SPRING 2014 ROSI’S MATH 20:  FUNDAMENTALS OF CALCULUS II

RECOMMENDED ASSIGNMENTS

 

MC900358875[1]

 

LESSON

DATE

SECTION

TOPIC

START PAGE

EXERCISES

Lesson One

 

7.1

Antiderivatives

366

EOO, (every other odd), 5-41, Odds 43-55, & Odds 67-71

Lesson Two

 

7.2

‘Substitution’

375

Odds 3-35

Lesson Three

 

7.3

‘Area and the Definite Integral’

Mention

Lesson Four

 

7.4

‘The Fundamental Theorem of Calculus’

395

EOO 1-29

Lesson Five

 

7.5

‘The Area Between Two Curves’

405

#’s 1, 7, & 9

Lesson Six

 

7.6

‘Numerical Integration’

Mention

Lesson Seven

 

8.1

‘Integration by Parts’

432

Odds 1-21

Lesson Eight

 

8.2

‘Volume and Average Value’

439

Odds 1-7, Odds 25-31, 35, & 37

Lesson Nine

 

8.3

‘Continuous Money Flow’

447

Odds 1-15

Lesson Ten

 

8.4

‘Improper Integrals’

452

Odds 1-25, not #17

Lesson Eleven

 

9.1

‘Functions of Several Variables’

467

#1, 3, & 37

Lesson Twelve

 

9.2

‘Partial Derivatives’

478

Odds 3-11; EOO 21-37, not #31; & Odds 45-49

Lesson Thirteen

 

9.3

‘Maxima and Minima’

488

EOO 1-13, 35, & 37

Lesson Fourteen

 

9.4

‘Lagrange Multipliers’

498

Odds 1-11 & Odds 23-27

Lesson Fifteen

 

9.5

‘Total Differentials and Approximations’

502

Odds 1-5

Lesson Sixteen

 

9.6

‘Double Integrals’

513

EOO 1-33 & EOO 37-53

Lesson Seventeen

 

10.1

‘Solutions of Elementary and Separable Differential Equations’

535

EOO 1-29 & 35

Lesson Eighteen

 

10.2

‘Linear First-Order Differential Equations’

543

EOO 1-17 & 19

Lesson Nineteen

 

10.3

‘Euler’s Method’

Gives approximate solutions to differential equations

 

Mention

Lesson Twenty

 

10.4

‘Applications of Differential Equations’

557

Odds 1-5

Lesson Twenty-One

 

11.1

‘Continuous Probability Models’

575

EOO 1-21, 29, & 31

Lesson Twenty-Two

 

11.2

‘Expected Value and Variance of Continuous Random Variables’

585

Odds 1-7, 13 a-c, 17 a, 25 a & b, & 33 a & b

Lesson Twenty-Three

 

11.3

‘Special Probability Density Functions’

597

Odds 1-5, (mean & standard deviation)

Lesson Twenty-Four

 

12.1

‘Geometric Sequences’

612

EOO 1-37

Lesson Twenty-Five

 

12.2

‘Annuities:  An Application of Sequences’

621

EOO 1-17, 25, & 29

Lesson Twenty-Six

 

12.3

‘Taylor Polynomials at 0’

631

#1, 4, 21, & 24

Lesson Twenty-Seven

 

12.4

‘Infinite Series’

637

Odds 1-13

Lesson Twenty-Eight

 

12.5

‘Taylor Series’

647

#’s 1 & 3

Lesson Twenty-Nine

 

12.6

‘Newton’s Method’

Mention

Lesson Thirty

 

12.7

L’Hopital’s Rule’

659

EOO 1-29

Lesson Thirty-One

 

13.1

‘Definitions of the Trigonometric Functions’

678

EOO 1-45 & 47

Lesson Thirty-Two

 

13.2

‘Derivatives of Trigonometric Functions’

688

EOO 1-29

Lesson Thirty-Three

 

13.3

‘Integrals of Trigonometric Functions’

697

EOO 1-29

 

 

 

Review for Final

 

 

 

Final Examination