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Summary

� Stomata regulate important physiological processes in plants and are often phenotyped by

researchers in diverse fields of plant biology. Currently, there are no user-friendly, fully auto-

mated methods to perform the task of identifying and counting stomata, and stomata density

is generally estimated by manually counting stomata.
� We introduce StomataCounter, an automated stomata counting system using a deep con-

volutional neural network to identify stomata in a variety of different microscopic images. We

use a human-in-the-loop approach to train and refine a neural network on a taxonomically

diverse collection of microscopic images.
� Our network achieves 98.1% identification accuracy on Ginkgo scanning electron micro-

scropy micrographs, and 94.2% transfer accuracy when tested on untrained species.
� To facilitate adoption of the method, we provide the method in a publicly available website

at http://www.stomata.science/.

Introduction

Stomata are important microscopic organs that mediate impor-
tant biological and ecological processes and function to exchange
gas with the environment. A stoma is composed of a pair of guard
cells forming an aperture that, in some species, are flanked by a
pair of subsidiary cells (Bergmann & Sack, 2007). Regulation of
the aperture pore size, and hence the opening and closing of the
pore, is achieved through changing turgor pressure in the guard
cells (Shimazaki et al., 2007). Stomata have evolved to permit
exchange between internal and external sources of gases, most
notably CO2 and water vapour, through the impervious layer of
the cuticle (Kim et al., 2010).

Because of their importance in regulating plant productivity
and response to the environment, stomata have been one of the
key functional traits of interest to researchers working across
scales in plant biology. At the molecular level, regulation of stom-
ata has been the subject of numerous genetic studies (see Shi-
mazaki et al., 2007 and Kim et al., 2010 for detailed reviews) and
crop improvement programme have modified stomata pheno-
types to increase yield (Fischer et al., 1998). Stomata also mediate
trade-offs between carbon gain and pathogen exposure that are of
interest to plant ecophysiologists and pathologists. For example,

foliar pathogens frequently exploit the aperture pore as a site of
entry. In Populus, some species, and even populations within
species, have evolved growth strategies that maximise carbon fixa-
tion through increased stomatal density and aperture pore size on
the adaxial leaf surface. This adaptation results in a cost of
increased infection by fungal pathogens that have more sites of
entry to the leaf (McKown et al., 2014). Stomata, as sites of water
vapour exchange, are also implicated in driving environmental
change across biomes (Hetherington & Woodward, 2003) and
variation of stomatal density and aperture pore length are linked
to changes in ecosystem productivity (Wang et al., 2015).
Stomatal traits are of particular interest to paleoecologists and
paleoclimatologists due to the relationship between stomatal
traits and gas exchange. Measurements of stomatal density from
fossil plants have been proposed as an indicator of paleoatmo-
spheric CO2 concentration (Royer, 2001), and measuring stom-
atal traits to predict paleoclimates has become widely adopted
(McElwain & Steinthorsdottir, 2017).

Researchers across a wide variety of disciplines in plant biology
will phenotype stomatal traits for decades to come due to their
physiological importance. A typical stomatal phenotyping
pipeline consists of collecting plant tissue, creating a mounted tis-
sue for imaging, imaging the specimen, and manual phenotyping
of a trait of interest. This last step can be the most laborious,
costly, and time-consuming task, reducing the efficiency of the
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data acquisition and analysis pipeline. This is especially impor-
tant in large-scale plant breeding and genome-wide association
studies, in which phenotyping has been recognised as the new
data collection bottleneck, in comparison with the relative ease of
generating large genome sequence datasets (Hudson, 2008).

Here, we seek to minimise the burden of high-throughput
phenotyping of stomatal traits by introducing an automated
method to identify and count stomata from micrographs.
Although automated phenotyping methods using computer
vision have been developed (Higaki et al., 2014; Laga et al., 2014;
Duarte et al., 2017; Jayakody et al., 2017), these highly spe-
cialised approaches require feature engineering specific to a col-
lection of images. These methods do not transfer well to images
created with novel imaging and processing protocols. Addition-
ally, tuning hand-crafted methods to work on a general set of
conditions is cumbersome and often impossible to achieve.
Recent applications of deep learning techniques to stomata
counting have demonstrated success (Bhugra et al., 2018; Aono
et al., 2019), but are not easily accessible to the public and use
training data sets sampled from few taxa.

Deep convolutional neural networks (DCNN) circumvent
specialised approaches by training the feature detector along with
the classifier (LeCun et al., 2015). The method has been widely
successful for a range of computer vision problems in biology
such as medical imaging (see Shen et al. (2017) for a review) or
macroscopic plant phenotyping (Ubbens & Stavness, 2017). The
main caveat of deep learning methods is that large numbers of
parameters have to be trained in the feature detector. Improve-
ments in network structure (He et al., 2016) and training proce-
dure (Simonyan & Zisserman, 2014) have helped training of
large networks that incorporate gradient descent learning meth-
ods and prove to be surprisingly resilient against overfitting (Pog-
gio et al., 2017). Nevertheless, a large number of correctly
annotated training images is still required to allow the optimiser
to converge to a correct feature representation. Large labelled
training sets such as the ImageNet database exist (Deng et al.,
2009), but for a highly specialised problems, such as stomata
identification, publicly available datasets are not available at the
scale required to train a typical DCNN.

We solve these problems by creating a large and taxonomically
diverse training dataset of plant cuticle micrographs and by creat-
ing a network with a human-in-the-loop approach. Our

development of this method is provided to the public as a web-
based tool called StomataCounter, which allows plant biologists
to rapidly upload plant epidermal image datasets to pre-trained
networks and then annotate stomata on cuticle images when
desired. We applied this tool to a the training dataset and
achieved robust identification and counts of stomata on a variety
of angiosperm and pteridosperm taxa.

Materials and Methods

Biological material

Micrographs of plant cuticles were collected from four sources:
the Cuticle database (https://cuticledb.eesi.psu.edu/, Barclay
et al., 2007); a Ginkgo common garden experiment (Barclay &
Wing, 2016); a new intraspecific collection of balsam poplar
(Populus balsamifera); and a new collection from living material
at the Smithsonian, National Museum of Natural History
(USNM) and the United States Botanic Garden (USBG)
(Table 1). Specimens in the cuticle database collection were pre-
viously prepared by clearing and staining leaf tissue and then
imaged. The entire collection of the cuticle database was down-
loaded on 16 November 2017. Downloaded images contained
both the abaxial and adaxial cuticles in a single image, and were
automatically separated with a custom bash script. Abaxial cuticle
micrographs were discarded if no stomata were visible or if the
image quality was so poor that no stomata could be visually iden-
tified by a human. Gingko micrographs were prepared by chemi-
cally separating the upper and lower cuticles and imaging with an
environmental scanning electron microscopy (SEM) Barclay &
Wing (2016). To create the poplar dataset, dormant cuttings of
P. balsamifera genotypes were collected across the eastern and
central portions of its range in the United States and Canada by
S. R. Keller et al. and planted in common gardens in Vermont
and Saskatchewan in 2014. Fresh leaves were sampled from June
to July 2015 and immediately placed in plastic bags and then a
cooler for temporary storage, up to 3 h. In a laboratory, nail pol-
ish (Sally Hansen, big kwik dry top coat no. 42494) was applied
to a 1 cm2 region of the adaxial and abaxial leaf surfaces, away
from the mid-vein, and allowed to dry for c. 20 min. The dried
cast of the epidermal surface was lifted with clear tape and
mounted onto a glass slide. The collection at the USNM and

Table 1 Description of the datasets used for training and testing the network.

Dataset

Training Test

Preparation method
Imaging
method Magnification

Z-stacks
applied CitationNimages Nspecies Nimages Nspecies

Poplar 3123 1 175 1 Nail polish DIC 400 No This paper
Ginkgo 408 1 200 1 Lamina peel SEM 200 No Barclay &Wing (2016)
Cuticle DB 678 613 696 599 Clear & stain Brightfield 400 No Barclay et al. (2007)
USNM/USBG 409 124 696 132 Nail polish DIC, SEM 100, 200, 400 Yes This paper
Aorta – – 116 1 Elastic-Van Gieson Brightfield 40 No Johnson & Cipolla (2017)
Breast cancer – – 58 1 Hematoxylin & eosin stain Brightfield No Gelasca et al. (2008)
Total 4618 739 1941 735

DIC, Differential interference contrast; SEM, scanning electron microscopy. 1Training SEM n = 15; 2Training set, n = 4.
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USBG was made similarly from opportunistically sampled tissues
of the gardens around the National Museum of Natural History
building. USBG collections were focused on the Hawaiian,
southern exposure, and medicinal plant, and tropical collections.
The taxonomic identity of each specimen was recorded according
to the existing label next to each plant. The USNM/USBG col-
lection was imaged with an Olympus BX-63 microscope using
differential interference contrast (DIC). Some specimens had
substantial relief and z-stacked images were created using cellSens
image stacking software (Olympus Corp., Tokyo, Japan). Slides
were imaged in three non adjacent areas per slide. The poplar col-
lection was imaged with an Olympus BX-60 using DIC and each
slide was imaged in two areas. Mounted material for the USNM/
USBG and Ginkgo collections are deposited in the Smithsonian
Institution, National Museum of Natural History in the Depart-
ment of Paleobiology. Material for the poplar collection is
deposited in the Keller laboratory in the Department of Plant
Biology at the University of Vermont, USA. The training dataset
totaled 4618 images (Table 1).

Deep convolutional neural network

We used a DCNN to generate a stomata likelihood map for each
input image, followed by thresholding and peak detection to

localise and count stomata (Fig. 1). Because dense per-pixel annota-
tions of stoma vs non stoma are difficult to acquire in large quan-
tity, we trained a simple image classification DCNN based on the
AlexNet structure instead (Krizhevsky et al., 2012), and copied the
weights into a fully convolutional network to allow per-location
assessment of stomata likelihood. Although this method does not
provide dense per-pixel annotations, the resulting resolution proved
to be high enough to differentiate and count individual stomata.

We used pre trained weights for the lowest five convolutional
layers from conv1 to conv5. The weights were taken from the
ILSVRC image classification tasks (Russakovsky et al., 2015) made
available in the caffenet distribution (Jia et al., 2014). All other lay-
ers were initialised using Gaussian initialisation with scale 0.01.

Training was performed using a standard stochastic gradient
descent solver as in Krizhevsky et al. (2012), with learning rate
0.001 for pre trained layers and 0.01 for randomly initialised lay-
ers with a momentum of 0.9. Because the orientation of any indi-
vidual stomata does not hold information for identification, we
augmented data by rotating all training images into eight differ-
ent orientations, applied random flipping and randomly posi-
tioned crop regions of the input size within the extracted
2569 256 image patch. For distractors, we sampled patches
from random image regions on human-annotated images that
were at least 256 pixels distant from any labelled stoma. The

Fig. 1 Architecture of the deep convolutional
neural network (DCNN) and classification
tasks. Left: training and testing procedure.
First column: target patches were extracted
and centered around human-labeled stomata
center positions; distractor patches were
extracted in all other regions. A binary image
classification network was trained. Second
column: The image classification network
was applied fully convolutional to the test
image to produce a prediction heatmap. On
the thresholded heatmap, peaks were
detected and counted.
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trained network weights were transferred into a fully convolu-
tional network (Long et al., 2015), which replaces the final fully
connected layers by convolutions. To increase the resolution of
the detector slightly, we reduced the stride of layer pool5 from
two to one, and added a dilation (Yu & Koltun, 2015) of two to
layer fc6conv to compensate. Due to margins (96 pixels) and stride
(32 over all layers), application of the fully convolutional network
to an image of size s yielded an output probability map p of size s
– (96 9 2)/32 along each dimension.

To avoid detecting low-probability stomata within the noise,
the probability map p was thresholded and all values below the
threshold p-thresh = 0.98 were set to zero. Local peak detection
was run on a 39 3 pixel neighbourhood on the thresholded map,
and each peak, excluding those located on a 96-pixel width bor-
der, was labelled as a stoma centre. This intentionally excludes
stomata for which the detection peak is found near the border
within the model margin to match the instructions given to
human annotators. Resulting stomata positions were projected
back onto the original image (see Fig. 2).

We built a user-friendly web service, StomataCounter, freely
available at http://stomata.science/, to allow the scientific com-
munity easy access to the method. We are using a flask/jquery/
bootstrap stack. Source codes for network training, as well as the
webserver are available at http://stomata.science/source. To use

StomataCounter, users upload single.jpg images or a zip files of
their .jpg images containing leaf cuticles prepared. Z-stacked
image sets should be combined into a single image before upload-
ing. A new dataset is then created where the output of the auto-
matic counts, image quality scores and image metadata are
recorded and can easily be exported for further analysis.

In addition to automatic processing, the user can manually
annotate stomata and determine the empirical error rate of the
automatic counts through a straightforward and intuitive web
interface. The annotations can then be reincorporated into the
training dataset to improve future performance of StomataCounter
by contacting the authors and requesting retraining of the DCNN.

Statistical analyses

We tested the performance of the DCNN with a partitioned set
of images from each dataset source. Whenever possible, images
from a given species were used in either the training or test set,
but not both, and only seven out of 1467 species are included in
both. In total, 1941 images were used to test the performance of
the network (Table 1). After running the test set through the net-
work, stomata were manually annotated. If the centre of a stoma
intersected the bounding box around the perimeter of the image,
it was not counted.

(b)(a)

Euphorbiaceae
Salicaceae

Moraceae
Rosaceae

Begoniaceae

Myricaceae
Fagaceae

Fabaceae

Anacardiaceae
Sapindaceae

Malvaceae

Acanthaceae
Apocynaceae

Asteraceae

Arecaceae
Araceae

Annonaceae
Lauraceae

Piperaceae
Ginkgoaceae

0 200

400

600

N−images

3000

Pre-analysis Post-analysis Pre-analysis Post-analysis

Fig. 2 Sample sizes of images for the top 20 families represented in the training (yellow) and test (blue) datasets (a). Examples of pre- and post-analysis
images. A probability heatmap map is overlain onto the input image in the red channel. Detected stomata marked with circles with peak values given in
green (b). Species in image pairs: Adiantum peruvianum, Begonia loranthoides (top row); Chaemaerauthum gadacardii, Echeandia texensis (second row);
Ginkgo biloba, Populus balsamifera (third row); Trillium luteum, Pilea libanensis (bottom row). Bars: (top and second rows) 20 lm, (row three) 25 lm;
(bottom row) 50 lm.
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To evaluate the DCNN, we first determined if it could iden-
tify stomata when they are known to be present and fail to iden-
tify them when they are absent. To execute this test, a set of 25
randomly selected abaxial plant cuticle micrographs containing
stomata was chosen from each of the four datasets for a total of
100 images. To create a set of test images known to lack stomata,
100 adaxial cuticle micrographs were randomly sampled from
the cuticle database. Visual inspection confirmed that none of the
adaxial images contained stomata. Micrographs of thoracic aorta
from an experimental rat model of preeclampsia (Johnson &
Cipolla, 2017), and breast cancer tissue micrographs (Gelasca
et al., 2008) were used as negative controls from non-plant mate-
rial. As a second test, we determined how well the method could
identify stomata from stomatal patterning mutants in Arabidop-
sis that violate the single cell spacing rule. We sampled images
from Papanatsiou et al. (2016) including 88 tmm1 and 90 wild-
type micrographs, and used a paired t-test to determine if counts
from manual or automatic were statistically different. We then
determined if the precision was different between mutant and
wild type accessions with ANOVA.

Identification accuracy is tested by applying the DCNN to a
small image patch either centered on a stoma (target), or taken
from at least 256 pixels distance to any labeled stomata (distrac-
tor). This yields true positive (NTP), true negative (NTN), false
positive (NFP) and false negative (NFN) samples. We defined the
classification accuracy A as:

A ¼ NTP þNTN

NTP þ NTN þ NFP þNTP

We defined classification precision P as:

P ¼ NTP

NTPNFP

We assumed the human counts contain only true positives and
the automatic count contain true positives and false positives. As
such, we defined precision as:

Precision ¼ log
Human count

Automatic count

� �

This definition of precision identifies over-counting errors as
negative values and under-counting as positive values. This mea-
sure of precision is undefined if either manual or automatic count
is zero, and 30 of the 1772 observations were discarded. These
samples were either out of focus, lacked stomata entirely, or too
grainy for human detection of were stomata. Classification recall
R was defined as:

R ¼ NTP

NTP þNFN

Classification accuracy, precision, and recall, were calculated
from groups of images constructed to span the diversity of imag-
ing capture methods (that is brightfield, DIC, and SEM) and

magnification (that is 9200 and 9400) to determine how well
the training set from one group transfers to identifying stomata
in another group. Groups used for transfer assessment were the
cuticle database, the Ginkgo collection, micrographs imaged at
9200, at 9400, and the combined set of images.

We use linear regression to understand the relationship
between human and automatic stomata counts. For the purpose
of calculating error statistics, we considered deviation from the
human count attributable to error in the method. Images were
partitioned for linear models by collection source, higher taxo-
nomic group (that is Eudicot, Monocot, Magnoliid, Gym-
nosperm, Fern, or Lycophyte), and magnification. To
understand how different sources of variance contribute to preci-
sion variance, we collected data on the taxonomic family, magni-
fication, imaging method, and three measures of image quality.
The taxonomic family of each image was determined using the
open tree of life taxonomy accessed with the rotl package
(Michonneau et al., 2016). Two image quality measures used
were based on the properties of an image’s power-frequency dis-
tribution tail and described the standard deviation (fSTD) and
mean (fMean) of the tail. Low values of fSTD and fMean indi-
cate a blurry image, while high values indicate non blurry images.
The third image quality measure, tEntropy, is a measure an
image’s information content. High entropy values indicated high
contrast/noisy images while low values indicate lower contrast.
These image quality measures were created with PyImq (Koho
et al., 2016) and standardised between zero and one. Random
effects linear models were created with the R package LME4 (Bates
et al., 2014) by fitting log precision to taxonomic family, magnifi-
cation, and imaging method as factors. Linear models were fit for
the scaled error and image quality scores. We used the root mean
square error (RMSE) of the model residuals to understand how
the factors and quality scores described the variance of log preci-
sion. Higher values of RMSE indicated larger residuals. Statistical
analyses were conducted in PYTHON and R (R Core Team, 2013).
Stomata counts, image quality scores, and taxonomy of training
and test set micrographs are provided in Supporting information
Table S1. Images used for the training and test sets are available
for download from Dryad (https://doi.org/10.5061/dryad.
kh2gv5f).

Data availability

Training and test set micrographs, model weights, and caffenet
model definition protocol are available as downloads from Dryad
(https://doi.org/10.5061/dryad.kh2gv5f).

Results

Stomata detection

StomataCounter was able to accurately identify and count stom-
ata when they were present in an image. False positives were
detected in the adaxial cuticle, aorta, and breast cancer cell image
sets at low frequency (Fig. S1). The mean number of stomata
detected in the adaxial, aorta, and breast cancer image sets was
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1.5, 1.4 and 2.4, respectively, while the mean value of the abaxial
set containing stomata was 24.1.

Stomata measured from micrographs of mutant and wild-type
Arabidopsis by human and automatic counting showed few dif-
ferences between counting method (Fig. S2). A paired T-test of
human and automatic counts failed to reject the null hypothesis
of no difference in means (t =�0.91, df = 175, P-value = 0.37),
but precision was different between wild-type and mutant geno-
types (ANOVA: F-value = 28.82, P-value = 2.51e�07). The vari-
ance of precision in Col-0 accessions (r2 = 0.189) was higher
than the mutant accessions (r2 = 0.153), possibly due to image
capture settings on the microscope.

Correspondence between automated and human stomata
counting varied among the respective sample sets. There was
close agreement among all datasets to the human count, with the
exception of some of the samples imaged at 9200 magnification
(Fig. 3a–c). In these samples, the network tended to under count
relative to human observers. Despite the variation among datasets
and the large error present in the 9200 dataset, the slopes of all
models were close to 1 (Table 2). The 9400, Ginkgo, and cuticle
database sets all performed well at lower stomata counts, as indi-
cated by their proximity to the expected one-to-one line and
decreased in precision as counts increased.

Precision has a non-linear relationship with image quality, and
changes in variance of precision are correlated with variation of
image quality. With a ratio of 17 : 1 images in the training vs test
sets, the poplar dataset had the best precision, followed by the
Ginkgo, Cuticle database, and USNM/USBG datasets (Fig. 3d).
Among the different imaging methods, SEM had the best preci-
sion, followed by DIC, and finally and brightfield microscopy
(Fig. 3e). The variance of precision is higher for images with
9200 magnification (Fig. 3f). RMSE values were lowest for taxo-
nomic family and the family : magnification interaction, suggest-
ing these factors contributed less to deviations between human
and automated stomata counts than image quality or imaging
method (Table 3).

Classification accuracy

The peak accuracy (94.2%) on the combined test sets is achieved
when all training sets are combined (Fig. 6, see later). The com-
bined dataset performs best on all test subsets of the data; that is,
adding additional training data – even from different sets – is
always beneficial for the generalisation of the network. Accuracy
from train to test within a single species is higher (for example
Ginkgo training for Ginkgo test at 97.4%) than transfer within
datasets with a large number species across families (9400 train-
ing to 9400 test: 85.5%).

The network does not generalise well between vastly different
scales, that is the 9200 dataset, which contains images down-
scaled to half the image width and height. In this case, only train-
ing within the same scale achieved high accuracy (97.3%), while
adding additional samples from the larger scale reduces the per-
formance (to 90.7%).

Precision values are generally higher than recall (0.99 precision
on the combined training and test sets; 0.93 recall, Fig. S3),

which shows that we mostly miss stomata rather than misidenti-
fying non-existing stomata.

Increased training size is correlated with increased accuracy
(Fig. 4), and providing a large number of annotated images is
beneficial, as it lifts training accuracy from 72.8% with a training
set of 10 images to 94.2% with the complete set of training
images.

Discussion

Stomata are an important functional trait to many fields within
plant biology, yet manual phenotyping of stomata counts is a
laborious method that has few controls on human error and
reproducibility. We created a fully automatic method for count-
ing stomata that is both highly sensitive and reproducible, allows
the user to quantity error in their counts, but is also entirely free
of parameter optimisation from the user. Furthermore, the
DCNN can be iteratively retrained with new images to improve
performance and adjust to the needs of the community. This is a
particular advantage of this method for adjusting to new taxo-
nomic sample sets. However, new users are not required to
upload new image types or images from new species for the
method to work on their material. The pre loaded neural network
was specifically trained on diverse set of image types and from
many species (n = 739).

As the complexity of processing pipelines in biological studies
increases, reproducibility of studies increasingly becomes a con-
cern (Vieland, 2001). Apart from the reduced workload, auto-
mated image processing provides better reproducibility than
manual stomata annotations. For instance, if multiple experts
count stomata, they may not agree, causing artificial differences
between compared populations. This includes how stomata at
the edge of an image are counted, and what to do with difficult
to identify edge cases. Automatic counters will have an objective
measure, and introduce no systematic bias between compared sets
as long as the same model is used. Additionally, our human coun-
ter-missed stomata that the machine detected (Fig. 5).

Our method is not the first to identify and count stomata.
However, previous methods have not been widely adopted by the
community and a survey of recent literature indicates manual
counting is the predominant method (Takahashi et al., 2015;
Peel et al., 2017; Liu et al., 2018; Morales-Navarro et al., 2018;
Sumathi et al., 2018). Previous methods have relied on substan-
tial image pre-processing to generate images for thresholding to
isolate stomata for counting (Oliviera et al., 2014; Duarte et al.,
2017). Thresholding can perform well in a homogenous collec-
tion of images, but quickly fails when images collected by differ-
ent preparation and microscopy methods are provided to the
thresholding method (K. Fetter, pers. obs.). Some methods also
require the user to manually segment stomata and subsequently
process those images to generate sample views to supply to tem-
plate matching methods (Laga et al., 2014). Object-oriented
methods (Jian et al., 2011) also require input from the user to
define model parameters. These methods invariably requires the
user to participate in the counting process to tune parameters and
monitor the image processing, and are not fully autonomous.
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Fig. 3 Results of human and automatic counts and precision for each dataset organized by collection source (a, d), taxonomic group (b), and magnification
(c), and imaging method (e). Precision and image quality scores have non-linear relationships, and changes in variance correlate to image quality (g–i).
Positive values of precision indicate undercounting of stomata relative to human counts, while negative values indicate overcounting. The dotted black line
is the 1 : 1 line, indicating where perfect automatic counts occur in a plot. See Table 2 for model summaries. tEntropy, image entropy; fMean, mean power-
frequency tail distribution; fSTD, standard deviation of power-frequency tail distribution; DIC, Differential interference contrast; SEM, scanning electron
microscopy.
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More recently, cascade classifier methods have been developed
which perform well on small collections of test sets (Vialet-
Chabrand & Brendel, 2014; Jayakody et al., 2017). Additionally,
most methods rely on a very small set of images (50–500) typi-
cally sampled from just a few species or cultivars to create the
training and/or test set (for example Bhugra et al., 2018).

Apart from generalisation concerns, several published methods
require the user to have some experience coding in PYTHON or
C++, a requirement likely to reduce the potential pool of end
users. Our method resolves these issues by being publicly avail-
able, fully autonomous of the user, who is only required to upload
jpeg formatted images, is free of any requirement for the user to
code, and is trained on a relatively large and taxonomically diverse

set of cuticle images. Users may wish to set up StomataCounter
locally on their own servers, and we have integrated the PYTHON

scripts into an offline program users can run at the command line.
The command line version is available in the github repository:
https://github.com/SvenTwo/epidermal. Users can generate
model weights from a custom set of training images and supply it
to the image processing script for stomatal identification, or use
the predefined weights generated from this work.

Table 2 Summary of linear model fit parameters in Fig. 3 for different test datasets.

(a) Dataset
Cuticle DB Poplar Ginkgo USNM/USBG USNM/USBG1†

a 3.3151*** 0.823 �0.364 10.0681*** �0.695
SEa (0.635) (0.456) (0.677) (2.041) (0.5)
s 0.8531*** 0.9781*** 0.8321*** 0.9971*** 1.1671***
SEs (0.029) (0.014) (0.028) (0.089) (0.026)
r2 0.578 0.964 0.812 0.157 0.835

(b) Taxonomic group
Eudicot Monocot Magnoliid Gymnosperm Fern Lycophyte

a 10.4051*** 2.3601*** 4.3601* 0.004 0.624 0.771
SEa (1.643) (0.598) (1.844) (0.735) (0.474) (1.414)
s 0.8081*** 0.8081*** 0.9121*** 0.8301*** 0.7991*** 0.7511**
SEs (0.063) (0.056) (0.086) (0.031) (0.039) (0.169)
r2 0.141 0.617 0.272 0.778 0.938 0.739

(c) Magnification
9200 9400

a 18.3461*** 1.4461***
SEa (3.192) (0.381)
s 0.6541*** 0.9701***
SEs (0.123) (0.017)
r2 0.055 0.740

Dataset definitions given in text. a, y-intercept; SE, standard error. Significance indicated by: *, P < 0.05; **, P < 0.01; ***,Root mean square error (RMSE)
of the model residuals. P < 0.001. †9200 images removed from this USNM/USBG set.

Table 3 Root mean square error (RMSE) of the model residuals.

Model RMSE

~Family 0.463
~Magnification 0.523
~Family : magnification 0.399
~Imaging method 0.519
~fMean 0.523
~fSTD 0.523
~tEntropy 0.521
~tEntropy : imaging method 0.515

Lower RMSE values suggest a better fit of the model. The response in each
model was precision.
fMean, mean power-frequency tail distribution; fSTD, standard deviation
of power-frequency tail distribution.

Fig. 4 Accuracy by training image count and the effect of increasing the
training set size on classification accuracies. Since classification is a binary
task, chance level is at 50%. Training image count ’all’ includes all 4618
annotated training images.
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We have demonstrated that this method is capable of
accurately identifying stomata when they are present, but
false positives may still be generated by shapes in images
that approximate the size and shape of stomata guard cells.
Conversely, false negatives are generated when a stomata is
hidden by a feature of the cuticle or if poor sample prepara-
tion/imaging introduces blur. This issue is likely to be avoid-
able through increased sample size of the training image set
and good sample preparation and microscopy techniques by
the end user. The method is also able to detect stomata
from mutant Arabidopsis genotypes that violate the single
spacing rule.

The importance of having a well-matched training and testing
image set was apparent at 9200, where there was a subset of
observations with low transfer accuracy (Fig. 6), and
StomataCounter consistently under counted relative to human
observation (Fig. 3). We argue that transferring architecture
between scales is not advisable and images should be created by
the user to match the predominant size (20489 2048) and mag-
nification (9400) of images in the training network. Our train-
ing set of images spanned 82 different families and was over-
represented by angiosperms. Stomata in gymnosperms are typi-
cally sunken into pores that make it difficult to obtain good nail
polish casts. Models tested to explain variation in scaled error

False negatives False positives
Human-annotated stomata Human-annotated as non-stomata

Machine-annotated as non-stomata Machine-annotated as stomata

Fig. 5 Samples that were mislabeled with high confidence by either the machine or human. False negatives (left panel) from stomata that were detected by
the human, but not by the machine. Image features typically generating false negatives are blurry images, artifacts obstruction the stomata, low contrast
between epidermal and guard cells, and very small scale stomata. False positives (right panel) are image features that are labeled by the machine as
stomata, but not by the human counter, or are missed by the human counter (e.g. top and bottom right images in the panel). Errors typically generating
false positives are image artifacts that superficially resemble stomata, particularly shapes mimicking interior guard cell structure.

Fig. 6 Accuracies for models trained on
different training datasets (vertical), tested
on different test datasets. Combined is a
union of all training and test sets. For
precision and recall values, see Supporting
information Fig. S3.
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revealed that taxonomic family and its interaction with magnifi-
cation were the factors that had the best explanatory power for
scaled error. Future collections of gymnosperm cuticles could be
uploaded to the DCNN to retrain it in order to improve the per-
formance of the method for gymnosperms.

More generally however, this highlights how users will need to
be thoughtful about matching of training and test samples for
taxa that may deviate in stomata morphology from the existing
reference database. We therefore recommend that users working
with new or morphologically divergent taxa first run several pilot
tests with different magnification and sample preparation tech-
niques to find optimal choices that minimize error for their par-
ticular study system. SEM micrographs had the least amount of
error, followed by DIC, and finally brightfield (Fig. 3g–i). Lastly,
image quality was strongly related to log precision; predictably,
images that are too noisy (that is high entropy) and out-of-focus
(low fMean or fSTD) will generate higher error. Obtaining high
quality, in-focus images should be a priority during data acquisi-
tion. We provide these guidelines for using the method, and rec-
ommend that users read these guidelines before collecting a large
quantity of images:

� Collect sample images using different microscopy methods
from the same tissues. We recommend an initial collection of
25–100 images before initiating a new large-scale study.

� Run images through StomataCounter.
� Establish a ‘true’ stomata count using the annotation feature.
� Regress image quality scores (automatically provided in output
csv file) against log precision.

� Regress human vs automatic counts and assess error.
� Choose the microscopy method that minimises error and
image the remaining samples.

Different microscopy methods can include using DIC or phase
contrast filters, adjusting the aperture to increase contrast, or
staining tissue and imaging under fluorescent light (see Eisele
et al., 2016 for more suggestions). If a large collection of images
is already available and re-imaging is not feasible, we recommend
the users take the following actions:

� Randomly sample 100 images.
� Upload the images to StomataCounter.
� Annotate images to establish the ‘true’ count.
� Explore image quality scores with against the log(precision) to
determine a justifiable cut-off value for filtering images.

� Discard images below the image quality cut-off value.

New users can also contact the authors through the
StomataCounter web interface and we may retrain the model to
include the 100 annotated images.

Fast and accurate counting of stomata increases productivity
of workers and decreases the time from collecting a tissue to
analyzing the data. Until now, assessing measurement error
required phenotyping a reduced set of images multiple times
by, potentially, multiple counters. With StomataCounter, users
can instantly phenotype their images and annotate them to
create empirical error rates. The open source code and flexibil-
ity of using new and customized training sets will make

StomataCounter and important resource for the plant biology
community.
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