}
D \\
\phi, \psi \leq (\phi \land \psi) \\
\end{array}
\]

We will now establish some results concerning the application of (Cut) in S-derivations. With the exception of L5.7, these results do not depend on the particular choice of axioms for S-derivations. Although (Cut) cannot be eliminated from S-derivations, these results establish that its application can be severely restricted.

Definition 5.2 The depth $\text{Depth}(D)$ of an S-derivation D is defined inductively:

1. If D is an axiom, $\text{Depth}(D) = 1$;

2. if D has the form

\[
\begin{array}{c}
\frac{E_i}{\Delta_i \leq \phi_i} \\
(\Delta_i), \Gamma \leq \phi \\
\end{array}
\]

then $\text{Depth}(D) = \text{sup}(\text{Depth}(E_i), \text{Depth}(E)) + 1$.

Definition 5.3 An S-derivation D is in semi-normal form iff every major premise of every application of (Cut) in D is an axiom.

Lemma 5.4 (Semi-Normal Form Lemma) If D is an S-derivation of $\Delta \leq \phi$, then there is an S-derivation of $\Delta \leq \phi$ in semi-normal form.

Proof We prove the result by induction on the depth of S-derivations. It is obvious that every application of (Cut) with more than one minor premise can be split into a series of applications of (Cut) with exactly one minor premise. So, we may assume (wlog) that the terminal instance of (Cut) in D has exactly one minor premise.

Axioms: Trivially, if D is an axiom, then it is in semi-normal form.

(Cut): Suppose D terminates in an application of (Cut). We prove the result by a subsidiary induction on the depth of the S-derivation \mathcal{F} of the major premise of D.

Axioms: Suppose \mathcal{F} is an axiom. By the outermost IH, the S-derivation \mathcal{E} of \mathcal{D}'s minor premise is in semi-normal form. So, \mathcal{D} is already in semi-normal form.
(Cut): Let F be the S-derivation of the major premise in D. Suppose $\Delta \leq \phi$ is the minor premise of D, so that ϕ is the cut formula of D. By the outermost IH, we may assume that F is semi-normal. (Note that semi-normal derivations will not generally have only one minor premise.) There are three cases: (A) ϕ occurs only as a side formula in F; (B) ϕ occurs only on the left-hand side of some minor premises of F; or (C) ϕ occurs both as a side formula in F and on the left-hand-side of some minor premises of F.

(A): D has the form

$$\begin{align*}
\vdash E & \quad \frac{\begin{array}{c}
\frac{F_i^*}{\Gamma_i \leq \gamma_i} \\
\Delta \leq \phi
\end{array}}{} \quad (\gamma_i), \phi, \Sigma \leq \psi \\
& \quad \frac{(\Gamma_i), \Delta, \Sigma \leq \psi}{(\gamma_i), \phi, \Sigma \leq \psi}
\end{align*}$$

where E and F_i^* are each semi-normal. Then

$$\begin{align*}
\vdash E & \quad \frac{\begin{array}{c}
\frac{F_i^*}{\Gamma_i \leq \gamma_i} \\
\Delta \leq \phi
\end{array}}{} \quad (\gamma_i), \phi, \Sigma \leq \psi \\
& \quad \frac{(\Gamma_i), \Delta, \Sigma \leq \psi}{(\gamma_i), \phi, \Sigma \leq \psi}
\end{align*}$$

is semi-normal.

(B): D has the form

$$\begin{align*}
\vdash E & \quad \frac{\begin{array}{c}
\frac{F_j'}{\phi, \Gamma_j \leq \gamma_j} \\
\Delta \leq \phi
\end{array}}{} \quad (\gamma_j), (\chi_i), \Gamma' \leq \psi \\
& \quad \frac{\begin{array}{c}
\frac{G_i}{\Sigma_i \leq \chi_i} \\
\phi, (\Gamma_j), (\Sigma_i), \Gamma' \leq \psi
\end{array}}{} \quad (\gamma_j), (\chi_i), \Gamma' \leq \psi \\
& \quad \frac{(\Gamma_j), (\Sigma_i), \Gamma' \leq \psi}{\Delta, (\Gamma_j), (\Sigma_i), \Gamma' \leq \psi}
\end{align*}$$

where $(\phi, \Gamma_j \leq \gamma_j)$ are exactly the minor premises of F with ϕ on the left-hand side, and $(\Sigma_i \leq \chi_i)$ are exactly the other minor premises of F. By the outer IH, we may assume (wlog) that $(F_j'), (G_i)$ are each semi-normal, and E is semi-normal. For each j, consider the S-derivation

$$E^* = \frac{\begin{array}{c}
\frac{F_j'}{\phi, \Gamma_j \leq \gamma_j} \\
\Delta \leq \phi
\end{array}}{} \quad (\gamma_j), (\chi_i), \Gamma' \leq \psi$$

Notice that $\text{Depth}(E^*) \leq \text{Depth}(D)$, and $\text{Depth}(F_j') < \text{Depth}(F_j)$. So, by the inner IH, there is a semi-normal S-derivation E'_j of $\Delta, \Gamma_j \leq \gamma_j$. So,

$$\begin{align*}
\vdash E_j' & \quad \frac{\begin{array}{c}
\frac{\gamma_j}{\Delta, \Gamma_j \leq \gamma_j} \\
\Delta \leq \phi, (\Gamma_j), (\Sigma_i), \Gamma' \leq \psi \\
\frac{G_i}{\Sigma_i \leq \chi_i} \\
\Delta, (\Gamma_j), (\Sigma_i), \Gamma' \leq \psi
\end{array}}{} \quad (\gamma_j), (\chi_i), \Gamma' \leq \psi
\end{align*}$$

is semi-normal.

(C): D has the form

33
\[\begin{array}{c|c|c|c|c|c|c|c|c} \mathcal{E} & \frac{\mathcal{F}_j}{\phi, \Gamma_j \leq \gamma_j} & \frac{\mathcal{G}_i}{\Sigma_i \leq \chi_i} & (\gamma_j), (\chi_i), \phi, \Gamma' \leq \psi \\ \hline \Delta \leq \phi & \Delta, (\Gamma_j), (\Sigma_i), \Gamma' \leq \psi \\
\end{array} \]

where \((\phi, \Gamma_j \leq \gamma_j)\) are exactly the minor premises of \(\mathcal{F}\) with \(\phi\) on the left-hand side, and \((\Sigma_i \leq \chi_i)\) are exactly the other minor premises of \(\mathcal{F}\). As in case (B), we may assume (wlog) that \((\mathcal{G}_j)\) and \(\mathcal{E}\) are each semi-normal, and, for each \(j\), there is a semi-normal \(S\)-derivation \(\mathcal{E}_j'\) of \(\Delta, \Gamma_j \leq \gamma_j\). So,

\[\frac{\mathcal{E}}{\Delta \leq \phi} \quad \frac{\mathcal{E}_j'}{\Delta, \Gamma_j \leq \gamma_j} \quad \frac{\mathcal{G}_i}{\Sigma_i \leq \chi_i} \quad (\gamma_j), (\chi_i), \phi, \Gamma' \leq \psi \\
\]

is semi-normal.

Definition 5.5 The principal connection of an \(S\)-derivation consisting of a single axiom \(\Delta \leq \phi\) is \(\Delta \leq \phi\). The principal connection of an application of (cut) is its major premise. The principal connection of an \(S\)-derivation is the principal connection of its terminal application of an inference rule. An \(S\)-connection \(\Delta \leq \phi\) is based on \(S\) iff it is an instance of \((S)\), or an instance \(\Delta \leq \phi\) of \((\text{id})\) or \((\text{determination})\) where \(\Delta, \phi \in \mathcal{Z}\).

Definition 5.6 An \(S\)-derivation \(D\) is in normal form iff it is in semi-normal form and every application of (cut) in \(D\) with a major premise based on \(S\) has no immediate \(S\)-subderivation whose principal connection is also based on \(S\).

Intuitively, \(S\)-derivations in normal form are semi-normal \(S\)-derivations which never use axioms based on \(S\) consecutively.

Lemma 5.7 (Normal Form Lemma) If there is an \(S\)-derivation of \(\Delta \leq \phi\), then there is an \(S\)-derivation of \(\Delta \leq \phi\) in normal form.

Proof We prove the result by induction on the depth of \(S\)-derivations \(D\). By L5.4, we may assume (wlog) that \(D\) is semi-normal.

Axioms Suppose \(D\) is an axiom. Then, trivially, \(D\) is normal.

\(\text{(Cut):}\) Suppose \(D\) terminates in (cut). Since \(D\) is semi-normal, its major premise is an axiom. By IH, all proper \(S\)-subderivations of \(D\) are normal. So, if the major premise of \(D\) is not based on \(S\), then \(D\) is normal. Suppose, instead, that the major premise of \(D\) is based on \(S\). Then it has the form

\[\frac{\mathcal{E}_j}{\phi_i, \psi_j} \quad \frac{\mathcal{F}_k}{\Sigma_k \leq \delta_k} \quad (\phi_i), (\psi_j), (\delta_k), \Theta \leq \phi \]

where:

- \((\phi_i), (\psi_j), (\delta_k), \Theta \leq \phi\) is based on \(S\);
• \((\Delta_i \leq \phi_i)\) are exactly the minor premises of \(D\) which are axioms based on \(S\);

• \(\Gamma_j \leq \psi_j\) are exactly the minor premises of \(D\) derived by a terminal application of (cut) whose principal connection is based on \(S\); and

• \((\Sigma_k \leq \delta_k)\) are the remaining minor premises of \(D\).

Also, by the closure of \(S\) and reflexivity, \(\gamma \leq \gamma \in S\), for each \(\gamma \in (\psi_j), (\delta_k), \Theta\). Since \((\Delta_i \leq \phi_i)\) are each based on \(S\), \(\Delta_i \setminus \{\top\} \leq \phi^i \in S\), for each \(i\). So, by the closure of \(S\) and cut (for \(\vdash\), not \(\leq\)),

\[
(\Delta_i), (\psi_j), (\delta_k), \Theta \setminus \{\top\} \leq \phi \in S.
\]

For each \(j\), \(E_j\) has the form

\[
\frac{(\Delta_i), (\psi_j), (\delta_k), \Theta \setminus \{\top\} \leq \phi \in S}{(\Delta_i), (\psi_j), (\delta_k), \Theta \setminus \{\top\} \leq \phi \in S} \quad \left(\frac{(\Delta_i), (\psi_j), (\delta_k), \Theta \setminus \{\top\} \leq \phi \in S}{(\Delta_i), (\psi_j), (\delta_k), \Theta \setminus \{\top\} \leq \phi \in S}\right)
\]

where \((\gamma_{ij}), \Gamma_j' \setminus \{\top\} \leq \psi_j \in S\) and \((\Gamma_{ij}'), \Gamma_j' \setminus \{\top\} = \Gamma_j \setminus \{\top\}\). By IH, we may assume (wlog) that \(E_j\) is in normal form, for each \(j\). So, for each \(i, j\), the principal connection of \(E_{ij}\) is not based on \(S\). So, we have the following members of \(S\): \((\gamma_{ij}), \Gamma_j' \setminus \{\top\} \leq \psi_j\), \((\Delta_i), (\psi_j), (\delta_k), \Gamma \setminus \{\top\} \leq \phi\), and (by the closure of \(S\) and reflexivity) \(\gamma \leq \gamma\) for each \(\gamma \in (\Delta_i), (\delta_k), \Gamma \setminus \{\top\}\). So, by the closure of \(S\) and cut (for \(\vdash\)),

\[
(\Delta_i), (\gamma_{ij}), (\Gamma_j'), (\delta_k), \Theta \setminus \{\top\} \leq \phi \in S.
\]

So, the \(S\)-derivation

\[
\frac{(\Delta_i), (\gamma_{ij}), (\Gamma_j'), (\delta_k), \Theta, \top \leq \phi \in S}{(\Delta_i), (\gamma_{ij}), (\Gamma_j'), (\delta_k), \Theta, \top \leq \phi \in S}
\]

is in normal form. Since \((\Gamma_{ij}'), \Gamma_j' \setminus \{\top\} = \Gamma_j \setminus \{\top\}\), for each \(j\), this is an \(S\)-derivation in normal form of \((\Delta_i), (\Gamma_j), (\Sigma_k), \Theta, \top \leq \phi\). If \(\top \in (\Delta_i), (\Gamma_j), (\Sigma_k), \Theta\), this yields the result. Otherwise, let \(D^\emptyset\) be the normal \(S\)-derivation

\[
\frac{\emptyset \leq \top \leq (\top \wedge \phi^i)}{\emptyset \leq (\top \wedge \phi^i) \leq \top \leq \top \wedge \phi^i}
\]

Then an \(S\)-derivation similar to the one above, except with \(D^\emptyset\) used to derive the additional minor premise \(\emptyset \leq \top \leq \top \wedge \phi^i\) of the terminal application of (cut), is normal and yields the result.

Definition 5.8 If \(D\) is an \(S\)-derivation, the result \(D^T\) of telescoping \(D\) is defined inductively:
1. If D is an axiom or D has the form

$$\frac{\Gamma \leq \gamma \quad \gamma; \Sigma \leq \phi}{\Gamma, \Sigma \leq \phi}$$

then $D^T = D$;

2. If D has the form

$$\frac{E \quad F \quad \Gamma \leq \gamma \quad \gamma; \Sigma \leq \phi}{\Gamma, (\Delta^t), \Sigma \leq \phi}$$

and G^* is the result of telescoping

$$\frac{F^t \quad \Gamma \leq \gamma \quad \gamma; (\delta^t), \Sigma \leq \phi}{\gamma, (\Delta^t), \Sigma \leq \phi}$$

then $D^T = \frac{E^T \quad G^* \quad \Gamma \leq \gamma \quad \gamma; (\Delta^t), \Sigma \leq \phi}{\Gamma, (\Delta^t), \Sigma \leq \phi}$

Definition 5.9 The head connection of an S-derivation D ($\text{Head}(D)$) is defined inductively:

1. If D is an axiom of the form $\Delta \leq \phi$, then $\text{Head}(D) = \Delta \leq \phi$; and

2. If D terminates in an application of (Cut) and E is the subderivation of D’s major premise, then $\text{Head}(D) = \text{Head}(E)$.

Remark: Intuitively, “telescoping” D splits up its applications of (Cut) with more than one minor premise into a series of applications of (Cut), with each having only a single minor premise (proceeding through the minor premises in order from right to left). Some obvious facts:

1. D^T and D have the same conclusion;

2. if D^T is an S-derivation of $\Delta \leq \phi$, then $\text{Head}(D^T)$ has the form $\Sigma \leq \phi$.

3. if D is in semi-normal form, then $\text{Head}(D^T) = \text{the principal connection of } D$;

4. If D is semi-normal, and D^T terminates in an application of (Cut) whose minor premise is $\Gamma \leq \gamma$, then $\text{Head}(D^T)$ has the form $\gamma, \Delta \leq \phi$.

5. If D is normal, D^T terminates in an application of (Cut), and $\text{Head}(D^T)$ is based on S, then the immediate sub-derivation E of D’s minor premise is not such that $\text{Head}(E)$ is also based on S.

For convenience, we will often use the result of “telescoping” normal and semi-normal S-derivations in our proofs. In particular, we will do inductive proofs on the results D^T of “telescoping” normal S-derivations D, so that, in the induction step, we need consider only applications of (Cut) with a single minor premise.

We read off grounding claims from S-connections in the obvious way:
Definition 5.10 A grounding claim σ of \mathcal{L}^+ is \leq-constructible (\leq-con) iff:

1. $\sigma = \Delta \leq \phi$ and $\Delta \leq \phi$ is an S-connection;
2. $\sigma = \delta \preceq \phi$ and $\sigma, \Gamma \leq \delta$ is \leq-constructible, for some Γ;
3. $\sigma = \delta \prec \phi$, $\delta \preceq \phi$ is \leq-constructible, and $\phi \preceq \delta$ is not \leq-constructible; or
4. $\sigma = \Delta < \phi$, $\Delta \leq \phi$ is \leq-constructible, and $(\forall \delta \in \Delta)\delta \prec \phi$ is \leq-constructible.

Definition 5.11 A sentence ϕ of \mathcal{L}^+ is a nullity iff $\phi, \Delta \leq \top \lor$, for some Δ.

The set \mathcal{L}^w is the union of the set of sentences of \mathcal{L} with $\{w^\psi | \psi \in \mathcal{L}\}$. The set \mathcal{L}^0 is the union of \mathcal{L}^w and the set of nullities.

Notice that \mathcal{L}^w is not a language, since, for instance, $w^\psi \in \mathcal{L}^w$ but $\neg w^\psi \notin \mathcal{L}^w$. Similarly, \mathcal{L}^0 is not a language.

It is clear by inspection of the definitions D5.11 of nullities and D5.1 of S-derivations that:

Lemma 5.12

1. If ϕ is a nullity, and $\delta, \Sigma \leq \phi$, then δ is nullity.
2. If $\phi \in \mathcal{L}^0$ and $\delta, \Sigma \leq \phi$, then $\delta \in \mathcal{L}^0$.

Lemma 5.13

1. If $\delta, \Delta \leq \top^\land$, then $\delta = \top^\land$;
2. If $\delta, \Delta \leq /\phi/$, then $\delta = /\phi/$;
3. If $\delta, \Delta \leq (\top^\land \lor /\phi/$), then $\delta = \top^\land$ or $\delta = /\phi/$ or $\delta = (\top^\land \lor /\phi/)$.
4. If $\delta, \Delta \leq \top^\lor$, then $\delta \in \{\top^\lor, \top^\land, /\phi/, (\top^\land \lor /\phi/), \}$ for some $\phi \in \mathcal{L}$.
5. δ is a nullity iff $\delta \in \{\top^\lor, \top^\land, /\phi/, (\top^\land \lor /\phi/), \}$ for some $\psi \in \mathcal{L}$.

Proof (1.)-(3.) are easily established by a routine induction on S-derivations. (4.) follows from (1.)-(3.) by a simple induction on S-derivations. (5.) follows from (4.) and D5.1.

The following lemma is verified by a straightforward induction on S-derivations of $\Delta \leq w^\psi$:

Lemma 5.14 (Persistence Lemma I) If $\Delta \leq w^\psi$, then $w^\psi \in \Delta$.

Lemma 5.15 (Persistence Lemma II) If \mathcal{D} is an S-derivation of $\Gamma \leq \phi$, and the head connection of \mathcal{D} has the form $w^\psi, \Delta \leq \phi$, then $w^\psi \in \Gamma$.

37
Proof We prove the result by induction on D^T. Suppose D^T is an S-derivation of $\Gamma \leq \phi$ with head connection $w^\psi, \Delta \leq \phi$. If D^T is an axiom, then $w^\psi, \Delta = \Gamma$, so $w^\psi \in \Gamma$. Suppose, then, that D^T terminates in an application of (Cut), with a major premise of the form $\Delta' \leq \phi$. By IH, $w^\psi \in \Delta'$. So, w^ψ is either the cut formula or a side formula in D^T. If w^ψ is a side formula of D, then $w^\psi \in \Gamma$. Suppose, then, that w^ψ is the cut formula of D^T. Then the minor premise of D^T has the form $\Gamma' \leq w^\psi$. By L5.14, $w^\psi \in \Gamma'$.

Lemma 5.16 Suppose $\Gamma, \Delta \leq \phi$; $\Delta, \phi \subseteq \mathcal{L}$ (not \mathcal{L}^+); and $(\forall \gamma \in \Gamma) \gamma$ is a nullity. Then $\Delta \leq \phi \in S$.

Proof We prove the result by induction on S-derivations. By L5.7 we may assume (wlog) that the S-derivation D of $\Gamma, \Delta \leq \phi$ is in normal form. We prove the result by induction on D^T.

(S): D5.1.

(W): $w^\psi \not\in \mathcal{L}$ and w^ψ is not a nullity. \perp.

(Max): $w^\psi \not\in \mathcal{L}$. \perp.

(ID): S is prime + REFLEXIVITY.

(\wedge): $\top \not\in \mathcal{L}$. \perp.

(\lor): $\top \not\in \mathcal{L}$. \perp.

(Determination): S is prime + Introduction Rules + subs($< / \leq$).

(Cut): Suppose D^T terminates in an application of (Cut) of the form

$$
\begin{array}{c}
\text{E} \\
\hline
\Theta' \leq \theta \\
\cdot \\
\hline
\Theta', \Theta, \leq \phi \\
\end{array}
$$

where $\Theta, \Theta' = \Delta, \Gamma$. Since $\phi \in \mathcal{L}$, Head(D) = Head(F) is either based on S or is an instance of (W). By L5.15(Persistence Lemma II), if Head(D) is an instance of (W), then $w^\psi \in \Delta, \Gamma$. Since w^ψ is neither a nullity nor a sentence of \mathcal{L}, $w^\psi \not\in \Delta, \Gamma$, for any w^ψ. So, Head(D) must be based on S. So, since D is normal, Head(E) is not based on S. But, also, Head(E) has the form $\Sigma \leq \theta$, where $\theta \in \mathcal{L}$ or $\theta = \top \lor$. Suppose (for reductio) that $\theta \in \mathcal{L}$. Since Head(E) is not based on S and $\theta \in \mathcal{L}$, Head(E) cannot be an instance of (S), (ID), or (DETERMINATION). Since $\theta \in \mathcal{L}$, Head(E) cannot be an instance of (MAX), (W), ($\top \wedge$), or ($\top \lor$). So, Head(E) must be an instance of (W). By L5.15(Persistence Lemma II), if Head(E) is an instance of (W), then $w^\theta \in \Theta' \subseteq \Delta, \Gamma$. For the same reasons as above, then, Head(E) is not an instance of (W). \perp. So, $\Theta' \leq \theta$ has the form $\Sigma \leq \top \lor$. By L5.12(1.), $\Theta' \subseteq \Gamma$. So, $\Theta = \Delta, \Gamma'$, where $\Gamma' \subseteq \Gamma$. By IH, $\Delta \leq \phi \in S$.

38
Definition 5.17 The \mathcal{L}-reduction $\phi^\mathcal{L}$ of a sentence ϕ of \mathcal{L}^+ is the result of replacing each occurrence in ϕ of any atom w^x with χ.

Lemma 5.18 If $\delta, \Delta \leq \phi$, and $\delta, \phi \in \mathcal{L}^w$, then $\delta^\mathcal{L} \preceq \phi^\mathcal{L} \in S$.

Proof Suppose D is an S-derivation of $\delta, \Delta \leq \phi$ and $\delta, \phi \in \mathcal{L}^w$. By L5.4 (Semi-Normal Form Lemma), we may assume that D is semi-normal. We prove the result by induction on D_T.

(S): S is prime + subsumption(\leq / \preceq).

(W): The result is trivial if $\psi \preceq \phi \in S$ and $\delta = \psi$. Otherwise $\delta = w^\phi$ and $\phi \preceq \phi \in S$.

(Max): $\delta^\mathcal{L} = \phi$ and $\phi \preceq \phi \in S$.

(ID): $\delta^\mathcal{L} = \phi$ and $\phi \preceq \phi \in S$.

(Determination): S is prime + subsumption($< / \leq$).

(Cut): If δ is a side formula of D, then IH implies the result. Suppose, then, that δ is not a side formula of D, and so the minor premise of D has the form $\delta, \Delta \leq \psi$. Since $T^\vee, T^\wedge \notin \mathcal{L}^w$, Head($D_T$) is an instance of neither (T^\vee) nor (T^\wedge). So, there are two cases: (A) Head(D_T) is an instance of (S); or (B) Head(D_T) has the form $\psi, \Gamma \leq \phi$, where $\psi, \Gamma \subseteq \mathcal{L}^w$.

(A): Either $\psi \in \mathcal{L}^w$ or $\psi = T^\vee$. In the former case, IH implies $\delta^\mathcal{L} \preceq \psi^\mathcal{L} \preceq \phi^\mathcal{L} \in S$, and the result follows by the closure of S. If $\psi = T^\vee$, then, by L5.12(1.) δ is a nullity. So, $\delta \notin \mathcal{L}^w$. ⊥.

(B): By IH, $\delta^\mathcal{L} \preceq \psi^\mathcal{L} \preceq \phi^\mathcal{L} \in S$, and the result follows by the closure of S.

Lemma 5.19 For $\Delta, \delta, \phi \subseteq \mathcal{L}$:

1. $\Delta \leq \phi$ is \leq-constructible iff $\Delta \leq \phi \in S$;
2. $\delta \preceq \phi$ is \leq-constructible iff $\delta \preceq \phi \in S$;

Proof

1. \Rightarrow: L5.16.

\iff: $\Delta \leq \phi \in S \xrightarrow{D5.1} \Delta, T^\vee \leq \phi \xrightarrow{D5.1(\emptyset \leq T^\vee)} \Delta \leq \phi \xrightarrow{D5.10} \Delta \leq \phi$ is \leq-con.

2. \Rightarrow: By L5.18, $\delta^\mathcal{L} \preceq \phi^\mathcal{L} \in S$. Since $\delta, \phi \subseteq \mathcal{L}$, $\phi^\mathcal{L} = \phi$ and $\delta^\mathcal{L} = \delta$.

\iff: $\delta \preceq \phi \in S \xrightarrow{D5.1} \delta, w^\phi \leq \phi \xrightarrow{D5.10} \delta \leq \phi$ is \leq-con.
Lemma 5.20 Suppose $\delta, \phi \subseteq \mathcal{L}$.

1. $\delta \prec \phi$ is \leq-constructible iff $\delta \prec \phi \in S$.
2. $\Delta \prec \phi$ is \leq-constructible iff $\Delta \prec \phi \in S$.

Proof

(1.) \Leftarrow: Suppose $\delta \prec \phi \in S$.

$$\delta \prec \phi \in S \xrightarrow{S \text{ is prime}} \delta \leq \phi \in S \xrightarrow{L5.19} \delta \leq \phi \text{ is } \leq \text{-con.}$$

Suppose (for reductio) that $\phi \leq \delta$ is \leq-con.

$$\phi \leq \delta \xrightarrow{\leq \text{-con} \quad L5.19} \phi \leq \delta \in S \xrightarrow{S \text{ is prime}} \delta \prec \delta \in S \xrightarrow{S \text{ is consistent}} \perp.$$ (1.) \Rightarrow: Suppose $\delta, \phi \subseteq \mathcal{L}$ and $\delta \prec \phi$ is \leq-con.

$$\delta \prec \phi \text{ is } \leq \text{-con} \xrightarrow{D5.10} \delta \leq \phi \text{ is } \leq \text{-con} \xrightarrow{L5.19} \delta \leq \phi \in S \xrightarrow{S \text{ is prime}} (\delta \prec \phi \in S \lor \phi \leq \delta \in S).$$

Also, $\phi \leq \delta \in S \xrightarrow{L5.19} \phi \leq \delta \text{ is } \leq \text{-con} \xrightarrow{D5.10} \delta \prec \phi \text{ is not } \leq \text{-con} \Rightarrow \perp.$

(2.): D5.10, L5.19, (1.), and the closure of S.

Lemma 5.21 (Conservativity) For any grounding claim σ of \mathcal{L}, σ is \leq-constructible iff $\sigma \in S$.

Proof L5.19 and L5.20.

Let $\text{Complexity}(\phi)$ be the standard syntactic complexity function for \mathcal{L}^+, so that, e.g., $\text{Complexity}(\phi)$ is less than $\text{Complexity}(\neg \phi)$, $\text{Complexity}(\phi \lor \psi)$, and $\text{Complexity}(\phi \land \psi)$.

Lemma 5.22 If $\phi \notin \mathcal{L}^0$, $\delta, \Delta \leq \phi$, and $\delta \neq \phi$, then either $(\exists \psi \in \mathcal{L}^0) \delta, \Gamma \leq \psi$ and $\psi, \Gamma^2 \leq \phi$, or $\text{Complexity}(\delta) < \text{Complexity}(\phi)$.

Proof We prove the result by induction on S-derivations. Suppose D is an S-derivation of $\delta, \Delta \leq \phi$, $\delta, \phi \notin \mathcal{L}^0$, and $\delta \neq \phi$. If D is an axiom, it is an instance of (determination). It is easy to check in that case that $\text{Complexity}(\delta) < \text{Complexity}(\phi)$.

Suppose that D terminates in an instance of (cut). By L5.4 (Semi-Normal Form Lemma), we may assume (wlog) that D is in semi-normal form. There are only two cases: (A) $\text{Head}(D^T)$ is an instance of (id), or (B) $\text{Head}(D^T)$ is an instance of (determination). If δ is a side formula in D^T, then the result follows by the application of IH to the major premise. Suppose, instead, that δ occurs on the LHS of the minor premise of D^T.

(A): The minor premise of D^T has the form $\delta, \Gamma \leq \phi$. So, the result follows by the application of IH to the minor premise.
Lemma 5.23

1. \(\neg \phi, \Gamma \not\leq \phi; \)
2. \((\phi \land \psi \land \ldots), \Gamma \not\leq \phi \land (\phi \land \psi \land \ldots), \Gamma \not\leq \psi \land \ldots; \)
3. \((\phi \lor \psi \lor \ldots), \Gamma \not\leq \phi \land (\phi \lor \psi \lor \ldots), \Gamma \not\leq \psi \land \ldots; \)
4. \(\neg(\phi \land \psi \land \ldots), \Gamma \not\leq \neg \phi \land \neg(\phi \land \psi \land \ldots), \Gamma \not\leq \neg \psi \land \ldots; \)
5. \(\neg(\phi \lor \psi \lor \ldots), \Gamma \not\leq \neg \phi \land \neg(\phi \lor \psi \lor \ldots), \Gamma \not\leq \neg \psi \land \ldots. \)

Proof The cases are all proved very similarly. We will show the first conjunct of (2), that \((\phi \land \psi \land \ldots), \Gamma \not\leq \phi, \) for illustration. There are two cases: (A) \(\phi \in \mathcal{L}^w \) or (B) \(\phi \not\in \mathcal{L}^w. \)

(A): Suppose \((\phi \land \psi \land \ldots) \not\in \mathcal{L}. \) Then \((\phi \land \psi \land \ldots) \not\in \mathcal{L}^w. \) Nor, by L5.13(5.),

(B): Suppose (for reductio) that \((\phi \land \psi \land \ldots), \Gamma \leq \phi. \) By L5.22, since Complexity(\(\phi \land \psi \land \ldots \)) \(\not\in \mathcal{L} \), either \(\phi \) is a nullity, or there is a \(\chi \in \mathcal{L}^0 \) such that \((\phi \land \psi \land \ldots), \Gamma \leq \chi \) and \(\chi, \Gamma^2 \leq \phi, \) for some \(\Gamma^1, \Gamma^2. \) By L5.13, no conjunction is a nullity, and so, by L5.12(1.) and D5.1(determination), \(\phi \) is not a nullity. So, \((\phi \land \psi \land \ldots) \not\in \mathcal{L}^0. \) By L5.12(2), \((\phi \land \psi \land \ldots), \Gamma \not\leq \chi. \)

Say that \(\Delta \leq \{(\phi^i)\} \) is an \(S \)-connection when there is a covering \((\Delta^i) \) of \(\Delta \) such that \((\Delta^i \leq \phi^i) \).

Lemma 5.24 (Amalgamation)

1. if \(\Delta^1 \leq \phi, \ldots, \Delta^n \leq \phi, \) then \(\Delta^1, \ldots, \Delta^n \leq \phi. \)
2. If \(\Delta \leq \{\phi, \psi, \ldots\} \) and \(\Gamma \leq \{\phi, \psi, \ldots\}, \) then \(\Delta, \Gamma \leq \{\phi, \psi, \ldots\}. \)

Proof By D5.1 the following is an \(S \)-derivation if \(\mathcal{E} \) and \(\mathcal{F} \) are:

\[
\begin{array}{c|c|c|c|c}
\mathcal{F} & \mathcal{E} & \Delta^1 \leq \phi & \phi \leq \phi & \Delta^1, \phi \leq \phi \\
\hline
\Delta^2 \leq \phi & \Delta^1 \leq \phi & \Delta^1, \phi \leq \phi \\
\end{array}
\]

This establishes (1.) by an obvious induction. (2.) follows from (1.) and the definition of a covering.
Lemma 5.25 Suppose $ψ \notin \mathcal{L}^w$, $Δ \leq ψ$ is an S-connection, and $ψ \notin Δ$.

1. $ψ = (φ^1 \land φ^2 \land \ldots) \Rightarrow Δ \leq \{φ^1, φ^2, \ldots\}$;
2. $ψ = (φ^1 \lor φ^2 \lor \ldots) \Rightarrow (∃Σ \subseteq (φ^i))Δ \leq Σ$;
3. $ψ = \neg φ \Rightarrow Δ \leq φ$;
4. $ψ = \neg (φ^1 \lor φ^2 \lor \ldots) \Rightarrow Δ \leq \{\neg φ^1, \neg φ^2, \ldots\}$;
5. $ψ = \neg (φ^1 \land φ^2 \land \ldots) \Rightarrow Δ \leq \{\neg φ^i\}$, for some $(ψ^i) \subseteq (φ^i)$.

Proof Suppose $ψ \notin \mathcal{L}^w$ and $Δ \leq ψ$. All of the cases are proved similarly. We do (1) for illustration. (1.) follows straightforwardly from L5.23 and

\[(\star) ψ = (φ^1 \land φ^2 \land \ldots) \Rightarrow (Δ = ψ \lor Δ \setminus \{ψ\} \leq \{φ^1, φ^2, \ldots\})\]

We prove (\star) by induction on S-derivations of $Δ \leq ψ$. The cases of the axioms are straightforward. Suppose the S-derivation D of $Δ \leq (φ^1 \land φ^2 \land \ldots)$ terminates in an application of (CUT). By L5.4 (Semi-Normal Form Lemma), we may assume (wlog) that D is in semi-normal form. D^\prime's major premise has the form $θ, Γ \leq (φ^1 \land φ^2 \land \ldots)$ and D^\prime's minor premise has the form $Σ \leq θ$, where $Δ = Σ, Γ$. By IH, either $θ, Γ = (φ^1 \land φ^2 \land \ldots)$ or $θ, Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\} \leq \{φ^1, φ^2, \ldots\}$. If $θ, Γ = (φ^1 \land φ^2 \land \ldots)$, then the result follows immediately by IH applied to the minor premise. Suppose $θ, Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\} \leq \{φ^1, φ^2, \ldots\}$. D^\prime's head connection is an axiom $Δ' \leq (φ^1 \land φ^2 \land \ldots)$. By D5.1, there are only two cases: (A) $Δ' = (φ^1 \land φ^2 \land \ldots)$, or (B) $Δ' = (φ^i)$.

(A): By D5.3 and D5.8, $θ = (φ^1 \land φ^2 \land \ldots)$. So, IH applies to the minor premise: either (I) $Σ = (φ^1 \land φ^2)$ or (II) $Σ \setminus \{(φ^1 \land φ^2 \land \ldots)\} \leq \{φ^1, φ^2, \ldots\}$.

(I) The result follows trivially.

(II) $θ, Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\} = Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\}$. By L5.24(AMALGAMATON), since $Σ \setminus \{(φ^1 \land φ^2)\} \leq \{φ^1, φ^2, \ldots\}$, $Σ, Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\} \leq \{φ^1, φ^2, \ldots\}$.

(B): Recall that $θ, Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\} \leq \{φ^1, φ^2, \ldots\}$. Since D is semi-normal, $θ \in (φ^i)$. By L5.23, $(φ^1 \land φ^2 \land \ldots) \notin Σ$. So,

\[(\dagger) Σ \cup (Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\}) = (Σ \cup Γ) \setminus \{(φ^1 \land φ^2 \land \ldots)\} \]

So, for some $φ^i$, we have $Σ \leq φ^i$, and $φ^i, Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\} \leq (φ^i)$. By (\dagger) and an application of (CUT), $Σ, Γ \setminus \{(φ^1 \land φ^2 \land \ldots)\} \leq \{φ^1, φ^2\}$.

Lemma 5.26 (Persistence Lemma III) If D is an S-derivation of $Δ \leq φ$ in normal form, and the head connection $Γ \leq φ$ of D^\prime is based on S, then

\[(∀γ \in Γ)(γ = T^γ \lor γ \in Δ \lor w^γ \in Δ)\]
Proof Suppose \(D \) is an \(S \)-derivation of \(\Delta \leq \phi \) in normal form, and the head connection \(\Gamma \leq \phi \) of \(D^T \) is based on \(S \). Suppose \(D \) is an axiom. Then \(\Gamma = \Delta \). Suppose, instead, that \(D \) terminates in an application of (\text{Cut}). Then \(D^T \) has the form

<table>
<thead>
<tr>
<th>(\mathcal{E})</th>
<th>(\mathcal{F})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \leq \delta)</td>
<td>(\delta, \Sigma \leq \phi)</td>
</tr>
</tbody>
</table>

where \(\Delta = \Delta', \Sigma \) and \(\delta \in \Gamma \). Suppose \(\gamma \in \Gamma \) and \(\gamma \neq \top^\gamma \). By IH, \((\exists \gamma' \in \{\gamma, \omega \}) \gamma' \in \delta, \Sigma \). Suppose \(\gamma' \neq \delta \). Then \(\gamma' \in \Sigma \subseteq \Delta', \Sigma \). Suppose, instead, that \(\gamma' = \delta \). If \(\gamma' = \omega \), then by L5.14 (Persistence Lemma I), \(\omega \in \Delta' \subseteq \Delta', \Sigma \). So, we may assume that \(\gamma' = \gamma \in \mathcal{L} \). Since \(D \) is in normal form, the Head(\(\mathcal{E} \)) is not based on \(S \), So, Head(\(\mathcal{E} \)) is an axiom, not based on \(S \), whose RHS is \(\gamma \in \Gamma \subseteq \mathcal{L} \). By D5.1, Head(\(\mathcal{E} \)) has the form \(\chi, \omega \leq \delta \). By L5.15 (Persistence Lemma II), \(\omega \in \Delta' \subseteq \Delta', \Sigma \).

Lemma 5.27 (Constructibility Lemma)

1. If \(\Delta < (\phi^1 \land \phi^2 \land \ldots) \) is \(\leq \)-constructible, then there is a covering \((\Delta^i) \) of \(\Delta \) such that \((\Delta^i \leq \phi^i) \) are each \(\leq \)-constructible.

2. If \(\Delta < (\phi^1 \lor \phi^2 \lor \ldots) \) is \(\leq \)-constructible, then there are \((\psi^j) \subseteq (\phi^j) \) and a covering \((\Delta^j) \) of \(\Delta \) such that \((\Delta^j \leq \psi^j) \) are each \(\leq \)-constructible.

3. If \(\Delta < \neg \phi \) is \(\leq \)-constructible, then \(\Delta \leq \phi \) is \(\leq \)-constructible.

4. If \(\Delta < \neg (\phi^1 \lor \phi^2 \lor \ldots) \) is \(\leq \)-constructible, then there is a covering \((\Delta') \) of \(\Delta \) such that \((\Delta' \leq \neg \phi) \) are each \(\leq \)-constructible.

5. If \(\Delta < \neg (\phi^1 \land \phi^2 \land \ldots) \) is \(\leq \)-constructible, then there are \((\psi^j) \subseteq (\phi^j) \) and a covering \((\Delta') \) of \(\Delta \) such that \((\Delta' \leq \neg \psi^j) \) are each \(\leq \)-constructible.

Proof All of the cases are proved similarly. We do (1.) for illustration. Suppose \(\phi = (\phi^1 \land \phi^2 \land \ldots) \) and \(\Delta < \phi \) is \(\leq \)-constructible. Then there is an \(S \)-derivation \(D \) of \(\Delta \leq \phi \). By L5.7 (Normal Form Lemma), we may assume (wlog) that \(D \) is in normal form. There are two cases: (A) \(\phi \in \mathcal{L}^w \) or (B) \(\phi \not\in \mathcal{L}^w \).

(A): Since \(\phi \) is not atomic, \(\phi \in \mathcal{L} \). So \(\phi \) is a binary conjunction \((\phi^1 \land \phi^2) \).

There are two sub-cases: (I) The head connection \(\Gamma \leq (\phi^1 \land \phi^2) \) of \(D^T \) is based on \(S \), or (II) The head connection \(\Gamma \leq (\phi^1 \land \phi^2) \) of \(D^T \) has the form \(w(\phi^1 \land \phi^2 \land \ldots), \chi \leq (\phi^1 \land \phi^2 \land \ldots) \), for some \(\chi \) such that \(\chi \leq \phi \in \mathcal{S} \).

(I): Take any \(\gamma \in \Gamma \). By L5.26 (Persistence Lemma III), either \(\gamma = \top^\gamma \), \(\gamma \in \Delta \), or \(\omega \in \Delta \). So, by D5.10, since \((\phi^1 \land \phi^2), \Theta \leq \delta \) for any \(\Theta \) and any \(\delta \in \Delta \), either \(\gamma = \top^\gamma \) or \(\gamma \in \mathcal{L} \) and \(\gamma \prec (\phi^1 \land \phi^2) \) is \(\leq \)-con). Let \(\Gamma' = \Gamma \setminus \{\top^\gamma\} \), so that \(\Gamma = \Gamma', \top^\gamma \) and \(\Gamma' \subseteq \mathcal{L} \). By D5.1, since \(\emptyset \leq \top^\gamma \), \(\Gamma' \leq \phi \). So, by D5.10, \(\Gamma' \leq \phi \) is \(\leq \)-con. So, by L5.21 (Conservativity), \(\Gamma' < \phi \in \mathcal{S} \). By the closure of \(\mathcal{S} \), there is a covering \(\Gamma'^1, \Gamma'^2 \) of \(\Gamma' \) such that \((\Gamma'^1 \leq \phi^1) \in \mathcal{S} \) and \((\Gamma'^2 \leq \phi^2) \in \mathcal{S} \). If
Γ^ν ∈ Γ, let Γ^1 = Γ'^1, Γ^ν and Γ^2 = Γ'^2, Γ^ν. Otherwise, let Γ^1 = Γ'^1 and Γ^2 = Γ'^2. Γ^1, Γ^2 is a covering of Γ. We prove by induction on the depth of D that there is a covering Δ^1, Δ^2 of Δ such that Δ^1 ≤ φ^1 and Δ^2 ≤ φ^2 are each ≤-constructible. Suppose D is an axiom. Then Δ = Γ, and by D5.1(S), we have S-derivations Γ^1, Γ^ν ≤ φ^1 and Γ^2, Γ^ν ≤ φ^2. If Γ^ν /∈ Γ^i, by D5.1(Cut), since ∅ ≤ Γ^ν, Γ^i ≥ φ^i for i ∈ {1, 2}. Suppose instead that D^D terminates in an application of (Cut). Then D^D has the form

\[\frac{E \quad F}{\Sigma ≤ \gamma \quad \gamma, Θ ≤ (φ^1 ∧ φ^2)} \]

By IH, γ, Θ has a covering Θ^1, Θ^2 such that Θ^1 ≤ φ^1 and Θ^2 ≤ φ^2 are each ≤-con, and so there are S-derivations G^1, G^2 of Θ^1 ≤ φ^1 and Θ^2 ≤ φ^2, respectively. There are three cases: (a) γ ∈ Θ^1 and γ /∈ Θ^2, (b) γ /∈ Θ^1 and γ ∈ Θ^2, or (c) γ ∈ Θ^1 and γ ∈ Θ^2. The arguments in each case are very similar, so we do (a) for illustration. In this case, Θ^1 = γ, (Θ ∩ Θ^1), and Θ = (Θ ∩ Θ^1), Θ^2. Θ^2 ≤ φ^2 is an S-connection, and the following is an S-derivation:

\[\frac{E \quad G^1}{\Sigma ≤ \gamma \quad \gamma, (Θ^1 ∩ Θ^1) ≤ φ^1} \]

(II): By L5.15 (Persistence Lemma II), w^((φ^1 ∧ φ^2)) ∈ Δ. So, by D5.10, (φ^1 ∧ φ^2) ≤ w^((φ^1 ∧ φ^2)) is not ≤-con. By D5.1(Max), (φ^1 ∧ φ^2), w^((φ^1 ∧ φ^2)) ≤ w^((φ^1 ∧ φ^2)), ⊥.

(B): By L5.25, either φ ∈ Δ or Δ ≤ {φ^1, φ^2, ...}. Suppose (for reductio) that φ ∈ Δ. Then, by D5.10, φ ⊥ φ is ≤-con. But, by D5.1(Id), φ ≤ φ ⊥.

Definition 5.28 Let the relation ⊩^+ between sets of grounding claims of L^+ be defined by the axioms and rules for GG specified in §3, with the following changes:

1. Add axioms

 (T^A): ⊩^+ 0 ≤ T^A
 (T^V): If φ ∈ L, then ⊩^+ (T^A ∨ /φ/) < T^V

2. Replace the axiom for ∧-INTRODUCTION with a generalization suitable for finite multigrade conjunctions of L^+:

 ⊩^+ (φ^1) < (φ^0 ∧ φ^1 ∧ ...)

 and similarly, replace the introduction rules for ∨, ¬∧, and ¬∨ with generalizations suitable for finite multi-grade conjunctions and disjunctions;

3. Replace the axiom for ∧-ELIMINATION with a generalization suitable for finite multigrade conjunctions of L^+:

 Δ < (φ^0 ∧ φ^1 ∧ ...) ⊩^+ (Δ^0,0 ≤ φ^0; Δ^0,1 ≤ φ^1; ... | Δ^1,0 ≤ φ^0; Δ^1,1 ≤ φ^1; ... | ...)
and, similarly, replace the elimination rules for ∨, ¬∧, and ¬∨ with generalizations suitable for finite multi-grade conjunctions and disjunctions.

Let \(S \vdash^+ T \) iff there are \(S' \subseteq S \) and \(T' \subseteq T \) such that \(S' \vdash^+ T' \). A set \(S \) of grounding claims is prime in \(\mathcal{L}^+ \) iff \(S \vdash^+ T \Rightarrow (\exists \tau \in T)(\tau \in S) \).

Lemma 5.29 (Primeness) If \(S \) is a prime, consistent set of grounding claims of \(\mathcal{L} \), \(T^1 \vdash^+ T^2 \) and \((\forall \sigma \in T^1)\sigma \) is \(\leq \)-constructible, then \((\exists \tau \in T^2)\tau \) is \(\leq \)-constructible.

Proof Suppose \(S^1 \vdash^+ S^2 \). Then there are \(T^1 \subseteq S^1 \) and \(T^2 \subseteq T^2 \) such that \(T^1 \vdash^+ T^2 \). We prove the result by induction on the definition of \(T^1 \vdash^+ T^2 \).

The basis cases are all easy consequences of D5.10, D5.1, L5.13, L5.23, and L5.27 (Constructibility Lemma). We do the cases of Transitivity \((\leq / \geq)\), (\(\top^\lor \)), Non-Circularity, \(\land \)-introduction and \(\land \)-elimination for illustration.

(Transitivity) \((\leq / \geq)\): Suppose \(\phi \preceq \psi \) and \(\psi \preceq \theta \) are both \(\leq \)-con. By D5.10, there are \(\leq \)-connections of the form \(\phi, \Sigma \preceq \psi \) and \(\psi, \Gamma \preceq \theta \). By D5.1(Cut)

\[\phi, \Sigma, \Gamma \preceq \theta \] is an \(\leq \)-connection. So, by D5.10 \(\phi \preceq \theta \) is \(\leq \)-con.

(\(\top^\lor \)): \((\top^\lor \lor / \phi /) \leq \top^\lor \) is \(\leq \)-con by D5.1 and D5.10. By L5.13(3), \(\top^\lor, \Delta \not\preceq (\top^\lor \lor / \phi /), \) for any \(\Delta \). So, \((\top^\lor \lor / \phi /) < \top^\lor \) is \(\leq \)-con by D5.10.

(Non-Circularity): \(\phi \prec \phi \) is not \(\leq \)-con by D5.1(ID) and D5.10, since \(\phi \preceq \phi \).

\(\land \)-Introduction: L5.23 + D5.1(Determination) + D5.10.

\(\land \)-Elimination: Suppose \(\Delta \prec (\phi^1 \land \phi^2 \land \ldots) \) is \(\leq \)-con. By L5.27 (Constructibility Lemma), there is a covering \{\(\Delta^1, \Delta^2, \ldots \}\} of \(\Delta \) such that each member of \{\(\Delta^1 \leq \phi^1, \Delta^2 \leq \phi^2, \ldots \)\} is \(\leq \)-con. Suppose \(\Delta \prec (\phi^1 \land \phi^2 \land \ldots) \vdash T \) is an instance of \(\land \)-Elimination. Then \(T \) has the form \(\sigma^0, \sigma^1, \ldots \), where \((\{\Gamma_1, \Gamma_2, \ldots\})\), are exactly the ordered tuples such that \(\Delta = \Gamma_1 \cup \Delta^1 \cup \ldots \) and, for each \(i, \sigma^i \in \{\Gamma_1 \leq \phi^1, \Gamma_2 \leq \phi^2, \ldots\} \). Since \(\Delta^1, \Delta^2, \ldots \) is a covering of \(\Delta \), \(\langle \Delta^1, \Delta^2, \ldots \rangle = \langle \Gamma_1, \Gamma_2, \ldots \rangle \), for some \(i \). So, \(\Gamma_1 \leq \phi^1, \Gamma_2 \leq \phi^2, \ldots \) are each \(\leq \)-con, for some \(i \). So, \(\sigma^i \) is \(\leq \)-con, for some \(i \).

The induction step involves two cases: Thinning and Snip. Both cases are very easy. We do Snip for illustration.

Snip: Suppose every grounding claim \(\sigma' \in S', S'' \vdash \leq \)-con, \(S', \vdash T' \) and \(S'' \vdash T'', \sigma \). By IH, there is a grounding claim \(\tau \in T'', \sigma \) such that \(\tau \) is \(\leq \)-con. Either \(\tau = \sigma \) or \(\tau \in T'' \) \(\vdash \sigma \). If \(\tau = \sigma \), then every member of \(\sigma, S' \) is \(\leq \)-con, and IH applies to \(\sigma, S' \vdash T' \) to entail that there is a \(\tau' \in T' \) such that \(\tau' \) is \(\leq \)-con. Otherwise, \(\tau \in T'' \) and \(\tau \) is \(\leq \)-con. So, in each case, there is a \(\leq \)-con grounding claim that is a member of \(T', T'' \).

Theorem 5.30 (Extension Theorem) If \(S \) is a prime, consistent set of grounding claims of \(\mathcal{L} \), then the set \(S^+ \) of \(\leq \)-constructible grounding claims is consistent, witnessed, prime in \(\mathcal{L}^+ \), and for grounding claims \(\sigma \) of \(\mathcal{L} \), \(\sigma \in S^+ \iff \sigma \in S \).
Proof. S^+ is prime in \mathcal{L}^+ by L5.29. The consistency of S^+ follows from its primeness. S^+ is witnessed by D5.10. By L5.21, for grounding claims σ of \mathcal{L}, $\sigma \in S^+ \iff \sigma \in S$.

6 The Canonical Model Basis

Suppose S is a consistent, prime set of grounding claims in \mathcal{L}. Let the language \mathcal{L}^+ be the language defined in D4.1. By T5.30, the set S^+ of \leq-constructible claims is consistent, witnessed, prime in \mathcal{L}^+, and conservative over S, i.e., for any grounding claim σ of \mathcal{L}, $\sigma \in S^+ \iff \sigma \in S$. We now extend S^+ to include grounding claims arising from our definition of \Rightarrow. The result is the canonical model basis for S. In this section, we show that the canonical model basis is prime, witnessed, and conservative over S. In the next section, we show that the canonical model basis contains exactly those grounding claims which are true in the canonical model.

First, we extend the definition of S-connections to include connections required by \Rightarrow. We define a broader set of S-derivations and the corresponding relation \leq' for a relation containing \leq, by adding to the definition D5.1 additional axioms for instances of \Rightarrow:

Definition 6.1

(\Rightarrow): If $\phi \Rightarrow \psi$, then:

$$\phi \leq' \psi \quad \psi, /\phi// \leq' \phi \quad \phi, /\phi// \leq' /\phi/$$

are each axioms;

Remark: Trivially, if $\Delta \leq \phi$, then $\Delta \leq' \phi$.

Remark: In proofs, we will indicate justifications for particular claims about \Rightarrow that appeal to clause (S) of D4.4 using the notation $(\Rightarrow)(S)$, and, similarly, for the other clauses. Likewise, we will indicate justifications for particular claims about \leq' (in the sense of D6.1), using $(\leq')(S)$, and the like. In cases which appeal to D6.1(\Rightarrow), we will indicate more specific justification using $(\leq')(\Rightarrow)(S)$, and, similarly, for other clauses of the definition D4.4 of \Rightarrow. So, for instance, we will say that if $\Delta < \phi \in S$, then $\nu^{\Delta, \phi} \leq' \phi$ by $(\leq')(\Rightarrow)(S)$. Finally, we will indicate justification by stacking when convenient, as in

$$\nu^{\Delta, \phi} \leq' \phi \quad (\Rightarrow)(S)$$

The next lemma establishes some useful properties of \Rightarrow.

Lemma 6.2

1. If $\phi \Rightarrow \psi$, then ϕ has the form $(\phi^1 \land \phi^2 \land \ldots)$.

2. If $\phi \Rightarrow \psi$, then $\phi \notin \mathcal{L}$.
3. If $\phi \Rightarrow \psi$, then $\phi \neq \psi$.

4. If $\phi \Rightarrow \psi$ and $\phi \Rightarrow \psi$ is an instance of neither (s) nor (0), then ψ has the form $\neg \neg \psi'$.

5. If $\phi \Rightarrow \psi$ and $\phi \in \mathcal{L}$, then $\phi \Rightarrow \psi$ is an instance of either (s) or (w).

6. If $\chi \Rightarrow \theta$ and $\chi \Rightarrow \theta'$, then $\theta = \theta'$.

Proof (1)-(5) are proved by routine inductions on Definition 6.3. (Induction)(1): Suppose $\phi \Rightarrow \psi$, $\chi = (\psi \land \phi)$, and $\theta = \neg \phi$. Suppose also $\chi \Rightarrow \theta$.

Now, $\chi = (\psi \land \phi)$ does not have any of the following forms:

- $\psi \land \phi$
- $(\psi \lor \theta) \lor (\phi \lor \theta)$
- $(\psi \lor \theta) \land (\psi \lor \theta)$
- $(\phi \lor \theta) \land (\phi \lor \theta)$
- $(\psi \lor \theta) \land (\phi \lor \theta)$
- $(\phi \lor \theta) \land (\phi \lor \theta)$

So, for some $\phi', \psi', \phi' \subset S$ and $\chi = (\psi \land \phi)$ and $\theta' = \neg \phi$. But then $\phi' = /\phi/ \land /\phi/'$, and so by D4.1 $\phi = \phi'$. So, $\theta = \neg \phi = \neg \phi' = \theta'$.

(Induction)(2): Suppose $\phi \Rightarrow \psi$, $\chi = (\phi \land /\phi/)$, and $\theta = \neg /\phi/$. Suppose $(\phi \land /\phi/) \Rightarrow \theta'$. As in the case (W) above, χ does not have any of the forms required for $\chi \Rightarrow \theta'$ to come by any of the basis cases for \Rightarrow. Suppose (for reductio) that, for some $\phi', \psi', \phi' \Rightarrow \psi'$, $\psi = \phi'$, and $\phi' = /\phi/'$, so that $\chi = (\phi' \land /\phi/) \land \theta' = \neg /\phi/'$. (Intuitively, we are supposing that $\chi \Rightarrow \theta'$ comes by the other induction step.) By D4.1, since $\phi = /\phi/'$, $\phi = \psi'$. Since $\phi' = \phi$, by IH, $\psi' = \psi$. So, $\phi = \phi' \Rightarrow \psi' = \psi = \phi$. But, by (3), $\phi \not\Rightarrow \phi$. So, for some $\phi', \psi', \phi' \Rightarrow \psi'$, $\chi = (\psi \land /\phi/) \land \theta' = \neg \phi'$. Then $\phi' = /\phi/$. So, by D4.1, $\phi' = \phi$. So, $\theta = \neg \phi = \neg /\phi/ = \theta'$.

Definition 6.3 Define σ is \leq'-constructible (\leq'-con) in a manner similar to D5.10, except using the relation \leq' defined in D6.1, instead of \leq. So, for instance, $\Delta \leq \phi$ is \leq'-con iff $\Delta \leq' \phi$. Define the notions of major premise, minor premise, cut formulae, side formulae, principal connection, semi-normal form, normal form, and D^T in the obvious ways. Say that D is a super-normal form (or is super-normal) iff it is the result of adding minor premises of the form $\phi \leq' \phi$ to an S-derivation in normal form to yield an S-derivation in which no application of (Cut) has any side formulae.
Remark: Super-normal S-derivations just fill out normal S-derivations with identity axioms. To illustrate, if
\[
\Delta \leq' \phi, \gamma_1, \gamma_2 \leq' \psi
\]
is in normal form, then
\[
\Delta \leq' \phi, \gamma_1 \leq' \gamma_1, \gamma_2 \leq' \gamma_2, \phi, \gamma_1, \gamma_2 \leq' \psi
\]
is super-normal.

We can prove a normal form theorem in a way similar to L5.7:

Lemma 6.4 if $\Delta \leq' \phi$, then there is an S-derivation of $\Delta \leq' \phi$ in normal form.

We will establish conservativity of the canonical model basis over S^+ by defining a function f that maps the LHS and RHS of an instance of \Rightarrow (and the “shadow” of the LHS) to the same formula. This function assimilates instances of \leq' required by D6.1(\Rightarrow) to instances of \leq(ID). Thus, f “undoes” the new connections of ground required by D6.1(\Rightarrow). The lemma immediately after the definition of f shows, intuitively, that nothing is thereby lost. Define the function $f : L^+ \mapsto L^+$ as follows:

Definition 6.5

1. If $\phi \in L$, then $f(\phi) = \phi$;
2. If ϕ is atomic and not of the form $/\phi/'$, where $\phi' \Rightarrow \psi$ for some ψ, then $f(\phi) = \phi$;
3. $f(\neg \phi) = \neg f(\phi)$;
4. if $\phi \Rightarrow \psi$, then $f(\phi) = f(\psi)$ and $f(/\phi/) = f(\psi)$;
5. if $f(\phi \land \psi \land \ldots) \not\in L$ and $(\phi \land \psi \land \ldots) \not\Rightarrow \psi$, for any ψ, then $f(\phi \land \psi \land \ldots) = (f(\phi) \land f(\psi) \land \ldots)$; and
6. If $(\phi \lor \psi \lor \ldots) \not\in L$, then $f(\phi \lor \psi \lor \ldots) = (f(\phi) \lor f(\psi) \lor \ldots)$.

Let $f(\Delta) = \{ f(\delta) | \delta \in \Delta \}$.

Remark: f is well-defined by L6.2. First, \Rightarrow is a functional relation, by L6.2(6.). Second, in the basis cases of the definition D4.4 of \Rightarrow, the formulae on the RHS of \Rightarrow are all either members of L, the atomic sentence $\top \lor \ldots$, or double-negations of witnessing constants w^ϕ. So, the result of applying f in each of these cases is defined by clauses (1)-(3) above. Thus, the result of applying f to the LHS of basis cases for \Rightarrow is well-defined. Third, in the inductive clause of the definition D4.4 of \Rightarrow, the RHS is always a double-negation of either some lower-level LHS ϕ of an instance of \Rightarrow, or a “shadow” $/\phi/'$ of some such LHS. In this case, the application of f to $\neg\neg \phi$ (or $\neg\neg /\phi/')$ is handled by a “previous” application of clause (4) above to ϕ (or $/\phi'$), together with clause (3).

Lemma 6.6 if $\Gamma \leq' \chi$, then $f(\Gamma) \leq f(\chi)$
Proof. We prove the result by induction on the definition D6.1 of \le'. The case of (I) is trivial. The cases of (S), (W), (MAX), (\top^\dagger), and (\top^\dagger), are proved similarly, using L6.2 and D6.1. We will prove the result in the case of (\top^\dagger) for illustration.

(\top^\dagger): $f(\emptyset) = \emptyset$. \top^\dagger is atomic, so $f(\top^\dagger) = \top^\dagger$. D5.1 implies the result.

(Determination): We prove the case in which $\chi = (\chi^1 \land \chi^2 \land \ldots)$. The other cases are proved similarly. Suppose $\chi = (\chi^1 \land \chi^2 \land \ldots)$ and $\Gamma = \chi^1, \chi^2, \ldots$. There are three cases: (A) $\chi \in \mathcal{L}$, (B) $\chi \Rightarrow \psi$, for some ψ, or (C) neither.

(A): Trivial, by D5.1, since $f(\Gamma) = \Gamma$ and $f(\chi) = \chi$.

(C): By D6.5 $f((\chi^1 \land \chi^2 \land \ldots)) = (f(\chi^1) \land f(\chi^2) \land \ldots)$. So, the result is trivial, by D5.1.

(B): We prove the result by a subsidiary induction on \Rightarrow:

(S): Suppose $\chi = v^{\Delta, \phi}$, where $\Delta < \phi \in S$. Then $\Gamma = \Delta, (\top^\dagger \lor /\phi/), \top^\dagger$. So, $f(\chi) = \phi$, and it’s easy to see by L6.2(1.) that $f(\Gamma) = \Gamma$, since neither ($\top^\dagger \lor /\phi/)$ nor \top^\dagger is a conjunction. Moreover, by the closure of S, $\Delta \leq \phi \in S$. So, $\Delta, \top^\dagger \leq \phi$. Since $(\top^\dagger \lor /\chi/)$, the result follows by D5.1(cut).

(W): Suppose $\chi = (\psi \land w^\phi)$, where $\psi \leq \phi \in S$. Then $\Gamma = \psi, w^\phi = f(\Gamma)$, and $f(\chi) = \neg \neg \phi$.

Max

(\emptyset): Suppose $\chi = (\top^\dagger \land (\top^\dagger \lor /\phi/))$. Then $\Gamma = \top^\dagger, (\top^\dagger \lor /\phi/)$.

Ation

Induction Step: Suppose that $\phi \Rightarrow \psi$ and $\chi = (\psi \lor /\phi/).$ Then $f(\chi) = f(\neg \phi) = \neg \neg f(\phi)$, and $f(\phi) = f(\phi) = f(\phi) = f(\psi)$. Thus, $f(\Gamma) = f(\psi)$ and $f(\chi) = \neg \neg f(\psi)$. D5.1(determination) implies the result. A similar argument yields the result if $\chi = (\phi \lor /\phi/)$.

\Rightarrow: Suppose $\Gamma \leq' \chi$ is an instance of (\Rightarrow). There are three cases: for some ϕ, ψ, $\phi \Rightarrow \psi$ and either (A) $\chi = \psi$ and $\Gamma = \phi$, (B) $\chi = \phi$ and $\Gamma = \psi$, (C) $\chi = /\phi/ \land \Gamma = /\phi/$. In each of these cases, since $f(\phi) = f(/\phi/) = f(\psi), f(\Gamma) = f(\chi) = f(\psi)$. The result follows by D5.1,(id).

(Cut): IH and D5.1,(Cut).
Recall from (D5.11) that L^w is the union of the set of sentences of L with the set of witnessing constants $\{w^\psi|\psi \in L\}$.

Lemma 6.7 Suppose $\delta, \Delta, \phi \subseteq L^w$. Then

1. if $\Delta \leq' \phi$, then $\Delta \leq \phi$; and
2. if $(\exists \Gamma)\delta, \Gamma \leq' \phi$, then $(\exists \Delta)\delta, \Delta \leq \phi$.

Proof D6.5 and L6.6.

Lemma 6.8 (Conservativity) If σ is a grounding claim of L^w and σ is \leq'-con, then $\sigma \in S^+$.

Proof Suppose σ is a grounding claim of L^w and is \leq'-con.

1. Suppose $\sigma = \Delta \leq \phi$. Then $\Delta \leq' \phi$. L6.7 and D5.10 imply the result.
2. Suppose $\sigma = \delta \preceq \phi$. L6.7 and D5.10 imply the result.
3. Suppose $\sigma = \delta \prec \phi$. By (2.) above, $\delta \preceq \phi \in S^+$. By the closure of S^+ (irreversibility), either $\phi \preceq \delta \in S^+$ or $\delta \preceq \phi \in S^+$. Suppose (for reductio) that $\phi \preceq \delta \in S^+$. Since S^+ is witnessed, $(\exists \Gamma)\phi, \Gamma \leq \delta \in S^+$. So, $\phi, \Gamma \leq \delta$, and so $\phi, \Gamma, \leq' \delta$. By D6.3, $\phi \preceq \delta$ is \leq'-con. ⊥.
4. Suppose $\sigma = \Delta < \phi$. (1.) above, (3.) above, and the closure of S^+ (reverse subsumption) imply the result.

The following two lemmas are immediate by the definition of \leq'-con.

Lemma 6.9 (Consistency) $\phi < \phi$ is not \leq'-con

Lemma 6.10 (Witnessing) if $\phi \preceq \psi$ is \leq'-con, then $(\exists \Gamma)\phi, \Gamma \leq \psi$ is \leq'-con.

Lemma 6.11 The following are \leq'-con:

1. $\phi, \psi, \ldots < (\phi \land \psi \land \ldots)$;
2. $\phi^i < (\phi^0 \lor \phi^1 \lor \ldots)$;
3. $\phi < \neg\neg\phi$;
4. $\neg\phi, \neg\psi, \ldots < \neg(\phi \lor \psi \lor \ldots)$; and
5. $\neg\phi^i < \neg(\phi^0 \land \phi^1 \land \ldots)$.

Proof All of the cases are proved similarly. We do (1.) for illustration. By (\leq')(determination), $\phi, \psi, \ldots \leq' (\phi \land \psi \land \ldots)$. Suppose (for reductio) that $(\phi \land \psi \land \ldots), \Gamma \leq' \phi$, for some Γ. (Cases of other conjuncts are proved similarly.) By L6.6, $f(\phi \land \psi \land \ldots), f(\Gamma) \leq f(\phi)$. By D6.5, there are seven cases bearing on the value of $f(\phi \land \psi \land \ldots)$:

50
Lemma 6.12 (Persistence)

1. If $\Delta \leq \phi / \phi /$, then $\phi / \phi / \in \Delta$.

2. If $\Delta \leq w^\phi$, then $w^\phi \in \Delta$.

3. If D is a semi-normal S-derivation of $\Gamma \leq \phi$, and the principal connection of D has the form $w^\psi, \Delta \leq \phi$, then $w^\psi \in \Gamma$.

Remark: (Amalgamation) By D6.1 the following is an instance of (Cut).

\[
\frac{(\Delta, \leq \phi) \leq_{n \in \omega} \phi \leq \phi}{(\Delta) \leq \phi}
\]

So, if $(\Delta') \leq \phi) \leq_{n \in \omega}$, then $(\Delta') \leq \phi$.

It is convenient to define a distributive notion of S-derivability:
Definition 6.13 \(\Gamma \leq \varphi \) iff there is a covering \((\varphi') \) of \(\Gamma \) such that \((\varphi') \leq \varphi \).

It is easy to see that this distributive extension of \(\leq \) is transitive and closed under unions (i.e., \((\Delta \leq \Gamma, \varphi) \Rightarrow (\Delta') \leq \varphi \)).

Say that the \(S \)-connection \(\Delta \leq \varphi \) is reversible iff \((\exists \delta_i \in \Delta)(\exists \Sigma) \varphi, \Sigma \leq \delta \).

Remark: Clearly, if \(\Delta \leq \varphi \leq \phi \), \(\Delta \leq \varphi \) is reversible, and \(\psi \leq \varphi \) is reversible, then \(\Delta \leq \psi \phi \) is reversible. Equivalently, if \(\Delta \leq \varphi \) is irreversible, \(\Delta \leq \psi \phi \), and \(\psi \leq \phi \) is reversible, then \(\Delta \leq \psi \phi \) is irreversible.

Remark: Every instance of \((\leq \varphi) \) is reversible.

Lemma 6.14

1. If \(\Gamma \leq \varphi \Delta \phi \), then either \(\Gamma \leq \varphi \Delta \phi \) is reversible, or \(\Gamma \leq \Delta, (\varphi^\wedge \varphi^\lor / \phi^\lor), \varphi^\lor \).
2. If \(\Gamma \leq (\psi \wedge \phi) \), then either \(\Gamma \leq (\psi \wedge \phi) \) is reversible, or \(\Gamma \leq \varphi \).
3. If \(\Gamma \leq (\phi \wedge \phi) \), then either \(\Gamma \leq (\phi \wedge \phi) \) is reversible, or \(\Gamma \leq \phi \).

Proof Each of (1.)-(3.) is proved similarly. We do (1.) for illustration. Let \(v = v^\Delta \phi \); and assume \(\Gamma \leq \varphi \). We prove the result by induction on \(S \)-derivations.

By L6.4, we may assume that the derivation \(D \) of \(\Gamma \leq \varphi \) is in super-normal form.

By D6.1, if \(D \) is an axiom, it is an instance of \((\leq) \), \((\varphi^\lor) \), or \((\varphi^\lor) \). So, \((\Gamma), (\Delta), (\wedge), (\varphi^\lor) \), and \((\varphi^\lor) \) are not relevant.

(ID): Trivial.

(⇒): Every instance of \((\varphi^\lor) \) is reversible.

(Determination): Suppose \(D \) is an axiom of the form \(\Delta, (\varphi^\wedge \varphi^\lor / \phi^\lor), \varphi^\lor \).

The result is immediate by \((\leq)(\text{id}) \).

(Cut): Suppose \(D \) terminates in an application of \((\text{Cut}) \). The principal connection of \(D \) is an instance of either \((\text{A}) \), \((\text{id}) \), \((\varphi^\lor) \), or \((\text{C}) \) \((\text{Determination}) \).

(A): The minor premises of \(D \) have the form \((\Gamma_i \leq \varphi \Gamma^\lor) \). By IH, either \((\exists \gamma \in \Gamma_i) \gamma \leq \gamma \) is \(\leq \)-con, or \(\Gamma_i \leq \Delta, (\varphi^\wedge \varphi^\lor / \phi^\lor), \varphi^\lor \) for each \(i \). The result follows by (Amalgamation).

(B): L6.12(Persistence) implies that \(/\varphi/ \in \Gamma \). Since \(\varphi, /\varphi/ \leq \varphi, /\varphi/ \leq \varphi \), \(\Gamma \leq \varphi \) is reversible.

(C): Trivial.

The following lemma is the long calculation for this section:

Lemma 6.15 (Interpolation) If \(\Delta \leq \varphi \) and \(\varphi \in \mathcal{L} \), then either \(\Delta \leq \varphi \) is reversible, or

\[(\exists \Gamma)(\Gamma \leq \varphi \leq \varphi) \leq \varphi \]

Proof We prove the result by induction on \(\Delta \leq \varphi \). By L6.4, we may assume \((\text{wlog}) \) that the \(S \)-derivation \(D \) of \(\Delta \leq \varphi \) is in super-normal form.
Suppose $\Delta = \Delta^i, T^\vee$ and $\Delta^i \leq \phi \in S$. Either (A) $(\exists \delta \in \Delta^i) \phi \leq \delta \in S$ or (B) not.

(A): $\phi, w^\delta \leq W$. So, $\Delta \leq W$ is reversible.

(B): By the closure of S, $\Delta < \phi \in S$.

$\emptyset \leq T^\wedge \leq T^\vee (T^\wedge \vee / \phi/).$

So,

$(\Delta =) \Delta^i, T^\wedge \leq (T^\wedge \vee / \phi/).$

(W): Trivially, by $(\leq')(\text{Max})$, $(\Delta =) \delta, w^\phi \leq \phi$ is reversible.

(Max): $w^\phi \notin L$. ⊥.

(ID): Trivially, $\phi \leq \phi$ is reversible.

(\Rightarrow): By L6.2(5.), there are only two relevant instances of \Rightarrow: (S) $v^\Gamma, \phi \leq \phi$, where $\Gamma < \phi \in S$; or (W) $(\psi \land w^x) \leq \neg \chi$, where $\psi \leq \chi \in S$ and $\phi = \neg \chi$.

(S): $v^\Gamma, \phi \leq v^\Gamma, \phi \leq \phi$.

(W): By $(\leq')(\Rightarrow)$, $(\psi \land w^x)/ \leq (\psi \land w^x)$, so the S-connection $(\psi \land w^x) \leq (\psi \land w^x)$ is reversible.

(Determination): Suppose $\phi = (\phi^1 \land \phi^2)$ and $\Delta = \phi^1, \phi^2$. By the closure of $S(\land\text{-introduction})$, $\Delta < \phi \in S$. As in the case (S)(B) above, this implies that $\Delta \leq v^\Delta, \phi \leq \phi$. The more general cases for \land, \lor, and \neg are proved similarly.

(Cut): Suppose D terminates in an application of (cut). The principal connection of D is an instance $\Delta^i \leq \phi$ of either (S), (ID), (W), (\Rightarrow)(S), (\Rightarrow)(W), or (Determination). Since D is super-normal, $\Delta \leq \Delta^i$. So, the arguments in the basis cases for (\Rightarrow)(S) and (Determination) imply that $\Delta \leq v^\Delta, \phi \leq \phi$. That leaves the cases (W), (\Rightarrow)(W), (ID) and (S):

(W): Suppose the principal connection of D is ϕ, $w^\phi \leq \phi$. By L6.12(2.)(Persistence), $w^\phi \in \Delta$. By $(\leq')(\text{Max})$, $\phi, w^\phi \leq w^\phi$, so $\Delta \leq \phi$ is reversible.

(((\Rightarrow)))(W): The principal connection of D has the form $(\psi \land w^x) \leq \neg \chi$. Since D is super-normal, the minor premises have the form $(\Gamma^i \leq (\psi \land w^x))$. By L6.14(2.), there are two cases: (A) $\Gamma^i \leq (\psi \land w^x)$ is reversible, for some i, or (B) $\Gamma^i \leq \chi$ for all i.

53
(A): For some $\delta \in \Gamma^i \subseteq \Delta$ and some Θ, $(\psi \land w^x), \Theta \leq' \delta$. Since, by $(\leq')(\Rightarrow), \neg \neg \chi, /((\psi \land w^x)/ \leq' (\psi \land w^x), \\
\neg \neg \chi, /((\psi \land w^x)/, \Theta \leq' \delta$. So, $\Delta \leq' \phi$ is reversible.

(B): By the closure of $S(\neg \neg \text{-INTRODUCTION}), \chi < \neg \neg \chi \in S$. So, by $\Rightarrow(S), v^{\chi,\neg \neg \chi} \Rightarrow \neg \neg \chi$, and thus

$(\star) \ v^{\chi,\neg \neg \chi} \leq' \neg \neg \chi$.

Also, by (AMALGAMATION)

$(\dagger) \ (\Delta =) \ (\Gamma^i) \leq' \chi$.

Since

$$
\emptyset \leq'_{(T^V)} \top^\wedge \leq'_{(\text{INTER})} (\top^\wedge \lor / \neg \neg \chi/) \leq'_{(T^V)} \top^\vee
$$

(\dagger) and (AMALGAMATION) imply:

$(\star\star) \ (\Delta =) \ \Delta, \emptyset, \emptyset \leq' \chi, (\top^\wedge \lor / \neg \neg \chi/), \top^\vee$.

Putting this all together, we have:

$$
\Delta \leq'_{(\star\star)} \chi, (\top^\wedge \lor / \neg \neg \chi/), \top^\vee \leq'_{(\text{INTER})} v^{\chi,\neg \neg \chi} \leq'_{(\star)} \neg \neg \chi.
$$

(ID): Suppose the principal connection of D is $\phi \leq' \phi$. Then the minor premises of D have the form $(\Delta^i \leq' \phi)$. Assume that $\Delta \leq' \phi$ is irreversible, and so, for each i, $\Delta^i \leq' \phi$ is irreversible. By IH, for each i, there is a Γ^i such that $\Gamma^i < \phi \in S$ and $\Delta^i \leq' v^{\Gamma^i,\phi} \leq' \phi$. By $(\leq'),(\Rightarrow)(S), \ (\star) \ v^{\Gamma^i,\phi}/ \leq' v^{\Gamma^i,\phi}$.

Suppose (for reductio) that $\Delta^i \leq' v^{\Gamma^i,\phi}$ is reversible, for some i. By (\star) and (\leq') (Cut), $\Delta^i \leq' \phi$ is reversible. \bot. So, $\Delta^i \leq' v^{\Gamma^i,\phi}$ is irreversible for all i. By L6.14(1.),

$(\dagger) \ \Delta^i \leq' \Gamma^i, (\top^\wedge \lor / \phi/), \top^\vee$.

Since $\Gamma^i < \phi \in S$, for each i, the closure of S(SUBSUMPTION,CUT,REVERSE SUBSUMPTION) implies that $(\Gamma^i) < \phi \in S$. Let $\Gamma = (\Gamma^i)$. Then,

$(\star\star) \ v^{\Gamma^i,\phi} \leq' \phi$.

by $(\leq')(\Rightarrow)$. Putting all of this together:

$$
(\Delta^i) \leq'_{(\phi)} (\Gamma^i), (\top^\wedge \lor / \phi/), \top^\vee \leq'_{(\text{INTER})} v^{\Gamma^i,\phi} \leq'_{(\star\star)} \phi.
$$

(S): The principal connection of D has the form $\Delta^i, \top^\vee \leq' \phi$, where $\Delta^i \leq \phi \in S$. We are going to divide the formulae $\delta \in \Delta^i$ (and, coherently, the minor premises of D) according to whether $\delta < \phi$ is \leq-con or not. On this division, $\Delta^i, \top^\vee \leq' \phi$ has the form $(\theta^i),(\gamma^i), \top^\vee \leq' \phi$, and the minor premises have the form $(\Theta^i \leq' \theta^i),(\Gamma^j \leq' \gamma^j),(\Sigma^k \leq' \top^\vee)$, where:
Lemma 6.16 Suppose $\phi \in \mathcal{L}$, and $\Delta \leq' \phi$ is irreversible. Then,

1. When $\phi = (\phi^1 \land \phi^2)$, $\Delta \leq' \{\phi^1, \phi^2\}$;

2. When $\phi = \neg\neg \phi$, $\Delta \leq' \phi$;

3. When $\phi = (\phi^1 \lor \phi^2)$, either $\Delta \leq' \phi^1$, $\Delta \leq' \phi^2$, or $\Delta \leq' \{\phi^1, \phi^2\}$;

4. When $\phi = (\neg\phi^1 \lor \neg\phi^2)$, $\Delta \leq' \{\neg\phi^1, \neg\phi^2\}$; and

By D6.3 and L6.8 (Conservativity), for each j, $\gamma^j \prec \phi$ is \leq-con, and so $\gamma^j \prec \phi \in S^+$. By L5.21 (Conservativity), $\gamma^j \prec \phi \in S$. If $(\Delta =)\left((\Theta^j)(\Gamma^j)(\Sigma^j)\right) \leq' \phi$ is reversible, then we are done. So, assume that it is irreversible. Suppose (for reductio) that, for some i, $\Theta^i \leq' \theta$ is reversible. Then $(\Theta^i)(\Gamma^i)(\Sigma^i) \leq' \phi$ is reversible. \bot. So, IH applies to the minor premises $(\Theta^i \leq' \theta)$: for each i, there is a v^{Ω^i, θ^i} such that $\Theta^i \leq' v^{\Omega^i, \theta^i}$ and $\Omega^i < \theta^i \in S$. By the closure of S, $(\Omega^i), (\gamma^i) < \phi \in S$. Let $\Gamma = (\Omega^i), (\gamma^i)$, so that $\Gamma < \phi \in S$. Also, by $(\leq')(\Rightarrow)$, $\nu^{\Gamma, \phi} \leq' \phi$.

Since, for each i, $\Theta^i \leq' \theta^i$ is irreversible, and by $(\leq')(\Rightarrow)$, $\nu^{\Omega^i, \theta^i} \leq' \theta^i$ is reversible, $\Theta^i \leq' v^{\Omega^i, \theta^i}$ is irreversible. So, L6.14.(1.) applies: we have, for each i,

$$\Theta^i \leq' \Omega^i, (\Gamma^i \lor /\theta^i/), \Sigma^i.$$

Since $(\Gamma^i \lor /\theta^i/) \leq' (\Sigma^i)$, this implies, for each i

$$(\star) \quad \Theta^i \leq' \Omega^i, \Sigma^i.$$

So, for each i, j, k, we have the S connections:

$$\Theta^i \leq' \Omega^i, \Sigma^i$$

$$\Gamma^i \leq' \gamma^j$$

$$\Sigma^k \leq' \tau^j.$$
5. When $\phi = (\phi^1 \land \phi^2)$, either $\Delta \leq' \neg \phi^1$, $\Delta \leq' \neg \phi^2$, or $\Delta \leq' \{\neg \phi^1, \neg \phi^2\}$.

Proof

(1): By L.6.15 (Interpolation), $\Delta \leq' v^{\Theta,\phi} \leq' \phi$ and $\Theta < \phi \in S$, for some Θ. By the primeness of S (\land-elimination), there is a covering Θ^1, Θ^2 of Θ such that $\Theta^1 \leq \phi^1 \in S$ and $\Theta^2 \leq \phi^2 \in S$. By ($\leq'$)(S),

(•) $\Theta^1, \Theta^2, \top \leq' \{\phi^1, \phi^2\}$.

Also, $v^{\Theta,\phi} \leq' \phi$ is reversible, by (\leq')(⇒). Since $\Delta \leq' \phi$ is irreversible, $\Delta \leq' v^{\Theta,\phi}$ is irreversible. So, L.6.14(1.) implies

(★★) $\Delta \leq' \Theta, (\top \lor /\phi/), \top \lor$.

By (\leq')(T consequence), (T consequence) \leq' T consequence, so

(⊕) $\Delta \leq' \Theta, (\top \lor /\phi/), \top \lor \leq' \Theta, \top \lor$.

Putting all of this together, we have

$$\Delta \leq' \Theta, \top \lor \leq' \{\phi^1, \phi^2\}.$$

(2)-(5): Arguments similar to that for (1) yield the results, applying different elimination rules to $\Theta < \phi$. The argument for (2) uses ($\neg\neg$-elimination) where the argument for (1) uses (\land-elimination), and, similarly, for the other cases.

It is now straightforward to extend L.6.16 beyond the special case in which the RHS is in \mathcal{L}:

Lemma 6.17 Suppose $\Delta \leq' \chi$ is irreversible.

1. When $\chi = (\phi^1 \land \phi^2 \land \ldots)$, $\Delta \leq' \{\phi^1, \phi^2, \ldots\}$;
2. When $\chi = (\phi^1 \lor \phi^2 \lor \ldots)$, there is a non-empty subset (ψ^i) of (ϕ^j) such that $\Delta \leq' (\psi^i)$;
3. When $\chi = \neg \neg \phi$, $\Delta \leq' \phi$;
4. When $\chi = (\phi^1 \lor \phi^2 \lor \ldots)$, $\Delta \leq' \{\neg \phi^1, \neg \phi^2, \ldots\}$ and
5. When $\chi = (\phi^1 \land \phi^2 \land \ldots)$, there is a subset (ψ^i) of (ϕ^j) such that $\Delta \leq' (\neg \psi^i)$.

Proof Easy inductions on S-derivations yield (4.) and (5.).

1. We prove the result by induction on S-derivations. Instances of (MAX), (T consequence), and (T consequence) do not have conjunctions on the RHS.

(S): L.6.16.
(W): By \((\leq')(\text{MAX})\), \(\chi, w^x \leq' w^x\). \(\perp\).

(ID): \(\perp\).

(\(\Rightarrow\)): Suppose \(\chi \Rightarrow \psi\), and \(D\) is an instance of \((\leq')(\Rightarrow)\). Every instance of \((\leq')(\Rightarrow)\) is reversible. \(\perp\).

(Determination): \((\leq')(\text{ID})\).

(Cut): Suppose \(D\) terminates in an instance of \((\text{Cut})\). By L6.4 we may assume (wlog) that \(D\) is in normal form. The principal connection of \(D\) cannot be an instance of \((\top^\wedge)\), \((\top^\vee)\), or \((\text{MAX})\). If the principal connection is an instance of \((\text{S})\) or \((\text{W})\), then \(\chi \in \mathcal{L}\), and so L6.16 implies the result. If it is an instance of \((\text{ID})\), then IH and (Amalgamation) imply the result. If it is an instance of \((\text{Determination})\), then \((\leq')(\text{ID})\) and (Amalgamation) imply the result. If it is an instance of \((\Rightarrow)\) then, by L6.2(4.), the major premise of \(D\) has either the form \(v^{\Gamma;\chi} \leq' \chi\) (where \(\chi \in \mathcal{L}\)) or the form
\[
\chi', /\chi/ \leq' \chi
\]
(\(\chi \Rightarrow \chi^*\), for some \(\chi^*\)). In the former case, L6.16 implies the result. In the latter case, by L6.12(1.) (Persistence), \(/\chi/ \in \Delta\). \(\chi, /\chi/ \leq' /\chi/\), so \(\Delta \leq' \chi\) is reversible. \(\perp\).

2. We prove the result by induction on \(S\)-derivations. All of the cases are similar to the corresponding cases for (1.) above, except the case in which \(D\) is an instance of \((\Rightarrow)\), and the case in which \(D\) terminates in \((\text{Cut})\) and has as its principal connection an instance of \((\Rightarrow)\).

(\(\Rightarrow\)): The only relevant case is one in which the axiom has the form \(v^{\Gamma;\chi} \leq' \chi\) and \(\chi \in \mathcal{L}\). As above, L6.16 implies the result.

(Cut): As in (1.) above, we assume our \(S\)-derivation \(D\) is in normal form. We need only check the case in which the principal connection of \(D\) is an instance of \((\Rightarrow)\). Again, there is only one relevant case: the principal connection has the form \(v^{\Gamma;\chi} \leq' \chi\), where \(\chi \in \mathcal{L}\). As above, L6.16 delivers the result.

3. As in (1.) and (2.) above, the key cases are those involving instances of \((\Rightarrow)\).

(\(\Rightarrow\)): Suppose \(D\) is an instance of \((\leq')(\Rightarrow)\). Every instance of \((\leq')(\Rightarrow)\) is reversible. \(\perp\).

(Cut): We assume our \(S\)-derivation \(D\) is in super-normal form, so the application of \((\text{Cut})\) has no side formulae. We need only check the case in which the principal connection of \(D\) is an instance of \((\Rightarrow)\). There are five cases concerning the form of the principal connection of \(D\), corresponding to the five clauses in the definition D4.4 of \(\Rightarrow\) in which the RHS may be a double-negation: \((\text{S})\), \((\text{W})\), \((\text{MAX})\), and each of the two (Induction) cases.
Lemma 6.18 of the canonical model in the next section. We prove the result by induction on \(/\phi \). The principal connection of (Cut):
\[
(\Delta^i) \leq (\Delta^i) \leq (\Delta^i)
\]
Every instance of (Cut):
\[
(\Delta^i) \leq (\Delta^i) \leq (\Delta^i)
\]
The following lemma is useful for proving the adequacy of the construction of the canonical model in the next section.

Lemma 6.18 If \(\Delta \leq \top \), then either \(\Delta \leq \top \) is reversible, or \(\Delta \leq \{ (\top \lor \phi^0), (\top \lor \phi^1), \ldots \} \), for some \(\phi^i \). For \(\Delta \leq \top \), \(\top \lor \phi^i \). For \(\Delta \leq \top \), \(\top \lor \phi^i \).

Proof We prove the result by induction on \(S \)-derivations \(D \) of \(\Delta \leq \top \). Suppose \(D \) is an \(S \)-derivation of \(\Delta \leq \top \) and \(\Delta \leq \top \) is reversible. By L6.4 we may assume (wlog) that \(D \) is in super-normal form. If \(D \) is an axiom, it is an instance of (Top), (\(\top \)), or (ID).

\((\top) \): Trivial.

\((\top) \): Every instance of (\(\leq \))(\(\top \)) is reversible. \(\bot \).

\((\top) \): \(\top \lor \phi^i \). For \(\top \lor \phi^i \).

\((\top) \): The principal connection of \(D \) is an instance of (Top), (\(\top \)), or (ID).

\((\top) \): The principal connection has the form \((\top \lor \phi^i) \). Since \(D \) is super-normal, all of the minor premises have the form \((\Delta^i \leq (\top \lor \phi^i)) \), and \(\Delta = (\Delta^i) \). (Amalagamation) implies the result.
(⇒): The only relevant instance has the form $(\top \wedge (\top \lor /\phi/)) \leq' \top'$,
for some $\phi \in \mathcal{L}$. Since \mathcal{D} is super-normal, the minor premises have
the form $(\Delta^i \leq' (\top \wedge (\top \lor /\phi/)))$ and $\Delta = (\Delta^i)$. For each i,
$\top', ((\top \wedge (\top \lor /\phi/)) / \leq' (\top \wedge (\top \lor /\phi/)))$. So, the principal
connection of \mathcal{D} is reversible, and thus the minor premises are each irreversible. So, L6.17 applies:

(★) $(\Delta^i) \leq' \{\top, (\top \lor /\phi/}\}$.

So,

$(\Delta^i) \leq' (\top, (\top \lor /\phi/)) \leq' (\top \lor /\phi/), (\top \lor /\phi/))$.

(ID): The minor premises have the form $(\Delta^i \leq' \top'$). IH yields the result.

Let the canonical model basis S^* for S be $\{\sigma | \sigma \leq' \text{con}\}$.

Theorem 6.19 S^* is prime in \mathcal{L}^+ and has the following features:

Conservativity For grounding claims σ of \mathcal{L}, $\sigma \in S^*$ iff $\sigma \in S$.

Witnessing If $\delta \leq \phi \in S^*$, then $(\exists \Gamma) \delta, \Gamma \leq \phi \in S^*$.

Irreversibility

1. $\Delta < \phi \in S^*$ iff $\Delta \leq \phi \in S^*$ and $(\forall \delta \in \Delta) \delta < \phi \in S^*$; and
2. if $\delta \leq \phi \in S^*$, then either $\delta < \phi \in S^*$ or $\phi \leq \delta \in S^*$.

Maximality

1. $\Delta < \neg\phi \in S^*$ iff $\Delta \leq \phi \in S^*$;
2. $\Delta < (\phi^0 \wedge \phi^1 \wedge \ldots) \in S^*$ iff there is a covering (Δ^i) of Δ such that
 $\Delta^i \leq \phi^i \in S^*$ for each i;
3. $\Delta < (\phi^0 \lor \phi^1 \lor \ldots) \in S^*$ iff there is a covering (Δ^i) of Δ and a
 subset (ψ^i) of (ϕ^i) such that $\Delta^i \leq \psi^i \in S^*$ for each i;
4. $\Delta < \neg(\phi^0 \lor \phi^1 \lor \ldots) \in S^*$ iff there is a covering (Δ^i) of Δ such that
 $\Delta^i \leq \neg\phi^i \in S^*$ for each i; and
5. $\Delta < \neg(\phi^0 \wedge \phi^1 \wedge \ldots) \in S^*$ iff there is a covering (Δ^i) of Δ and a
 subset $(\neg\psi^i)$ of $(\neg\phi^i)$ such that $\Delta^i \leq \neg\psi^i \in S^*$ for each i.

Proof

(Conservativity): L6.8 and L5.21 imply \Rightarrow. \Leftarrow follows from \Rightarrow by $(\leq')(S)$,
D6.3, and the fact that S is prime and consistent, since $\emptyset \leq' \top'$.

(Witnessing): L6.10.

(Irreversibility): Immediate by D6.3.

(Maximality): L6.17 and D6.3 imply \Rightarrow. L6.11, and D6.3 imply \Leftarrow.

(Primeness): The primeness of S^* in \mathcal{L}^+ is proved straightforwardly in a
manner similar to the proof of L5.29, using D6.1, D6.3, Irreversibility of S^*, and Maximality of S^*.
7 The Canonical Model Justified

We are given a prime set \(S \) of grounding claims of the language \(\mathcal{L} \). In this section, we show that \(\mathcal{M}_S \) satisfies the definition D2.3 of a model and that the grounding claims of \(\mathcal{L} \) verified by \(\mathcal{M}_S \) are exactly the members of \(S \) (justifying the label “canonical model for \(S \)).

We extend \(S \) to its canonical model basis \(S^* \) as defined in the previous section. \(S^* \) is a set of grounding claims of the language \(\mathcal{L}^+ \), which extends \(\mathcal{L} \). \(S^* \) is witnessed and prime (in \(\mathcal{L}^+ \)), by T6.19.

Remark: Lemmas 7.1-7.10 concern the structure of \(\sim \) and the relationship between \(\sim \) and \(\vdash \).

The following facts are immediate consequences of D4.5, D4.6, and D4.3:

Lemma 7.1

1. \(a \sim g(a) \) and \(v \sim g(v) \);
2. \(g(g(a)) = g(a) \) and \(g(g(v)) = g(v) \);
3. \(a \sim b \) iff \(g(a) = g(b) \), and \(v \sim w \) iff \(g(v) = g(w) \);
4. For \(\circ \in \{+, \cdot \} \), \([v^0 \circ v^1 \circ \ldots] \sim [g(v^0) \circ g(v^1) \circ \ldots] \sim [g(v^0) \circ g(v^1) \circ \ldots]_g \);
5. \([v] \sim [g(v)] \sim [g(v)]_g \);
6. For \(\circ, \otimes \in \{+, \cdot \} \), \([v^0 \circ v^1 \circ \ldots] \sim [w^0 \otimes w^1 \otimes \ldots] \) iff \([g(v^0) \circ g(v^1) \circ \ldots]_g = [g(w^0) \otimes g(w^1) \otimes \ldots]_g \);
7. \([v] \sim [w] \) iff \([g(v)]_g = [g(w)]_g \);
8. \(\neg \phi = (\bar{\phi}, [\bar{\phi}]_g) \);
9. \((\bar{\phi} \wedge \psi \wedge \ldots) = ([\bar{\phi}, \bar{\psi}, \ldots]_g, [\neg \phi + \neg \psi + \ldots]_g) \); and
10. \((\bar{\phi} \lor \psi \vee \ldots) = ([\bar{\phi} + \bar{\psi} + \ldots]_g, [\neg \phi, \neg \psi, \ldots]_g) \).

Lemma 7.2 If \([v^1, v^2, \ldots] \sim c \), then \(c = [w^1, w^2, \ldots] \) and \((v^i \sim w^i) \), for some \((w^i) \).

Proof: We show by induction on \(\sim \) that, if \([v^1, v^2, \ldots] \sim c \) or \(c \sim [v^1, v^2, \ldots] \), then \((\exists w^1, w^2, \ldots) c = [w^1, w^2, \ldots] \), and \((v^i \sim w^i) \). The effect of this proof procedure is to make the case of symmetry (which is implicit in our requirement that \(\sim \) be an equivalence relation) a trivial consequence of IH. (We often employ this simple technique implicitly in proving results concerning \(\sim \) below.)

(Pairing): Not relevant.

(Comp): Trivial.

(\(T^\wedge\)): \([v, w, \ldots] \neq T^\wedge \) and \([v, w, \ldots] \neq (, \emptyset) \).
(⇒): \([v.w. \ldots]\) has neither the form \([\bar{\phi}]\) nor the form \([\bar{\phi} + \bar{\psi}]\).

(Transitivity): Suppose \([v.w. \ldots] \sim b \sim c\). IH implies the result. Similarly, IH implies the result if \(c \sim b \sim [v.w. \ldots]\).

A simple induction on \(\sim\) establishes the following lemma. Note that \(\psi \neq \bar{\psi}\): no sentence \(\psi\) is a free content, only literals are free conditions, and no literal is a free choice or combination.

Lemma 7.3

1. If \(\psi \sim a\), then either \(a = \psi\) or \((\psi = \top^\land \text{and } a = (,\emptyset))\).
2. If \((,\emptyset) \sim a\), then either \(a = (,\emptyset)\) or \(a = \top^\land\).
3. If \(\neg\psi \sim a\), then \(a = \neg\psi\).

A simple induction on \(\sim\) also establishes the following lemma. Note that \([v^1 + v^2 + v^3 + \cdots]\) has at least three constituents, and so does not have the form \([v + w]\).

Lemma 7.4

1. If \([v^1 + v^2 + v^3 \ldots] \sim c\), then \((c = [w^1 + w^2 + \cdots], \text{and } (v^i \sim w^i))\), for some \((w^i)\).
2. If \([v] \sim c\) or \([v + w] \sim c\), then either \(c = [v']\) or \(c = [v' + w']\), for some \(v', w'\).

Remark: L7.2 says that combinations are uniquely decomposable (up to \(\sim\)), and L7.4 that choices of three or more contents are uniquely decomposable (up to \(\sim\)). Neither choices \([v + w]\) of two contents nor singletons \([v]\) are uniquely decomposable, since, by D4.5(⇒), whenever \(\phi \Rightarrow \psi, [\bar{\psi}] \sim [\bar{\phi} + \bar{\phi}]\). The next result, which is the long calculation for lemmas 7.1-7.10, constrains decomposition in this crucial case.

Lemma 7.5

1. if \([v + w] \sim [v' + w']\), then either
 a. \(v \sim v'\) and \(w \sim w'\); or
 b. \(v \sim v' \sim \bar{\psi}, w' \sim \bar{\phi} \text{ and } \phi \Rightarrow \psi, \text{for some } \phi, \psi.\)
2. If \([v + w] \sim [v']\) or \([v'] \sim [v + w]\), then \(v' \sim v \sim \bar{\psi}, w \sim \bar{\phi} \text{ and } \phi \Rightarrow \psi, \text{for some } \phi, \psi.\)
3. if \([v] \sim [v']\), then \(v \sim v'.\)

Proof We prove all three results simultaneously by induction on \(\sim\). Each of the cases in D4.5 is either irrelevant or trivial, except for transitivity. For the case of transitivity, by L7.4(2.), there are 8 cases: for some \(v', w', v'', w''\).
1. \([v + w] \sim [v' + w'] \sim [v'' + w''] \);
2. \([v + w] \sim [v' + w'] \sim [v'''] \);
3. \([v + w] \sim [v'] \sim [v'' + w''] \);
4. \([v + w] \sim [v'] \sim [v'''] \);
5. \([v] \sim [v' + w'] \sim [v'' + w''] \);
6. \([v] \sim [v' + w'] \sim [v''] \);
7. \([v] \sim [v'] \sim [v'' + w''] \) or \([v] \sim [v'] \sim [v'''] \);
8. \([v] \sim [v'] \sim [v'''] \);

By considerations of symmetry, there are essentially only four cases, typified by (1), (2), (4), and (8).

(1.): By IH(1.), \(v' \sim v \) and either (A) \(w' \sim w \) or (B) \(v' \sim \overline{\bar{\psi}'}, w' \sim \overline{\bar{\phi}'} \), and \(\phi' \Rightarrow \psi' \).

(A): By IH (1.) applied to \([v' + w'] \sim [v'' + w''] \), \(v \sim v' \sim v'' \), and either \(w'' \sim w' \) or \(\overline{\bar{v}''} \sim v''' \), \(w'' \sim \overline{\bar{\phi}''} \), and \(\phi'' \Rightarrow \bar{\psi}'' \), for some \(\phi'', \psi'' \). In the former case, the result (1.)(a.) is satisfied. In the latter case, the result (1.)(b.) is satisfied.

(B): By IH (1.) again, \(v \sim v' \sim v'' \), and either \(w'' \sim w' \) or \(\overline{\bar{v}''} \sim v''' \), \(w'' \sim \overline{\bar{\phi}''} \), and \(\phi'' \Rightarrow \bar{\psi}'' \) for some \(\phi'', \psi'' \). In the former case, \(v \sim v' \sim v'' \sim \bar{\psi}', w'' \sim w' \sim \bar{\phi}' \), and \(\phi' \Rightarrow \psi' \). So, the result (1.)(b.) is satisfied. In the latter case, the result (1.)(b.) is also satisfied.

(2.): By IH(1.), \(v' \sim v \) and either (A) \(w' \sim w \) or (B) \(v' \sim \overline{\bar{\psi}'}, w' \sim \overline{\bar{\phi}'} \), and \(\phi' \Rightarrow \psi' \), for some \(\phi', \psi' \).

(A): By IH(2.), \(v' \sim v' \sim v \); also by IH(2), \(v \sim v' \sim \bar{\psi}, w \sim w' \sim \bar{\phi} \) and \(\phi \Rightarrow \bar{\psi} \), for some \(\phi, \psi \), so the result (2.) is satisfied;

(B): By IH(2.), \(v'' \sim v' \sim v \), so the result (2.) is satisfied.

(4.): By IH, \(\bar{\phi} \sim v \sim v' \sim v'', \bar{\phi} \sim w \), and \(\phi \Rightarrow \psi \), for some \(\phi, \psi \). So, the result (2.) is satisfied.

(8.): By IH(3.), \(v \sim v' \sim v'' \). So, the result (3.) is satisfied.

Lemma 7.6 If \(\phi \) is atomic and \(\overline{\bar{\phi}} \sim \overline{\bar{\psi}} \), then \(\phi = \psi \).

Proof Suppose \(\phi \) is atomic and \(\overline{\bar{\phi}} = \overline{\bar{\psi}} \). By D4.3, \(\phi = \overline{\bar{\psi}} \). By L7.3, either \(\bar{\psi} \sim \bar{\phi} \) or \(\bar{\psi} \sim (\bar{\phi}) \). By D4.3, \(\bar{\psi} \sim \bar{\phi} \). Since, for all \(\bar{\chi}, \bar{\theta}, \ldots \), \(\phi \notin \{ \bar{\chi}, [\bar{\chi}], [\bar{\chi}, \bar{\theta}], \ldots \} \}, \psi \) is atomic and \(\bar{\psi} = \bar{\phi} \).

Lemma 7.7 If \(\overline{\bar{\phi}} \sim \overline{\bar{\psi}} \), then \(\psi \) has the form \(\bar{\chi} \), where \(\bar{\phi} \sim \bar{\chi} \).
Proof. Suppose \(\overline{\phi} \sim \overline{\psi}\). We first show that \(\psi\) has the form \(\neg \chi\). It is useful to prove

(\(\star\)) If \(\overline{\phi} \sim \overline{\psi}\), then \(\psi\) has either the form \(\neg \chi\) or the form \((\psi^1 \land \psi^2 \land \ldots)\).

by induction on the complexity of \(\psi\):

\(\psi\) atomic: By L7.6, \(\psi = \neg \phi. \bot\).

\(\psi = (\psi^1 \lor \psi^2 \lor \ldots)\): Then \(\overline{\neg \psi^1, \neg \psi^2, \ldots} = \overline{\phi} \sim \overline{\phi} = [\overline{\phi}].\) By L7.2, \(\overline{\neg \psi^1, \neg \psi^2, \ldots} \not\in [\overline{\phi}]. \bot\).

We can now use (\(\star\)) to prove the result by induction on the complexity of \(\phi\). Suppose (for reductio) that \(\psi\) has the form \((\psi^1 \land \psi^2 \land \ldots)\).

\(\phi\) atomic: \(\neg \phi = \overline{\neg \phi} \sim \overline{\psi} = [\overline{\psi}].\) By L7.3, \([\overline{\psi^1, \overline{\psi}^2, \ldots}] = \neg \phi. \bot\).

\(\phi = \neg \phi\): \([\overline{\phi}] = \overline{\neg \phi} \sim \overline{\psi} = [\overline{\psi}].\) By L7.2, \([\overline{\phi} \not\in [\overline{\psi}]. \bot]\).

\(\phi = (\phi^1 \land \phi^2 \land \ldots)\): \([\overline{\phi^1, \phi^2, \ldots}] = \overline{\neg \phi^1, \neg \phi^2, \ldots} = \overline{\phi} \sim \overline{\psi} = [\overline{\psi}].\) By L7.2, \(\overline{\neg \phi^1, \neg \phi^2, \ldots} \not\in [\overline{\psi}]. \bot\).

\(\phi = (\phi^1 \lor \phi^2 \lor \ldots)\): \([\overline{\phi}] = \overline{\neg \phi^1, \neg \phi^2, \ldots} = [\overline{\phi^1, \phi^2, \ldots}].\) By L7.5, \(\overline{\phi} \sim \overline{\psi^1}.\)

By (\(\star\)), \(\phi\) is either a negation or a conjunction. \(\bot\).

So \(\overline{\phi} \sim \overline{\neg \chi}\), for some \(\chi\). Then \([\overline{\phi}] = \overline{\neg \phi} \sim \overline{\neg \chi} = [\overline{\chi}].\) By L7.5(3.), \(\overline{\phi} \sim \overline{\chi}\).

Lemma 7.8 If \((\phi^1 \land \phi^2 \land \ldots) \sim \overline{\psi}\), then \(\psi\) has the form \((\psi^1 \land \psi^2 \land \ldots)\), for \((\phi^1 \sim \overline{\psi^i})\).

Proof. Suppose \((\phi^1 \land \phi^2 \land \ldots) \sim \overline{\psi}\). We first prove by induction on the complexity of \(\psi\) that \(\psi\) has the form \((\psi^1 \land \psi^2 \land \ldots)\).

\(\psi\) atomic: By L7.6, \(\psi = (\phi^1 \land \phi^2 \land \ldots). \bot\).

\(\psi = \neg \chi\): By L7.7, \((\phi^1 \land \phi^2 \land \ldots)\) has the form \(\neg \phi. \bot\).

\(\psi = (\phi^1 \lor \phi^2 \lor \ldots)\): \([\overline{\phi^1} + \overline{\phi^2} + \ldots] = \overline{\phi} \sim \overline{\phi} = [\overline{\phi^1, \phi^2, \ldots}].\) By L7.2, \([\overline{\phi^1} + \overline{\phi^2} + \ldots] \not\in [\overline{\phi^1, \phi^2, \ldots}]. \bot\).

By D4.3 and L7.2, \((\overline{\phi^1} \sim \overline{\psi^i})\).

Lemma 7.9 If \((\phi^1 \lor \phi^2 \lor \ldots) \sim \overline{\psi}\), then \(\psi\) has the form \((\psi^1 \lor \psi^2 \lor \ldots)\), where \((\phi^1 \sim \overline{\psi^i})\).

Proof. Suppose \((\phi^1 \lor \phi^2 \lor \ldots) \sim \overline{\psi}\). We first prove by induction on the complexity of \(\psi\) that \(\psi\) has the form \((\psi^1 \lor \psi^2 \lor \ldots)\).
ψ atomic: By L7.6, ψ = (φ¹ ∨ φ² ∨ . . .). ⊥.

ψ = ¬χ: By L7.7, (φ¹ ∨ φ² ∨ . . .) has the form ¬φ. ⊥.

ψ = (ψ¹ ∧ ψ² ∧ . . .): By L7.8, (φ¹ ∨ φ² ∨ . . .) has the form (χ¹ ∧ χ² ∧ . . .). ⊥.

So, (φ¹ ∨ φ² ∨ . . .) ∼ (ψ¹ ∨ ψ² ∨ . . .) = ̅ψ. Then ¬φ¹ ∨ ¬φ² ∨ . . . = (φ¹ ∨ φ² ∨ . . .) ⊓ ∼ ̅ψ φ = [¬ψ¹, ¬ψ², . . .]. By L7.2, (¬φ¹ ∼ ¬ψ¹). By L7.7, (φ¹ ∼ ψ¹).

Lemma 7.10
1. If ̅φ ∼ ̅ψ, then φ = ψ.
2. If ̅φ = ̅ψ, then φ = ψ.

Proof Suppose ̅φ = ̅ψ. We prove (1) by induction on the complexity of φ.

φ atomic: L7.6.

φ = ¬γ: By L7.7, ψ has the form ¬γ and ̅χ ∼ ̅γ. IH implies that ψ = γ.

φ = (φ¹ ∧ φ² ∧ . . .): By L7.8, ψ has the form (ψ¹ ∧ ψ² ∧ . . .) and (φ¹ ∼ ψ¹). By IH, (φ¹ = ψ¹).

φ = (φ¹ ∨ φ² ∨ . . .): As in the previous case, L7.9 and IH imply φ = ψ.

(2) is an immediate consequence of (1) and D4.3 since, if ̅φ ∼ ̅ψ then ̅φ ∼ ̅φ ∼ ̅ψ ∼ ̅ψ.

Definition 7.11 (Immediate Selection) We define a relation ≪ₚ between sets of contents of FS and conditions of FS in the obvious way:

1. vᵢ ≪ₚ [v⁰ + . . .]ₚ for each i,
2. v, . . . ≪ₚ [v, . . .]ₚ,
3. v ≪ₚ [v]ₚ and
4. G ≪ₚ g(+, 0))

We allow the special case in which ⟨v, . . .⟩ = ∅. In this case, ∅ ≪ₚ []ₚ.

Remark: Because choices [v⁰+v¹+. . .]ₚ and singleton choices/ combinations [v]ₚ may not be uniquely decomposable, there can be surprising immediate selections. For instance, there can be cases in which v ≪ₚ [w]ₚ, but v ∼ w. Since (by L7.2), non-singleton combinations [v⁰,v¹,. . .]ₚ are uniquely decomposable, the only immediate selection from [v⁰,v¹,. . .]ₚ is (v⁰); see L7.12 below.

Remark: Lemmas 7.12-7.21 below characterize the relation of immediate selection ≪ₚ. Lemmas 7.12-7.16 characterize that relation when the right-hand relatum is the truth-condition ̅ψ of some sentence ψ of L. Lemmas 7.18-7.21 characterize that relation in the other cases.
Lemma 7.12 If $G \ll S [\bar{q}^0, \bar{q}^1, \ldots]_g$, then $G = (\bar{q}^i)$.

Proof Suppose that $G \ll S [\bar{q}^0, \bar{q}^1, \ldots]_g$. There are two cases: (I) $[\bar{q}^0, \bar{q}^1, \ldots]_g = [v^0, v^1, \ldots]_g$ and $G = (v^i)$, for some $(v^i) \subseteq (F_S \times F_S)$; or (II) $[\bar{q}^0, \bar{q}^1, \ldots]_g \in \{ [v^0 + v^1 + \ldots]_g, [v]_g \}$ and $G \in \{v, (v^i)\}$, for some $v, (v^i) \subseteq (F_S \times F_S)$. By L7.2, case (II) does not occur. In case (I), $[\bar{q}^0, \bar{q}^1, \ldots]_g = g(v^0, v^1, \ldots]$.

By L7.2, $(\bar{q}^i \sim v^i)$, so by L7.1, $(g(v^i) = g(\bar{q}^i) = \bar{q}^i)$. Since $(v^i) \subseteq (F_S \times F_S)$, $(v^i = g(v^i))$. So, $G = (v^i) = (\bar{q}^i)$.

The following lemma is proved in a way similar to L7.12, using L7.4 in place of L7.2:

Lemma 7.13 If $G \ll S [\bar{q}^0 + \bar{q}^1 + \bar{q}^2 + \cdots]$, then $G = \bar{q}^i$, for some i.

Lemma 7.14 If $G \ll S [\bar{q}^0 + \bar{q}^1 + \bar{q}^2]_g$, then $(\exists \bar{g})(G = \bar{g}$ and $\bar{g} \leq \bar{q}^i \in S^*)$.

Proof If $G = \bar{q}^i$, for some $i = 1, 2$, then we may set $\bar{g} = \bar{q}^i$ and $\bar{g} \leq \bar{q}^i \in S^*$ by D6.3. So, it is enough to show that, if $G \ll S [\bar{q}^0 + \bar{q}^2]_g$, then either $G \in \{\bar{q}^0, \bar{q}^2\}$ or $(\exists \bar{g})(G = \bar{g}$ and $\bar{g} \leq \bar{q}^i \in S^*)$. By D7.11 there are three cases: (A) $[\bar{q}^0 + \bar{q}^2]_g = [v^0, v^1, \ldots]_g$ and $G = (v^i)$ for some $(v^i) \subseteq (F_S \times F_S)$; (B) $[\bar{q}^0 + \bar{q}^2]_g = [v]_g$ and $G = v$, for some $v \in (F_S \times F_S)$; or (C) $[\bar{q}^0 + \bar{q}^2]_g = [v^1 + v^2 + \cdots]_g$ and $G = v^j$, for some $(v^j) \subseteq (F_S \times F_S)$ and some j. By L7.2, case (A) does not occur.

(B): By L7.5, there is a ψ such that $v \sim \bar{q}^1 \sim \bar{q}$. So, $G = v = g(v) = \bar{q}^0$.

(C): By L7.4, $[v^1 + v^2 + \cdots]$ has the form $[v^1 + v^2]$). By L7.5 there are two cases: (I) $v^1 \sim \bar{q}^1$ and $v^2 \sim \bar{q}^2$ or (II) $v^1 \sim \bar{q}^1 \sim \bar{q}$, $v^2 \sim \bar{q}$, and $\delta \Rightarrow \psi$, for some δ, ψ.

(I): Either $G = v^1 = g(v^1) = \bar{q}^i$ or $G = v^2 = g(v^2) = \bar{q}^2$.

(II): Since $\bar{q}^1 \sim \bar{q}$, by L7.10, $\bar{q}^1 = \psi$. If $G = v^1$, then $G = v^1 = g(v^1) = \bar{q}^i$. If $G = v^2$, then $G = v^2 = g(v^2) = \delta$ and $\delta \Rightarrow \phi^i$, for some δ. By D6.1(\Rightarrow), $\delta \leq \phi^i \in S^*$.

The following lemma is proved similarly to L7.14.

Lemma 7.15 If $G \ll S [\bar{q}]_g$, then $(\exists \bar{g})(G = \bar{g}$ and $\bar{g} \leq \phi \in S^*)$.

Lemma 7.16 If $G \ll S \bar{q}_g$, then $(\exists \bar{g})(G = \bar{g}$ and $\bar{g} < \phi \in S^*)$.

Proof Suppose $G \ll S \bar{q}_g$. We prove the result by induction on the complexity of ϕ.

ϕ atomic: By L7.3, $G = \emptyset$ and $\phi = \top^\wedge$. By $(\leq)(\top^\wedge)$, $\emptyset \leq \top^\wedge$. Also, trivially, $\emptyset \leq \top^\wedge$ is irreversible. So, by D6.3, $\emptyset < \top^\wedge \in S^*$.

$\phi = \neg \chi, \chi$ atomic: By L7.7, $\neg \chi \notin [v]_g, [v + \cdots]_g$, for any v, w. So, $G \not\ll \bar{q}_g$. \bot.\]
\[\phi = \neg \chi: \overline{\overline{\chi}} = [\chi]_g. \] By L7.15, \((\exists \delta)(G = \delta \text{ and } \delta \leq \chi \in S^*)\). By T6.19, \(\delta < \phi \in S^*\).

\[\phi = (\phi^1 \land \phi^2 \land \ldots): \] L7.12 and T6.19 imply the result.

\[\phi = (\phi^1 \lor \phi^2 \lor \ldots): \] L7.12 and T6.19 imply the result.

\[\phi = (\phi^1 \lor \phi^2 \lor \ldots): \] L7.14 and T6.19 imply the result.

\[\phi = (\phi^1 \land \phi^2 \land \ldots): \] L7.14 and T6.19 imply the result.

Definition 7.17 \(a\) is formularic iff \(a \sim \tilde{\phi}_\oplus\), for some \(\phi \in \mathcal{L}^+\). \((a, b)\) is formularic iff \(a\) and \(b\) are each formularic.

The following lemma is proved by an easy induction on \(\sim\):

Lemma 7.18

1. If \(a \sim b\) and \(a\) is formularic, then \(b\) is formularic.

2. If \(v \sim w\) and \(v\) is formularic, then \(w\) is formularic.

Lemma 7.19

1. If \([v]\) is formularic, then \(v \sim \tilde{\psi}\), for some \(\psi \in \mathcal{L}^+\).

2. If \([w + \cdots + v + \cdots]\) is formularic, then \(v \sim \tilde{\psi}\), for some \(\psi \in \mathcal{L}^+\).

3. If \([w, \cdots v, \cdots]\) is formularic, then \(v \sim \tilde{\psi}\), for some \(\psi \in \mathcal{L}^+\).

Proof Suppose \(a \in \{[v], [w, \cdots v, \cdots], [w + \cdots + v + \cdots]\}\) and \(a\) is formularic. Then \(a \sim \tilde{\phi}_\oplus\), for some \(\phi \in \mathcal{L}^+\). We prove the result by induction on the complexity of \(\phi\).

\(\phi\) atomic: Then \(a \sim \phi\). By L7.3, \(a = \phi\) or \(a = (\cdot, \emptyset)\). \(\bot\).

\(\phi = \neg \chi, \chi\) atomic: By L7.3, \(a = \neg \chi\). \(\bot\).

\(\phi = \neg \neg \chi\): Then \(a \sim \tilde{\phi}_\oplus = [\chi]\). By L7.5, either \(v \sim \tilde{\chi}\) or \(v \sim \tilde{\theta'}\), for some \(\theta'\).

\(\phi = (\phi^1 \land \phi^2 \land \ldots):\) L7.2.

\(\phi = \neg (\phi^1 \lor \phi^2 \land \ldots):\) L7.2.

\(\phi = (\phi^1 \lor \phi^2 \lor \ldots):\) By L7.4 and L7.5, \(v \sim \tilde{\theta}\), for some \(\theta\).

\(\phi = \neg (\phi^1 \land \phi^2 \land \ldots):\) By L7.4 and L7.5, \(v \sim \tilde{\theta}\), for some \(\theta\).

Remark An immediate consequence of the definition D4.2 is that, if \(a\) is not formularic, then \(a = (\cdot, \emptyset)\) or \(a\) has one of the forms: \([v], [v^0 + v^1 + \cdots],\) or \([v^0, v^1, \ldots]\).

Lemma 7.20 **(Unique Decomposition)**
1. If \([v] \) is not formularic and \([v] \sim a \), then, for some \(v' \), \(a = [v'] \) and \(v' \sim v \);
2. If \([v^0 + v^1 + \cdots] \) is not formularic and \([v^0 + v^1 + \cdots] \sim a \), then, for some
(\(w^i \)), \(a = [w^0 + w^1 + \cdots] \) and \((v^i \sim w^i) \);
3. If \([v^0 . v^1 . \cdots] \) is not formularic and \([v^0 . v^1 . \cdots] \sim a \), then, for some \((w^i) \),
\(a = [w^0 . w^1 . \cdots] \) and \((v^i \sim w^i) \); and
4. If \((+, \emptyset) \sim a \), then \(a = (+, \emptyset) \).

Proof: All of the cases are proved similarly. We do (2.) for illustration. Suppose
\([v^0 + v^1 + \cdots] \) is not formularic and \([v^0 + v^1 + \cdots] \sim a \). We prove the result by induction on \(\sim \):

(Pairing): \([v^0 + v^1 + \cdots] \) does not have the form \((a, b) \), for free conditions \(a, b \).

(Comp): Trivial.

(T∧): Neither \(T^\lor \) nor \((, \emptyset) \) have the form \([v^0 + v^1 + \cdots] \).

(⇒): Both \([\psi](= \neg[\phi \lor \phi]) \) and \([\psi + \phi](= \phi \lor \phi) \) are formularic.

(Transitivity): IH immediately implies the result.

Remark: An immediate consequence of L7.20 is that the free conditions \(a \) exhaustively partition into: (i) \((+, \emptyset) \), (ii) the formularic conditions \(\phi \) for sentences \(\phi \) of \(L^{(*)} \), and (iii) uniquely decomposable (up to \(\sim \)), non-formularic choices and combinations. Thus, L7.16 and the following lemma exhaustively characterize the immediate selection relation \(\ll_S \).

Lemma 7.21 For \(v, (v^i) \subseteq (F_S \times F_S) \):
1. If \(G \ll_S [v]_g \) and \([v] \) is not formularic, then \(G = v \);
2. If \(G \ll_S [v^0 + v^1 + \cdots]_g \) and \([v^0 + v^1 + \cdots] \) is not formularic, then \(G = v^i \), for some \(i \); and
3. If \(G \ll_S [v^0 . v^1 . \cdots]_g \) \(v^0 . v^1 . \cdots \) is not formularic, then \(G = (v^i) \).

Proof: Each of the claims is proved similarly, using L7.20. We do (1.) for illustration. Suppose \(G \ll_S [v]_g \) and \([v] \) is not formularic. Then there are three cases: (A) \([v] \sim [w] \) and \(G = w = g(w) \), for some \(w \); (B) \([v] \sim [w^0 + w^1 + \cdots] \) and \(G = w^i = g(w^i) \), for some \(w^i \) and some \(i \); or (C) \([v] \sim [w^0 . w^1 . \cdots] \) and \(G = (w^i) = (g(w^i)) \), for some \(w^i \). By L7.20, cases (B) and (C) do not occur, and \(G = w = g(w) \sim v \), for some \(w \). So, \(G = w = g(w) = g(v) = v \).

Remark: D7.22-T7.30 establish a correspondence between selection in \(\mathfrak{M}_S \) and the members of the canonical model basis \(S^* \).

We define the class of \(\mathfrak{M}_S \)-derivations of selections \(G \ll_S v \) using the following axiom and rules, which correspond to the clauses of the definition D2.1 of selection. As before, a selection is of the form \(G \leq_S v \) iff it is of the form \(G \ll_S ([v]_g, d) \), for some \(d \):
Definition 7.22

1. **Basis**: $G <_S v$ is an axiom whenever $G \ll_S v$.

2. **Subsumption**: \[\frac{G <_S v}{G <_S ([v]_g, d)} \] for any d.

3. **Lower Cut**: \[\frac{(G^i \leq_S v^i)_{i < n \in \omega}}{(G^i) <_S v} \]

4. **Upper Cut**: \[\frac{(G^i <_S v^i)_{i < n \in \omega}}{(G^i) <_S v} \]

The notions of the major premise and minor premises of applications of (Upper Cut) and (Lower Cut) are defined in the obvious way. We will often write $G <_S v$ to indicate that there is an \mathcal{M}_S-derivation of $G <_S v$, and $G \leq_S v$ to indicate that there is an \mathcal{M}_S-derivation of $G <_S ([v]_g, d)$, for some free condition d.

Remark: (Amalgamation): Since $v \ll_S [v]_g$, $v \ll_{\mathcal{M}_S} ([v]_g, d)$ (i.e. $v \leq_S v$) is an axiom for all $v \subset F_S \times F_S$ and $d \in F_S$, it follows that
\[\frac{(G^i <_S v^i)_{i < n \in \omega}}{v \leq_S v} \]
\[\frac{(G^i \leq_S v^i)_{i < n \in \omega}}{v <_S v} \]
is an instance of (Upper Cut) and
\[\frac{(G^i \leq_S v^i)_{i < n \in \omega}}{v \leq_S v} \]
is an instance of (Lower Cut). So, if $(G^i <_S v)$, then $(G^i) <_S v$; and if $(G^i \leq_S v)$, then $(G^i) \leq_S v$.

Definition 7.23 An \mathcal{M}_S-derivation is in semi-normal form (or is semi-normal) iff every major premise of every application of (Upper Cut) or (Lower Cut) is an axiom.

An argument broadly similar to the proof of L5.4(Semi-Normal Form Lemma) yields a similar result for \mathcal{M}_S-derivations:

Lemma 7.24 (Semi-Normal Form Lemma) If there is an \mathcal{M}_S-derivation of $G <_S v$, then there is a semi-normal \mathcal{M}_S-derivation of $G <_S v$.

Lemma 7.25 If $\bar{\phi} \sim \bar{\psi}$ and $\Delta < \phi \in S^*$, then $\Delta < \psi \in S^*$.

Proof Suppose $\bar{\phi} \sim \bar{\psi}$ and $\Delta < \phi \in S^*$. There are six syntactic forms ϕ may have.

ϕ atomic: By L7.6, $\psi = \phi$.

$\phi = \neg \chi$, χ atomic: By L7.3(3.) and D4.3, $\psi = \phi$.

68
\(\phi = \neg \neg \phi' \): Let \(\overline{\psi} = \overline{\phi' \sim \psi} \). By L7.4(2.), either (A) \(\overline{\psi} = [v] \), for some \(v \), or (B) \(\overline{\psi} = [v + w] \), for some \(v \) and \(w \).

(A): By L7.5(3.), \(v \sim \phi' \). Inspection of D4.3 shows that \(\psi \) must have the form \(\neg \neg \psi' \), where \(v = \overline{\psi} \). To illustrate, suppose (for *reductio*) that \(\psi \) is a disjunction \((\psi^1 \lor \psi^2 \lor \ldots \ldots) \). Then \(\overline{\psi} = [\overline{\psi^1 + \psi^2 + \ldots \ldots}] = [v] \).

Similar arguments show that \(\psi \) cannot be a literal, a conjunction, the negation of a disjunction, nor the negation of a conjunction. So, \(\psi = \neg \neg \psi' \), for some \(\psi' \), and so \(\overline{\psi} = [\overline{\psi^1}] = [v] \). So, \(\overline{\psi} \sim \overline{\phi'} \). By L7.10, \(\psi' = \phi' \) and so \(\psi = \phi \).

(B): By L7.5(2.), \(v \sim \phi' \). As in the previous case, the fact that \(\overline{\psi} \) has the form \([v + w] \), implies that there are two cases: (I) \(v = \overline{\psi^1}, w = \overline{\psi^2}, \) and \(\psi = (\psi^1 \lor \psi^2) \), for some \(\psi^1, \psi^2 \); or (II) \(v = \neg \overline{\psi^1}, w = \neg \overline{\psi^2}, \) and \(\psi = \neg(\psi^1 \land \psi^2) \), for some \(\psi^1, \psi^2 \).

(I): By L7.10, \(\psi^1 = \phi' \). By T6.19, since \(\Delta < \neg \neg \phi' \in S^* \), \(\Delta \leq \phi' \in S^* \), and so \(\Delta < (\phi' \lor \psi^2) = (\psi^1 \lor \psi^2) = \psi \in S^* \).

(II): By L7.10, \(\neg \overline{\psi} = \phi' \). By T6.19, since \(\Delta < \neg \phi' \in S^* \), \(\Delta \leq \neg \overline{\psi} = \phi' \in S^* \), and so \(\Delta < \neg(\psi^1 \land \psi^2) \in S^* \).

\(\phi = (\phi^1 \lor \phi^2 \land \ldots \ldots) \): As above, L7.2, L7.10, and T6.19 imply the result.

\(\phi = \neg(\phi^1 \lor \phi^2 \land \ldots \ldots) \): As above, L7.2, L7.10, and T6.19 imply the result.

\(\phi = (\phi^1 \lor \phi^2 \lor \ldots \ldots) \): There are two cases: (A) \((\phi^1) \) has more than two members, so that \(\phi \) has the form \((\phi^1 \lor \phi^2 \lor \phi^3 \lor \ldots \ldots) \) or (B) \(\phi \) has the form \((\phi^1 \lor \phi^2) \).

(A): As above, L7.4(1.), D4.3, L7.10, and T6.19 imply the result.

(B): \(\phi = (\phi^1 \lor \phi^2) \) and \(\overline{\psi} = \overline{\phi} = [\overline{\phi^1 + \phi^2}] \). So, by L7.4(2.) and L7.5(1.),(2.), there are two cases: (I) \(\overline{\psi} \) has the form \([v^1 + v^2] \), where \(v^1 \sim \phi^1 \); or (II) \(\overline{\psi} \) has the form \([v] \), where there are \(\theta^1, \theta^2 \) such that \(v \sim \phi^1 \sim \theta^1, \phi^2 \sim \theta^2, \) and \(\theta^1 \Rightarrow \theta^2 \).

(I): The argument in case (A) above yields the result.

(II): By L7.10, \(\phi^1 = \theta^1, \phi^2 = \theta^2 \), and so \(\phi^2 \Rightarrow \phi^1 \). By \((\leq')(\Rightarrow) \), \(\phi^2 \leq \phi^1 \in S^* \). By T6.19, since \(\Delta < (\phi^1 \lor \phi^2) \in S^* \), either \(\Delta < \phi^1 \), \(\Delta \leq \phi^2 \), or both \(\Delta \leq \phi^1 \) and \(\Delta \leq \phi^2 \) (where \(\Delta = \Delta^1, \Delta^2 \) is a member of \(S^* \)). In each case, the closure of \(S^* \) implies that \(\Delta < \neg \phi^1 \in S^* \). As above, since \(\overline{\psi} \) has the form \([v] \), D4.3 constrains the form of \(\psi \): \(\psi \) must be of the form \(\neg \neg \chi \), where \(v = \overline{\chi} \). Since \(\overline{\chi} = v \sim \phi^1 \), L7.10 implies that \(\chi = \phi^1 \). So, \(\Delta < \neg \neg \phi^1 = \neg \neg \chi = \psi \in S^* \).

\(\phi = \neg(\phi^1 \land \phi^2 \land \ldots \ldots) \): As above, L7.4, L7.5, L7.10, and T6.19 imply the result.

Lemma 7.26
1. If \(G \prec_S (\bar{\phi}, d) \), then there is a \(\Delta \subseteq \mathcal{L}^+ \) such that \(G = \bar{\Delta} \) and \(\Delta < \phi \in S^* \).

2. If \(G \prec_S \bar{\phi} \), then there is a \(\Delta \subseteq \mathcal{L}^+ \) such that \(G = \bar{\Delta} \) and \(\Delta < \phi \in S^* \).

3. If \(G \leq_S \bar{\phi} \), then there is a \(\Delta \subseteq \mathcal{L}^+ \) such that \(G = \bar{\Delta} \) and \(\Delta \leq \phi \in S^* \).

Proof (2.) and (3.) follow from (1.) and T6.19. We prove (1.) by induction on \(\mathcal{M}_S \)-derivations \(D \) of \(G \prec_S (\bar{\phi}, d) \). By L7.24, we may assume that \(D \) is semi-normal.

(Basis): Suppose \(G \ll_S (\bar{\phi}, d) \). L7.16.

(Subsumption): Suppose \(D \) has the form:

\[
\begin{array}{c}
\mathcal{E} \\
G \prec_S w \\
G \prec_S ([w], b)
\end{array}
\]

where \([w], b\) = \(\bar{\phi} \).

By L7.19, \(g(w) = \bar{\psi} \), for some \(\psi \in \mathcal{L}^+ \). So, IH applies to \(\mathcal{E} \): \(G = \bar{\Delta} \) and \(\Delta < \psi \in S^* \), for some \(\Delta \). Also, \(\psi = w \ll_S (\bar{\phi}, d) \), so L7.16 implies that \(\psi < \phi \in S^* \). The result follows by T6.19.

(Lower Cut): Suppose \(D \) has the form

\[
\begin{array}{c}
\mathcal{F}^i \\
G \leq_S v^i \\
G \leq_S (\phi_b, d)
\end{array}
\]

For some \((\delta^i) \), \((v^i) = (\delta^i) \) and \((\delta^i) < \phi \in S^* \); and (since \([\delta^i]_g = \bar{\neg \neg \delta^i} \)) \((\exists \Delta^i)(G^i = \bar{\Delta}^i \text{ and } \Delta^i < \neg \delta \in S^*) \), for each \(i \). The result follows by T6.19.

(Upper Cut): Suppose \(D \) has the form

\[
\begin{array}{c}
\mathcal{F}^i \\
G \leq_S v^i \\
G < S (\phi_b, d)
\end{array}
\]

Since \((v^i) \leq_S (\phi_b, d) \) is an axiom, \((v^i) \ll_S [(\phi_b, d)] \). There are two cases:

(A): \((\phi_b, d) \sim \psi \), for some \(\psi \), or (B) not.

(A): \([\phi_b, d]_g = [\bar{\bar{\psi}}]_g = \bar{\neg \psi} \). By L7.16, since \((v^i) \ll_S \neg \bar{\neg \psi} \), \((v^i) = (\delta^i) \) and \((\delta^i) < \neg \psi \in S^* \), for some \((\delta^i) \). Also, IH applies to \((G \leq_S v^i) \) to imply that \((\exists \Delta^i)(G^i = \bar{\Delta}^i \text{ and } \Delta^i < \delta^i \in S^*) \), for each \(i \). By T6.19, \((\Delta^i) < \psi \in S^* \). Since \(\bar{\psi} = \bar{\bar{\psi}} = \), the result follows by L7.25.

(B): Since \((v^i) \ll_S [(\phi_b, d)]_g \), by L7.19 and L7.20(Unique Decomposition), \((v^i) = (\phi_b, d) \). So, IH applies to the minor premises: for each \(i \) \((\exists \Delta^i)(G^i = \bar{\Delta}^i \text{ and } \Delta^i < \phi \in S^*) \). The result follows by T6.19.
Lemma 7.27 If $\Delta < \phi \in S$ (not merely S^*), then (1.) $\overline{\Delta, \phi} \leq_S \overline{\phi}$, and (2.) $\Delta, \overline{\phi} \leq_S \overline{\phi}$.

Proof

1. Suppose $\Delta < \phi \in S$. Then, by D4.4, $\overline{\phi} \Rightarrow \phi$. By D4.5 and D4.3, $[\phi]_g = [\phi + \overline{\Delta}]_g$. So, $\overline{\Delta, \phi} \leq_S [\phi]_g$. The result follows by D7.22.

2. By D4.3, D4.5, D4.6 and D7.22, $\overline{\Delta, (\overline{\phi} \vee \phi)} \leq_S \overline{\phi}$ is an axiom. Also, by D7.22, $\emptyset < S \overline{\phi} \leq_S (\overline{\phi} \vee \phi)$. So, the result follows by (1.) and D7.22.

Lemma 7.28 If $\Delta \leq \phi$, then there is an M_s-derivation of $\Delta \leq_S \overline{\phi}$.

Proof By induction on $\Delta \leq \phi$. It is useful to first prove

(★) If $\phi \Rightarrow \psi$, then $\overline{\psi} \leq_S \overline{\phi}$; $\overline{\psi, \phi} \leq_S \overline{\phi}$; and $\overline{\psi, \phi} \leq_S \overline{\phi}$.

Suppose $\phi \Rightarrow \psi$. Then, by D4.5 $[\psi]_g \sim [\phi + \overline{\phi}]_g$. So, $\overline{\phi} \leq_S [\psi]_g$. So, $\overline{\phi} \leq_S \overline{\phi}$ is an axiom. Since $\overline{\phi} \Rightarrow \psi$, $[\psi, \phi]_g \Rightarrow \overline{\phi}$ by D4.4(Induction). So, $[\psi, \phi]_g \leq_S \overline{\phi}$. D4.3 and D7.22 then imply that there is an M_s-derivation (using (upper cut)) of $\overline{\psi, \phi} \leq_S \overline{\phi}$. A similar argument establishes that $\overline{\phi} \leq_S \overline{\phi}$.

(ID): Immediate by D7.22, since $\overline{\phi} \leq_S [\phi]_g$.

(T^): By D4.5 and D4.3, $\emptyset \leq_S \overline{\phi}$. The result follows by D7.22.

(Determination): All of the cases are proved similarly. We do the case of conjunction for illustration. $\phi, \psi, \ldots \leq (\phi \land \psi \land \ldots)_{\overline{\phi}}$. By D4.3, $[\phi \land \psi \land \ldots]_{\overline{\phi}} = [\phi, \psi, \ldots]_{\overline{\phi}}$. So, $\overline{\phi, \psi, \ldots} \leq_S (\phi \land \psi \land \ldots)_{\overline{\phi}}$. The result is immediate by D7.22.

(⇒): (★) implies the result.

(W): Suppose $\psi \leq \phi \in S$. By D4.4, $[\psi, \phi]_g \Rightarrow \overline{\phi}$. By (★), $[\psi, \phi]_g \leq_S \overline{\phi}$. By the argument for the case (determination) above, $\overline{\psi, \phi} \leq_S \overline{\phi}$. So, by D7.22(upper cut), $\overline{\psi, \phi} \leq_S \overline{\phi}$. So, $\overline{\phi} \leq_S \overline{\phi}$. This has the form $([\phi], d)$.

(Max): An argument similar to that for the case (W) above yields the result.

(T^): By D4.4, $(\overline{\phi} \land (\overline{\phi} \lor \phi)) \Rightarrow \overline{\phi}$. By (★), $(\overline{\phi} \land (\overline{\phi} \lor \phi)) \leq_S \overline{\phi}$. By the argument for the case (determination) above, $\overline{\phi, \phi} \leq_S \overline{\phi}$. So, by D7.22(lower cut), $\overline{\phi} \leq_S \overline{\phi}$. By the argument for the case (T^) above, $\emptyset \leq_S \overline{\phi}$. So, by D7.22, $\overline{\phi} \leq_S \overline{\phi}$.

(S): Suppose $\Delta \leq \phi \in S$. By the closure of S, $\Delta \leq \overline{\phi} \in S$. By L7.27 $\overline{\Delta, \overline{\phi}} \leq_S \overline{\phi}$. So, $\overline{\phi} \leq_S \overline{\phi}$. This has the form $([\phi], d)$.

71
(Cut): IH and D7.22 immediately imply the result.

Lemma 7.29

1. If $\Delta < \phi \in S^\ast$, then there is an M_S-derivation of $\Delta <_S \bar{\phi}$.

2. If $\Delta \leq \phi \in S^\ast$, then there is an M_S-derivation of $\Delta \leq_S \bar{\phi}$.

Proof (2.) follows from D6.3 and L7.28. Suppose $\Delta < \phi \in S^\ast$. We prove (1.) by induction on the complexity of ϕ.

ϕ is a literal: A simple induction on D6.1 shows that every S-connection of the form $\Delta \leq \neg \top$ is reversible. So, $\Delta < \neg \top$ is not a literal. Similar arguments show that $\Delta < \neg \top \not\in S^\ast$, and $\Delta < \neg w^x \not\in S^\ast$, for any $\chi \not\in \mathcal{L}$. So, there are five cases: (A) $\phi = /\chi/$, (B) $\phi = \top$, (C) $\phi = \top^\ast$; (D) $\phi \in \mathcal{L}$ (and not merely \mathcal{L}^\ast); or (E) $\phi = w^x$, for some $\chi \not\in \mathcal{L}$.

(A): By L6.12. $/\chi/ \in \Delta$. By T6.19(Irreversibility), $/\chi/ \not\in \Delta$ \bot.

(B): A simple induction on D6.1 shows that, if $\Delta \leq \top$, then either $\Delta = \top$ or $\Delta = \emptyset$. By T6.19(Irreversibility), $\Delta \neq \top$. So, $\Delta = \emptyset$. By D4.5 and D4.3, $\emptyset \leq_S \top_\emptyset$, so $\emptyset \leq_S \top_\emptyset$ is an axiom.

(C): By L6.18, $\Delta \leq (\top \top /\phi/))$, for some $(\phi') \subset \mathcal{L}$. So, by L7.28, there is a covering (Δ^i) of Δ such that, for each i, $\Delta^i \leq_S (\top \top /\phi/))$. Also by L7.28, $(\top \top /\phi/)) \leq_S \top^\ast$. By D7.22, $(\top \top /\phi/)) \leq_S (\top \top (\top \top /\phi/))$ and $\emptyset \leq_S \top_\emptyset$; so $(\top \top (\top \top /\phi/)) \leq_S (\top \top (\top \top /\phi/))$.

Putting this all together, we have $\Delta^i \leq_S (\top \top /\phi/)) \leq_S (\top \top (\top \top /\phi/)) \leq_S \top^\ast$.

It’s easy to see that D7.22 implies that $\Delta^i \leq_S \top^\ast$, for each i. The result follows by (Amalgamation).

(D): By L6.14(1.) and L6.15(Interpolation), there is a (γ^i) and a covering (Γ^i), Δ^i, Δ^2 of Δ such that $(\Gamma^i \leq \gamma^i)$, $\Delta^i \leq (\top \top /\phi/))$, $\Delta^2 \leq \top^\ast$, and $v(\gamma^i, \phi) \leq \phi$. By L7.28, $(\Gamma^i \leq_S \gamma^i)$, $\Delta^i \leq_S (\top \top /\phi/))$, $\Delta^2 \leq_S \top^\ast$, and $v(\gamma^i, \phi) \leq \phi$. By D4.3, $(\gamma^i), (\top \top (\top \top /\phi/)) \leq_S \top^\ast$. So, D7.22 implies the result.

(E): By L6.12(Persistence), $w^x \in \Delta$. By T6.19(Irreversibility), $w^x \not\in \Delta$. \bot.

ϕ is molecular, and not a literal: ϕ has one of the following forms: $\neg \neg \psi$, $\neg (\psi^1 \land \psi^2 \land \ldots)$, $\neg (\psi^1 \lor \psi^2 \ldots)$, or $\neg (\psi^1 \lor \psi^2 \land \ldots)$. Each of the cases is proved similarly. We consider the case of $\neg (\psi^1 \lor \psi^2 \lor \ldots)$ for illustration. By T6.19(Maximality), Δ has a covering (Δ^i) such that $(\Delta^i \leq \neg \psi^i)$.

So, by L7.28, $(\Delta^i \leq_S \neg \psi^i)$. By D4.3, $(\neg \psi^i) \leq_S \neg (\psi^1 \lor \psi^2 \lor \ldots)$. The result follows by D7.22.
Theorem 7.30 (Conservativity)

1. $\Delta \leq \phi \in S^*$ iff $\bar{\Delta} \leq S \bar{\phi}$;

2. $\Delta < \phi \in S^*$ iff $\bar{\Delta} < S \bar{\phi}$;

3. $\delta \preceq \phi \in S^*$ iff $\bar{\delta}, H \leq S \bar{\phi}$; and

4. $\delta < \phi \in S^*$ iff $\bar{\delta}, H \leq S \bar{\phi}$, and there is no I such that $\bar{\phi}, I \leq S \bar{\delta}$.

Proof By L7.10, $\bar{\Delta} = \bar{\Gamma}$ iff $\Delta = \Gamma$. So, (1.) and (2.) are immediate consequences of L7.29 and L7.26. (4.) follows from (3.) and D6.3. By T6.19 (Witnessing), if $\delta \preceq \phi \in S^*$, then $\delta, \Delta \leq \phi \in S^*$, for some Δ. By (1.) above, there is an M_S-derivation of $\bar{\delta}, \bar{\Delta} \leq S \bar{\phi}$. For the converse, suppose that $\bar{\delta}, H \leq S \bar{\phi}$. By L7.26, there is a Δ such that $\bar{\delta}, H = \bar{\Delta}$ and $\Delta \leq \phi \in S^*$. Since $\bar{\delta} = \bar{\gamma}$, for some $\gamma \in \Delta$, L7.10 implies that $\delta = \gamma \in \Delta$. The result follows by T6.19.

Remark: The remainder of this section (L7.31-T7.36) establishes that M_S meets the constraints of (Maximality) and (Irreversibility), and so qualifies as a model.

Lemma 7.31 (Maximality) Suppose $(v^i) \subseteq (F_s \times F_s)$.

1. If $G < S ([v^0, \cdots], g, d)$, then there is a covering (G^i) of G such that $(G^i) \leq S v^i$.

2. If $G < S ([v^0 + \cdots], g, d)$, then there is a subset (w^i) of (v^i) and a covering (G^j) of G such that $(G^j) \leq S w^j$.

Proof The proofs of (1.) and (2.) are similar. We do (1.) for illustration. Suppose that $G < S ([v^0, \cdots], g, d)$, for some d. If $\langle v^0, \cdots \rangle = \langle v \rangle$, for some v, then $G < S ([v], g, d)$, i.e. $G \leq S v$. The trivial covering G of G yields the result. Suppose, then, that $\langle v^0, \cdots \rangle \neq \langle v \rangle$. There are two cases: (A) $[v^0, \cdots]$ is formularic, or (B) not.

(A): By L7.19 for each i, $v^i = \bar{\psi}^i$, for some $\psi^i \in \mathcal{L}$. So, $[v^0, \cdots] = \bar{\psi}^0 \wedge \psi^1 \wedge \cdots \in \mathcal{L}$. By L7.26, $G = \bar{\Delta}$ and $\Delta < (v^0 \wedge \psi^1 \wedge \cdots) \in S^*$, for some Δ. By T6.19 (Maximality), there is a covering (Δ^i) of Δ such that $(\Delta^i \leq \psi^i) \subseteq S^*$. By L7.29, there are M_S-derivations of $(\Delta^i \leq \bar{\psi}^i)$. Since $G = \bar{\Delta}$, (Δ^i) is a covering of G.

(B): We prove the result by induction on M_S-derivations D. By L7.24, we may assume (wlog) that D is semi-normal.

(Basis): Suppose that $G < S ([v^0, \cdots], g, d)$ is an axiom, so that $G \ll_S [v^0, \cdots], g, d$. By L7.21, $G = (v^i)$. Each instance of $(v^i \leq S v^i)$ is an axiom.
(Subsumption): Suppose D has the form
\[
\frac{E}{G <_S w} \quad \text{where } [w]_g = [v^0, \ldots, g].
\]
By L7.20, $(v^i) = w$. \bot.

(Lower Cut): Suppose D has the form
\[
\frac{(F^j)}{(G^j) <_S [v^0, \ldots, g], d)}
\]
Since $(w^j) <_S (G^j) <_S ([v^0, \ldots, g], d)$ is an axiom, $(w^j) <_S [v^0, \ldots, g]$.
By L7.21, $(w^j) = (v^i)$. So, $(G^j) <_S w^j = (G^i) <_S v^i)$ by re-indexing.

(Upper Cut): Suppose D has the form
\[
\frac{(F^j)}{(G^j) <_S [v^0, \ldots, g], d)}
\]
Since $(w^j) <_S (G^j) <_S ([v^0, \ldots, g], d)$ is an axiom, $(w^j) <_S [v^0, \ldots, g]$. By
L7.21, $(w^j) = (v^i)$. So, IH applies to each of the

Lemma 7.32

1. If $v \not\sim \bar{\psi}$, for any $\psi \in \mathcal{L}^+$, and $G \leq_S v$, then either $G = v$, or $G <_S v$, or $(G = v, G' <_S v)$.

2. If $v \not\sim \bar{\psi}$, for any $\psi \in \mathcal{L}^+$, and $w, G \leq_S v$, then either $w = v$ or $w, H <_S v$, for some H.

Proof: (2.) follows immediately from (1.) (setting G in (1.) to G, w). Suppose $v \not\sim \bar{\psi}$, for any $\psi \in \mathcal{L}^+$. We prove (1.) by induction on \mathfrak{M}_S-derivations D. By
L7.24, we may assume (wlog) that D is semi-normal.

(Basis): Suppose $G \leq_S [v]_g$. By L7.19, $[v]_g$ is not formularic. So, by L7.21, $G = v$.

(Subsumption): Suppose there is an \mathfrak{M}_S-derivation of $G <_S w$ and $[w]_s = [v]_s$. As above, $w = v$. So, IH yields the result.

(Lower Cut): Suppose that there are \mathfrak{M}_S-derivations of each of $(G^i \leq_S v^i)$ and that $(v^i) <_S ([v^i]_g, d)$ is an axiom. As above, $(v^i) = v$. So, IH applies to each of the selections ($G^i \leq_S v^i$). It is easy to see that the result follows by D7.22.
We prove the result by induction on free conditions and that \((v^i) <_S v^i\) is a literal of \(L\) and \(v^i <_S (\langle [v]_{S}, d \rangle, e)\) is an axiom. As above, \((v^i) = ([v]_{S}, d)\). So, IH applies to each of the selections \((G <_S v^i)\). It is easy to see that the result follows by D7.22.

Lemma 7.33

1. \(v \nleq [w + \cdots + v + \cdots]\).
2. \(v \nleq [w, \cdots, v, \cdots]\).
3. \(v \nleq [v]\)

Proof Each of (1.)-(3.) is proved similarly. We do (1.) for illustration. There are two cases: either \(A\) \([w + \cdots + v + \cdots] \sim [\bar{\psi}^0 + \cdots + \bar{\psi}^i + \cdots]\), where \(v \sim \bar{\psi}^i\). So, \(g(v) = \bar{\psi}^i\). Suppose \((\text{for reductio}) \ v_{\oplus} \sim [w + \cdots + v + \cdots]\). Then \(g(v_{\oplus}) = [\bar{\psi}^0 + \cdots + \bar{\psi}^i + \cdots]_{\oplus}\); so

\[
\bar{\psi}^i <_S g(v_{\oplus}) \Rightarrow \bar{\psi}^i <_S g(v) \Rightarrow \bar{\psi}^i <_S \bar{\psi}^i.
\]

By T7.30, \(\bar{\psi}^i < \bar{\psi}^i \in S^*\). But, by D6.3, \(\bar{\psi}^i < \bar{\psi}^i \notin S^*\). \(\perp\).

(B): We prove the result by induction on free conditions \(a = v_{\oplus}\), defined in D4.2. Suppose \((\text{for reductio}) \ a = \bar{\psi}^i \sim [w + \cdots + v + \cdots]\). If \(v_{\oplus}\) is formulaic, then the argument in (A) yields the result, so we may assume \((\text{wlog})\) that \(v_{\oplus}\) is not formulaic. So, L7.20 implies that \(v_{\oplus} = [w' + \cdots + v' + \cdots]\) and \(v' \sim v\), for some \(w', \cdots, v', \cdots\).

Basis: \(a = v_{\oplus}\) is a literal of \(L^+\). All such literals are formulaic. \(\perp\).

Inductive Step: Let \(v' = (a', b)\). IH is that, for all \(w^*, \cdots, v^* = (a', b^*)\), \(a' = v_{\oplus} \nleq [w' + \cdots + v' + \cdots]\). Since \(v' \sim v\), \(v_{\oplus} \sim v_{\oplus}\).

\[
\text{So, } v'_{\oplus} \sim v_{\oplus} = [w' + \cdots + v' + \cdots]. \text{ By IH, } v'_{\oplus} \nleq [w' + \cdots + v' + \cdots]. \ \perp.
\]

Lemma 7.34 (Irreversibility ⇒)

1. If \(v, H \nleq_S v\).
2. If \(H <_S v\), then there is no \(w \in H\) and no \(G\) such that \(v, G \leq_S w\).

Proof (2.) follows from (1.) by D7.22. In regard to (1.), either (A) \(v\) is formulaic, or (B) it is not.

(A): Suppose \((\text{for reductio})\) that \(v, H <_S v\). Then, by L7.26, there are \(\delta, \Delta\) such that \(v = \delta\) and \(\delta, \Delta < \delta \in S^*\). By D6.3, \(\delta, \Delta < \delta \notin S^*\).

(B): By D4.2 either (I) \(v_{\oplus} = (+, \emptyset)\) or (II) \(v_{\oplus}\) is a choice, combination, or singleton.
(I): An easy induction on \mathfrak{M}_S-derivations shows that, for all G, $G \not<_S v$.

(II): We prove the result by induction on free contents. The basis cases are handled by the arguments for (A) and (B)(I). All of the remaining cases are proved similarly. We do the case in which $v \oplus = \left[w_0 + w_1 + \cdots \right]_g$. IH is that, for each i, there is no \mathfrak{M}_S-derivation of $w_i, G <_S w_i$. Suppose $G <_S v$. By 7.31 (Maximality), there is a subset (u^j) of (w^j) and a covering (G^j) of G such that $(G^j \leq_S w^j)$. Suppose (for reductio) $v \in G^j$, for some j, so that $v, G^j \leq_S w^j$. Then, by L7.26, since $v \not\sim \bar{\psi}$ for any $\psi \in \mathcal{L}^+$, we do not.

Lemma 7.35 (Irreversibility \iff) If $G \leq_S v$ and $v \not\leq_S w$ for any H and any $w \in G$, then $G <_S v$.

Proof Suppose there is an \mathfrak{M}_S-derivation of $G \leq_S v$, but no \mathfrak{M}_S-derivation of $v, H <_S w$ for any H and any $w \in G$. There are two cases: either (A) $v \sim \bar{\psi}$, for some $\psi \in \mathcal{L}^+$, or (B) not.

(A): $v = g(v) = \bar{\psi}$. By L7.26, $G = \bar{\Delta}$ and $\Delta \leq \psi \in S^*$, for some Δ. By T7.30, for all $\delta \in \Delta$, $\psi \leq \delta \not\in S^*$. So, by D6.3, $(\forall \delta \in \Delta) \Delta \leq \psi \in S^*$, and so $\Delta < \psi \in S^*$. By T7.30 again, there is an \mathfrak{M}_S-derivation of $\Delta < \psi$.

(B): By L7.32, either $v \in G$ or there is an \mathfrak{M}_S-derivation of $G <_S v$. Since every instance of $v \leq_S v$ is an axiom, $v \not\in G$.

The restriction of $\bar{}$ to atomic sentences is an interpretation. By L7.1, the extension of that interpretation to molecular sentences ϕ is just $\bar{\phi}$. Clearly, there is an \mathfrak{M}_S-derivation of $G <_S v$ if $G <_S v$. So, the following theorem is immediate by L7.31(Maximality), L7.34(Irreversibility \Rightarrow), and L7.35(Irreversibility \Leftarrow):

Theorem 7.36 \mathfrak{M}_S is a model.

8 Completeness

Definition 8.1 We have assumed that the sentences of the language \mathcal{L} are well-ordered. It follows that the grounding claims for \mathcal{L} are well-ordered, and so can be indexed to an ordinal α, so that they form a set of the form $\{\tau_0, \tau_1, \ldots, \tau_{\beta}, \ldots\}$ ($\beta < \alpha$). Suppose also that S and T are finite sets of grounding claims such that $S \not\vdash T$. For each $\beta < \alpha$, define S_{β} by recursion:

1. $S_0 = S$;

2. $S_{\beta+1} = \begin{cases} S_{\beta} \cup \{\tau_{\beta}\}, & \text{if } S_{\beta}, \tau_{\beta} \not\vdash T; \\ S_{\beta}, & \text{otherwise.} \end{cases}$
3. \(S_\lambda = \bigcup_{\beta < \lambda} (S_\beta) \) for limit \(\lambda \).

Let \(S'_\alpha = \bigcup_{\beta < \alpha} (S_\beta) \).

Recall that \(\vdash \) was defined so that \(U \vdash V \iff U' \vDash V' \), for some \(U' \subseteq U \) and \(V' \subseteq V \). A simple induction on the definition of \(\vdash \) shows that, if \(U' \vDash V' \), then \(U' \) and \(V' \) are both finite, yielding the following lemma.

Lemma 8.2 (Syntactic Compactness) If \(U \vdash V \) then there are finite \(U' \subseteq U \) and \(V' \subseteq V \) such that \(U' \vdash V' \), \(U' \vdash V' \), and \(U \vdash V' \).

L8.2 and an induction on the cardinality of finite sets of grounding claims \(U \) straightforwardly yields

Lemma 8.3

1. If \(S \vDash U \) and \((\forall \tau \in U)S, \tau \vDash T \), then \(S \vdash T \).
2. If \(S \vdash U \) and \((\forall \tau \in U)S, \tau \vdash T \), then \(S \vdash T \).

Standard reasoning from L8.2, L8.3, and L5.21 (Main Witnessing Lemma) then shows

Lemma 8.4 If \(S \) and \(T \) are sets of grounding claims of \(L \) such that \(S \not\vdash T \), then there is a prime, consistent, witnessed extension \(S^* \) of \(S \) such that \(S^* \not\vdash T \).

Lemma 8.5 If \(S \) and \(T \) are sets of grounding claims of \(L \) such that \(S \not\vdash T \), then there is a model \(M \) such that \((\forall \sigma \in S)M \vDash \sigma \) and \(M \not\vDash T \).

Proof Suppose \(S \not\vDash T \). By L8.4, there is a prime, witnessed extension \(S^* \) of \(S \) such that \(S^* \not\vDash T \). By T6.19, the canonical model basis \(S^* \) for \(S^* \) is such that, for all grounding claims \(\sigma \) of the language \(L^* \) of \(S^* \), \(\sigma \in S^* \) iff \(\sigma \in S^* \). By T7.36, \(M_{S^*} \) is a model. By T7.30, \((\forall \sigma \in S^*)M_{S^*} \vDash \sigma \). Since \(S \subseteq S^* \), \((\forall \sigma \in S)M_{S^*} \vDash \sigma \). By T7.30, \(M_{S^*} \vDash T \iff (\exists \sigma) \sigma \in (S^* \cap T) \). Since \(S^* \not\vDash T \), \(S^* \cap T = \emptyset \). So, \(M_{S^*} \not\vDash T \).

Theorem 8.6 (Completeness) If \(S \vDash T \), then \(S \vdash T \).

Proof Suppose \(S \vDash T \). By the definition of \(\vDash \), there is no model \(M \) such that \((\forall \sigma \in S)M \vDash \sigma \) and \(M \not\vDash T \). By L8.5, \(S \vdash T \).

9 Further Work

We make some suggestions as to how further work on the ideas presented in this paper might proceed.
9.1 Going infinitary

Our system is finitary: in each of the full grounding claims $\Delta \leq A$ and $\Delta < A$, the set of formulas Δ must be finite; and $T \vdash S$ just in case there are finite sets $T' \subseteq T$ and $S' \subseteq S$ such that $T' \vdash S'$. It will prove desirable for certain purposes to relax the first of these requirements and allow in principle for a statement to have infinitely many grounds; and once this is done, it will be natural to relax the second of these requirements and to allow the grounding claims to the left and right of \vdash to be infinite.

In order to stay within the confines of ZF, we shall set an upper limit $\kappa \geq \aleph_0$ on the size of the sets Δ, T and S. Thus the extended formation rules will now state that $\Delta \leq A$ and $\Delta < A$ are grounding claims, for A a formula and Δ a set of formulas of cardinality $\leq \kappa$, and that $T \vdash S$ is a sequent for T and S sets of grounding claims of cardinality $\leq \Psi(\kappa)$.

The system can stay much as before, but with changes to the thinning, snip, cut and reverse subsumption rules. These become:

THINNING If $T \vdash S$, then $T, T' \vdash S, S'$

GENERALIZED SNIP $T \vdash S$ if, for some set U of grounding claims, $T, U_1 \vdash U_2, S$ whenever $U_1 \cup U_2 = U$ and $U_1 \cap U_2 = \emptyset$

GENERALIZED CUT $(\Delta_i \leq \phi_i), (\phi_i) \leq \psi \vdash (\Delta_i) \leq \psi$

GENERALIZED REVERSE SUBSUMPTION $(\phi_i < \psi), (\phi_i) \leq \psi \vdash (\phi_i) < \psi$

These new rules are required in the infinitary case since they cannot be obtained by iterated application of the original rules in the finitary case. Finally, once we allow applications of these infinitary rules, there is no longer any point in extending \vdash to \triangleright.

The semantics for the original system is also finitary: each of the operations of combination and combination is only defined on finite sequences of contents, and \models relates finite sets. Once we allow infinitary grounds, we must relax the requirement of finitude on \models. Further, it is natural to allow the infinitary application of combination and, again, in order to stay within the confines of ZF, we set an infinite upper cardinal bound κ on the ordinal length of the sequences to which they may apply. Thus in a selection system, the operations Π and Σ will be defined on any sequence $\langle v_\zeta : \zeta < \alpha \rangle$ of contents v_ζ, for $\alpha \leq \kappa$.

The proof of soundness will go through, much as before. The proof of completeness will also go through, but calls for the following changes:

(i) Since cut formulas can no longer be removed one at a time, the simplifications which result from ‘telescoping’ derivations in some of the proofs in §5 can no longer be made;

(ii) The use of finitary conjunctions, disjunctions, and free conditions in §4 must now be replaced with infinitary conjunctions, disjunctions, and free conditions, which are then subsequently used in defining the canonical
model basis and the infinitary application of combination and choice in the canonical model;

(iii) The proof in §8 that every consistent set of grounding claims has a suitable consistent and prime extension can now appeal to the generalized version of SNIP and thereby becomes simpler and more direct.

9.2 Quantification

Our system is sentential; the formulas flanking a grounding claim are those of sentential logic - formed from sentential atoms by means of the usual truth-functional connectives. The question therefore arises as to how to extend the system with quantifiers so that the formulas flanking a grounding claim can be those of an arbitrary first order language.

In order to be able to account for the grounds for a universal statement, we presuppose given a domain D of individuals (as in [Fine, 2012b]). Suppose then that a_1, a_2, \ldots are the distinct individuals of D; and let $D = \{a_1, a_2, \ldots\}$ be the set of corresponding names for those individuals. As before, we stay within the confines of ZF by requiring that the cardinality of D be some $\alpha \leq \kappa$. An interpretation over D should then assign to every n-place predicate F a function F taking each n-tuple of individuals from D into a content; and the content of the atomic sentence $Fa_{k_1}a_{k_2}\ldots a_{k_n}$ should then be taken to be $F(a_{k_1}, a_{k_2}, \ldots, a_{k_n})$.

When it comes to the quantifiers, we might think of a universal statement $\forall x \phi(x)$ as the conjunction $\phi(a_1) \land \phi(a_2) \land \ldots$ of its instances and of an existential statement $\exists x \phi(x)$ as the disjunction $\phi(a_1) \lor \phi(a_2) \lor \ldots$ of its instances. Since there is an obvious extension of the introduction and elimination rules for binary conjunction and disjunction to conjunctions and disjunctions of arbitrary length, we may read off the introduction and elimination rules for universal and existential quantification from the extended rules for conjunction and disjunction. We are thereby lead to adopt the following pair of positive introduction and elimination rules for the universal quantifier:

$$\forall I \vdash \phi(a_1), \phi(a_2), \ldots < \forall x \phi(x)$$

$$\forall E \Delta < \forall x \phi(x) \vdash \Delta \leq \phi(a_1), \phi(a_2), \ldots$$

In the statement of $\forall E$, $S \models \Delta \leq \chi_1, \chi_2, \ldots$ abbreviates

$$S \models (\Delta_1^1 \leq \chi_1; \Delta_2^1 \leq \chi_2, \ldots \mid \Delta_1^2 \leq \chi_1; \Delta_2^2 \leq \chi_2, \ldots \mid \ldots)$$

where $(<\Delta_1^1, \Delta_2^1, \ldots>)$ are exactly the sequences (of appropriate length) for which $\Delta = \Delta_1^1 \cup \Delta_2^1 \cup \ldots$ [Fine, 2012b, 64].

We also have the following pair of positive introduction and elimination rules for the existential quantifier:

$$\exists I \vdash \phi(a), \phi(b), \ldots < \exists x \phi(x)$$

$$\exists E \Delta < \exists x \phi(x) \vdash (\Delta \leq (\phi(b_1)) \mid \Delta \leq (\phi(c_j)) \mid \ldots).$$
where \{a, b, \ldots\} is any non-empty subset of D and \{(b_i)\}, \{(c_j)\}, \ldots are the non-empty subsets of D. Here we have extended the notation again. Intuitively, the distributive grounding claim \(\Delta \leq \langle \phi(b_i) \rangle\) is a disjunction (over all of the ways of divvying up the members of \(\Delta\)) of conjunctions of grounding claims. The extended notation allows us to disjoin a number of those disjunctions. In this case,

\[S \models (\Delta_0 \leq \Gamma_0 \mid \Delta_1 \leq \Gamma_1 \mid \cdots) \]

has the form \(S \models ((U_0|V_0|\ldots) \mid (U_1|V_1|\ldots)).\) Here and elsewhere, \(S \models ((U_0|V_0|\ldots) \mid (U_1|V_1|\ldots) \mid \cdots)\) abbreviates \(S \models (T_0'|T_1'|\ldots)\) where \(T_0', T_1', \ldots\) are exactly the sets obtained by selecting exactly one of the members of \(\{U_i, V_i, \ldots\}\) for each \(i\), and taking the union. In effect, we are using distribution principles to put \(S \models ((U_0|V_0|\ldots) \mid (U_1|V_1|\ldots))\) back into disjunctive normal form. The negative introduction and elimination rules may be stated similarly. We should note that when the domain D is of infinite cardinality \(\kappa\), these rules require us to extend the language in the manner previously described under \$9.1.\)

There is a corresponding semantic treatment. For, as we have seen, the semantics for binary conjunction and disjunction may be extended to conjunctions and disjunctions of arbitrary length; and we may then let the semantics for these conjunctions and disjunctions of arbitrary length be our guide in providing a semantics for the quantifiers. However, there is a hitch. For the semantics for \(\phi(a_1) \land \phi(a_2) \land \ldots\) or for \(\phi(a) \lor \phi(b) \lor \ldots\) takes account of the order of the conjuncts or of the disjuncts. Thus the truth-condition for \(\phi(a_1) \land \phi(a_2) \land \ldots,\) for example, will be the combination of the contents of \(\phi(a_1), \phi(a_2), \ldots\) in that order. Since the combination may vary with the order, this makes it unclear what the content of the universal statement should be taken to be.

This is, in fact, a general difficulty for any semantics which is based on the semantic equivalence of \(\forall x \phi(x)\) to \(\phi(a_1) \land \phi(a_2) \land \ldots\) and which is sensitive to the order of the conjuncts in a conjunction. There are a number of ways within our own framework of dealing with this difficulty. Perhaps the most conservative option is to suppose given a well-ordering \(a_1, a_2, \ldots\) of the individuals of D and a corresponding well-ordering \(a_1, a_2, \ldots\) of the individual names. We can then stipulate that, for semantical purposes, \(\forall x \phi(x)\) is to be taken to be equivalent to \(\phi(a_1) \land \phi(a_2) \land \ldots\) in that very order, so that its truth-condition is to be the combination of the contents of \(\phi(a_1), \phi(a_2), \ldots\) in that very order; and similarly for \(\exists x \phi(x)\). This is, of course, to introduce an arbitrary element into the semantics, since any other well-ordering of the individuals would have done just as well. But we may think of the combination (or choice) of the specific sequence of contents of \(\phi(a_1), \phi(a_2), \ldots\) as representing the combination (or choice) of the corresponding \textit{set} of contents, without our thereby having to extend the existing apparatus of combination and choice to include their application to sets rather than sequences.

The semantic clauses for the truth-functional connectives and for the various grounding claims may proceed as before. Relative to the fixed well-ordered sequence \(\langle a_\zeta: \zeta < \kappa\rangle\) of the individuals of D, (and applying a semantic framework in which we use individual constants rather than assignments) we may adopt
the following clauses for the universal and existential quantifiers:

\[
\forall x \phi(x) = (\Pi(\phi(a_\zeta) : \zeta \leq \kappa), \Sigma(\neg \phi(a_\zeta) : \zeta \leq \kappa))
\]

\[
\exists x \phi(x) = (\Sigma(\phi(a_\zeta) : \zeta \leq \kappa)), \Pi(\neg \phi(a_\zeta) : \zeta \leq \kappa))
\]

The previous quantificational system is then readily shown to be sound for the proposed semantics. However, it is not complete since, under the semantics, the contents of \(\forall x \phi(x) \) and \(\forall y \phi(y) \) (and of \(\exists x \phi(x) \) and \(\exists y \phi(y) \)) will always be the same and so \(\forall x \phi(x) \leq \forall y \phi(y) \) and \(\exists x \phi(x) \leq \exists y \phi(y) \) should also be theorems. Fine [2012b, 67] proposes adding them as additional axioms. However, we require, more generally, that \(A \leq A' \) should be a theorem whenever \(A' \) is an alphabetic variant on \(A \); and we conjecture that our semantics will be complete with respect to the resulting system.

Quantifiers with variable domains raise additional complications. In this case, we should take \(D \) to consist of all the candidate individuals over which the quantifiers may range. The different domains over which the quantifiers may vary will then be the subsets of \(D \); and, for simplicity, we take \(D \) itself to be a set.

We follow [Fine, 2012b, 59 et seq.] in supposing that, for each subset \(E \) of \(D \), there is a totality statement \(T_E \) to the effect that the individuals of \(E \) are exactly the individuals that there are.\(^{10}\) To simplify the statement of rules for the quantifiers, we introduce further notation. Let \(A(\Delta \leq \Gamma_1 \leq \Gamma_2 \ldots) \) = \((\Delta \leq \Sigma_1 \leq \Sigma_2 \ldots) \), where \(\{\Sigma_i\} \) are exactly the non-empty unions of subsets of \(\{\Gamma_j\} \). Intuitively, \(A \) handles elimination of strict grounding claims obtained by Amalgamation from one or more of \((\Delta \leq \Gamma_i) \). The positive introduction and elimination rules for the universal and existential quantifier now take the following form:

\[
\forall I \models T_E, \phi(a_1), \phi(a_2), \ldots < \forall x \phi(x) \quad (\text{where } E = \{a_1, a_2, \ldots\})
\]

\[
\forall E \Delta < \forall x \phi(x) \models A(\Delta \leq \Gamma_{E_1}, \phi(a_{E_1}^1), \phi(a_{E_1}^2), \ldots, \Delta \leq T_{E_2}, \phi(a_{E_2}^1), \phi(a_{E_2}^2), \ldots, \ldots) \quad (\text{where } \{E_1, E_2, \ldots\} = \Psi(D) \text{ and } E_i = \{a_{E_i}^j\})
\]

\[
\exists I \models T_E, \phi(a), \phi(b), \ldots < \exists x \phi(x) \quad \text{for some non-empty subset } \{a, b, \ldots\} \text{ of } E \subseteq D
\]

\[
\exists E \Delta < \exists x \phi(x) \models A(\Delta \leq T_{F_1}, \phi(a_{F_1}^1), \phi(a_{F_2}^1), \ldots, \Delta \leq T_{F_2}, \phi(b_{F_2}^1), \phi(b_{F_2}^2), \ldots, \ldots) \quad (\text{where } \{F_1, F_2, \ldots\} = \Psi(D) \setminus \{\emptyset\} \text{ and } F_i = \{b_{F_i}^j\}).
\]

Just as \(\forall x \phi(x) \) was previously taken to be equivalent to \(\phi(a_1) \land \phi(a_2) \land \ldots \), we might now think of taking \(\forall x \phi(x) \) to be equivalent to

\[
(T_{E_0} \land \phi(a_{0_0}) \land \phi(a_{0_1}) \land \ldots) \lor (T_{E_1} \land \phi(a_{1_0}) \land \phi(a_{1_1}) \land \ldots) \lor \ldots
\]

\(^{10}\)To be strictly accurate, when \(E = \{a, b, c, \ldots\} \), [Fine, 2012b] would use \(T(a, b, c, \ldots) \) for the totality statement in place of \(T_E \). But the present formulation is preferable in that it takes no account of the order in which the individual names are given.
where the E_0, E_1, \ldots range over all of the subsets of D and where each E_k is taken to be of the form $\{a_{k_0}, a_{k_1}, \ldots\}$. However, the previous inferential rules can no longer be justified on the basis of this equivalence, since it sanctions taking each conjunction $(T_{E_k} \land \phi(a_{k_0}) \land \phi(a_{k_1}) \land \ldots)$ to be a strict ground for $\forall x \phi(x)$, in violation of the Elimination Rule, which requires that the conjuncts, not the conjunction, should be the maximal grounds.

For the same reason, the proposed equivalence of $\forall x \phi(x)$ to

$$(T_{E_0} \land \phi(a_{0_0}) \land \phi(a_{0_1}) \land \ldots) \lor (T_{E_1} \land \phi(a_{1_0}) \land \phi(a_{1_1}) \land \ldots) \lor \ldots$$

can no longer serve as a guide to the semantics, since the content of $(T_{E_k} \land \phi(a_{k_0}) \land \phi(a_{k_1}) \land \ldots)$ would then serve as an immediate selection from the truth-condition for $\forall x \phi(x)$. Moreover, it would appear to be impossible in general to regard the truth-condition of $\forall x \phi(x)$ either as a combination or a choice, for it is the contents of $T_{E_k}, \phi(a_{k_0}), \phi(a_{k_1}), \ldots$ for each E_k that will figure as the immediate selections from the truth-condition of $\forall x \phi(x)$ and these are not of the right form to figure as the immediate selections either from a combination or from a choice.

What we would like to be able to say is not that $\forall x \phi(x)$ is equivalent to a disjunction of conjunctions but that, relative to a specification E_k of the domain, $\forall x \phi(x)$ should be equivalent to $\phi(a_{k_0}) \land \phi(a_{k_1}) \land \ldots$. The immediate grounds of $\forall x \phi(x)$ are then given, for each specification E_k of the domain, by T_{E_k} and each of $\phi(a_{k_0}), \phi(a_{k_1}), \ldots$. We are appealing here to the idea of dependent combinations and choices (somewhat akin to dependent types), which are such that what the combination or choice is can vary with the circumstances. Take a weekly menu, for example, telling you what is on the menu for different days of the week. This would correspond to a dependent choice and, to make an immediate selection from such a menu, one would select some day or some days of the week at which one wanted to dine and, for each such day, one would then select some item or items from the menu for that day. From a mathematical rather than a gastronomic point of view, one might think of a dependent combination (or choice) as a function taking indices from a given index set I into regular combinations (or choices). Suppose, for illustrative purposes, that $I = \{i, j\}$ and that f is a dependent combination taking the index i into the combination $[a, b]$ and the index j into the combination $[c, d]$. Then the immediate selections from f would be $\{i; a, b\}, \{j; c, d\}$, where the semi-colon after i and j is used to indicate their status as indices.

We might, more generally, take a dependent combination (or choice) to be a function which takes the indices of I into other dependent combinations (or choices). This is in effect a recursive account with the dependent combinations (or choices) of order $n + 1$ understood as functions from the index set into the dependent combinations (or choices) of order n.

To apply these general ideas in the present case, we should suppose that the semantics assigns a content τ_E to each totality statement $T_E, E \subseteq D$. Our previous index set I is then taken to consist of the set $T = \{\tau_E : E \subseteq D\}$ of totality contents. Thus the combination or choice represented by a universal or
existential quantification is taken, in effect, to be dependent upon the choice of domain.

We now define the content of a universal statement $\forall x \phi(x)$ or of an existential statement $\exists x \phi(x)$ relative to a choice of a domain $E \subseteq D$ as follows:

\begin{align*}
(*) \quad \forall x \phi(x)_E &= \langle \Pi(a_\xi) : a_\xi \in E \rangle \cdot \Sigma(\neg \phi(a_\xi) : a_\xi \in E) \\
(*) \quad \exists x \phi(x)_E &= \langle \Sigma(\phi(a_\xi) : a_\xi \in E) \rangle \cdot \Pi(\neg \phi(a_\xi) : a_\xi \in E) \\
\end{align*}

where the a_ξ keep their original order in the formation of a combination or choice but are now restricted to the given domain E. We then let $\forall x \phi(x)$ and $\exists x \phi(x)$ be the functions on $T = \{ \tau_E : E \subseteq D \}$ for which:

\begin{align*}
(**) \quad \forall x \phi(x)_{\tau_E} &= \forall x \phi(x)_E \\
(**) \quad \exists x \phi(x)_{\tau_E} &= \exists x \phi(x)_E \\
\end{align*}

Note that when $\phi(x)$ itself contains quantifiers, the content of $\phi(a_\xi)$ or of $\neg \phi(a_\xi)$ will also involve the appeal to dependent combination or choice.

The present approach has what might be regarded as a somewhat untoward consequence. For suppose that the domain D consists of three objects a, b, and c. Let $E = \{a, b\}$ and $F = \{b, c\}$. Then we have: $T_E, Pa, Pb < \forall x P x$ and $T_F, Pb, Pc < \forall x P x$. So by Amalgamation, $T_E, T_F, Pa, Pb, Pc < \forall x P x$. Or even without appealing to Amalgamation, we have that $T_E, T_F, Pa, Pb, Pc < \forall x P x \wedge \forall x P x$. But these may be regarded as odd – or, at least, as unintended – results. For one might want to insist that only one specification of the domain can be relevant to the truth of a quantificational statement.

The difficulty here lies not just in the semantics but also in the logic; and perhaps the only plausible way in which it might be removed is to build into the syntax of ground a distinction between what one might call “back-grounds” and “fore-grounds”. Thus $\Delta : \Gamma < A$ (or $\Gamma <_\Delta A$) is taken to mean that, relative to the back-grounds Δ, Γ constitute fore-grounds for A.\(^\text{11}\) Within the logic, the back-grounds should be regarded as a “fixed” parameter to the other rules, which, in particular, would not be subject to Amalgamation.

On the semantic side, we would dispense with the conception of dependent combination and choice and take the selection function itself to be relative to the specification of the underlying domain. Clauses (*) above would then take the form:

\begin{align*}
(*)' \quad \forall x \phi(x)_E &= \langle \Pi(a_\xi) : a_\xi \in E \rangle \cdot \Sigma(\neg \phi(a_\xi) : a_\xi \in E) \\
(*)' \quad \exists x \phi(x)_E &= \langle \Sigma(\phi(a_\xi) : a_\xi \in E) \rangle \cdot \Pi(\neg \phi(a_\xi) : a_\xi \in E) \\
\end{align*}

\(^\text{11}\)A related distinction between background conditions and genuinely causal conditions is familiar from the literature on cause. But we are here suggesting that it has a certain logical and semantic significance within the theory of ground. The distinction might also relevant to the question of whether grounding is an internal relation. For we may allow grounding by the fore-grounds to be contingent on which back-grounds hold even though grounding by the fore- and the back-grounds together is not. For further discussion of these issues, see [Baron-Schmitt, 2021],[deRosset, 2017, 559],[Litland, 2015],[Poggiolesi, 2018],[Skiles, 2015],[Trogdon, 2013]).
and the content of a formula would in general be taken to be relative to the specification E of the domain.

9.3 Propositional identities

In [Fine, 2012b, 67], it was suggested that one might want to add certain ground-theoretic equivalences to the logic of ground. In the case of conjunction, one might want to insist upon commutativity in the form:

\[(\phi \land \psi) \leq (\psi \land \phi).\]

and similarly in the case of disjunction. However, the ground-theoretic equivalence of \(\phi \land \psi\) and \(\psi \land \phi\) would not guarantee the ground-theoretic equivalence, for example, of \(\neg(\phi \land \psi)\) and \(\neg(\psi \land \phi)\); and so, just as we previously suggested in the case of the quantifiers that one might wish to insist upon the ground-theoretic equivalence of any two alphabetic variants, so we might, in the present case, wish to insist upon the ground-theoretic equivalence of \(\theta\) and \(\theta'\) whenever \(\theta'\) could be obtained from \(\theta\) by replacing a subformula \((\phi \land \psi)\) with \((\psi \land \phi)\) (and similarly in the case of disjunction). A corresponding semantic treatment could be obtained by subjecting combination and choice to the corresponding conditions. However, certain propositional equivalences are incompatible with the existing rules. The equivalence of \(\neg\neg\phi\) with \(\phi\), for example, is incompatible with \(\phi\) being a strict ground for \(\neg\neg\phi\) and, likewise, the equivalence of \(\phi \lor \phi\) with \(\phi\) is incompatible with \(\phi\) being a strict ground for \(\phi \lor \phi\); and associativity for either disjunction or conjunction also runs into difficulties. For:

\[
(\phi \lor \psi) \leq (\psi \lor \phi) \leq (\phi \lor (\psi \lor \psi)) \leq (\psi \lor (\phi \lor \psi)) \leq (\psi \lor (\psi \lor \psi)) \leq (\phi \lor (\psi \lor \psi)) \leq (\psi \lor \psi) \leq (\phi \lor \psi) \leq (\psi \lor \psi)
\]

\[\vdash (\phi \lor \psi) \leq (\psi \lor \phi) \leq (\phi \lor (\psi \lor \psi)) \leq (\psi \lor (\phi \lor \psi)) \leq (\psi \lor (\psi \lor \psi)) \leq (\phi \lor (\psi \lor \psi)) \leq (\psi \lor (\phi \lor \psi)) \leq (\psi \lor \psi) \leq (\phi \lor \psi) \leq (\psi \lor \psi)
\]

A similar argument shows that associativity for conjunction implies that \(\phi \preceq \psi\). Letting \(\phi = \neg\neg A\) and \(\psi = A\), we get an inconsistency.

Under a “flat” approach to the semantics, by contrast, these various equivalences will hold. It turns out that our approach can be modified and extended in such a way as to accommodate one such “flat” approach, the theory of content and an associated logic of ground given by Angell’s theory of analytic containment.\(^\text{12}\) Angell’s theory includes all of the equivalences noted above, as well as DeMorgan equivalences. So, a suitable modification of the approach here, with frames given by choice and combination operations and interpretations assigning contents to formulae, yields the logic of GG if choice and combination are constrained as in the semantics of §2, and the logic of the Angellic system if choice and combination are constrained differently. Thus, each logic can be

\(^\text{12}[\text{Angell, 1989}].\) See [Correia, 2010], [Fine, 2012b], and [Fine, 2016] for semantic characterizations of Angell’s system and the corresponding logic of ground. See [deRosset, unpublished] for a specification of the modifications of the present approach to capture GG (under one set of constraints on choice and combination) and Angell’s system (under another set of constraints), and for proofs.
characterized as a special case of a single, general approach. It remains unclear whether other interesting views of propositional identity can be characterized in a similar way.

9.4 Lambda abstraction

The system of [Fine, 2012b] contains some obvious rules for lambda abstraction. In extending the semantics to the closed lambda abstract \(\lambda x \phi(x) \), the obvious strategy is to take its semantic value to be a function which assigns, to each individual \(a \) of the domain, the content \([\phi(a)],[\neg\phi(a)]\). The contents of \(\phi(a) \) and \(\neg\phi(a) \) are “raised;” and we thereby guarantee that \(\phi(a) \) is the immediate strict ground for \(\lambda x \phi(x)a \) and \(\neg \phi(a) \) the immediate strict ground for \(\neg \lambda x \phi(x)a \). However, this has the undesirable consequence that \(\lambda x \phi(x)a \) and \(\neg \neg \phi(a) \) will always have the same content and hence be intersubstitutable in any ground-theoretic context.

One way round this difficulty is to suppose that there are different ways in which a content can be raised. Thus the semantics for negation involves one form of raising, under which the content of a statement is converted into a falsity condition for its negation, while the semantics for lambda abstraction will involve another form of raising, under which the content of a statement or of its negation, is converted into a truth or falsity condition for the corresponding complex predication. From this point of view, our previous identification of \([v]\) with a singleton combination or choice was a harmless simplification which should be dropped once different forms of raising are in play.

References

