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The addition of two emerging technologies (evolutionary computation and ecoinformatics) to com-
putational ecology can advance our ability to build better ecological models and thus deepen our
understanding of the mechanistic complexity of ecological systems. This article describes one feasi-
ble approach toward this goal—the combining of inductive and deductive modeling techniques with
the optimizing power of simple algorithms of Darwinian evolution that include information-theoretic
model selection methods. Specifically, the author shows a way to extend classic genetic algorithms
beyond typical parameter fitting of a single, previously chosen model to a more flexible technique
that can work with a suite of possible models. Inclusion of the Akaike information-theoretic model
selection method within an evolutionary algorithm makes it possible to accomplish simultaneous pa-
rameter fitting and parsimonious model selection. Experiments with synthetic data show the feasibility
of this approach, and experiments with time-series field data of the zebra mussel invasion of Lake
Champlain (United States) result in a model of the invasion dynamics that is consistent with the known
hydrodynamic features of the lake and the motile life history stage of this invasive species.The author
also describes a way to extend this approach with a modified genetic programming algorithm.
Keywords: Computational ecology, ecological models, evolutionary computation, information theory,
model selection, genetic algorithms, genetic programming, zebra mussels
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ling ecological systems is important for many rea-
Models aid our attempts to predict future changes
n be invaluable for management purposes, and mod-

n help us to understand better the inner workings of
systems and make our management decisions bet-
formed and more effective. A modeler has many
ling techniques and approaches to choose from in
ng ecological models. Two fundamentally different
to conduct the modeling process are with deductive
ductive reasoning. The deductive method requires
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expert knowledge to build a mechanistic-based model and
depends on a first-principles understanding of the mecha-
nisms acting within the ecological system. In contrast, the
inductive method only uses the information content of the
available empirical output data of the ecological system
to construct a predictive model. Both methods have their
strengths and weaknesses. The deductive approach can be
more robust since its basis is the important operating mech-
anisms; however, this approach can be difficult because we
often have an incomplete understanding of cause and ef-
fect in these systems. The inductive approach can produce
models that are very precise in describing the empirical
output data, but they may not generalize or scale well, and
it can be difficult to extract causality from these models. In
practice, scientists use a mix of both approaches to model
ecological systems.
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Volume 82, Number 7 SIMULATION 439



Hoffmann

These different modeling approaches can produce mod-
els of diverse forms (structures), and the quality and con-
sistency of predictions can be dependent on the particular
model chosen. At times, the predictions can be contradic-
tory among the different models. Attempts to model inva-
sive species spread dynamics illustrate this point. Efforts to
model mathematically the spatial spread of invasive species
have been ongoing for nearly 50 years (for a summary, see
[1]). Several invasive species model types have been de-
veloped, including both deterministic and stochastic mod-
els and various combinations of these approaches. Some
of these models are parameter sparse, and others are not.
Models based on partial differential equations (PDEs), in-
tegrodifference and integrodifferential equations, metapop-
ulations, cellular automata, neural nets, and discrete event
simulation techniques have been used to predict spatial
spread [2-6]. Although some robust predictions have been
produced (i.e., the asymptotic spread rate of invasive
species appears to be linear in time), other predictions seem
to be entirely dependent on the particular model chosen.

The model we choose invariably includes our biases
and implicit assumptions, which sometimes leads to mis-
specification of the model structure (by misspecification,
I mean omission of relevant explanatory mechanisms or
variables, inclusion of irrelevant ones, or the adoption of
wrong functional forms). Some of the problems with mis-
specified models are that they can be difficult to fit, and
the quality of the model predictions can suffer from super-
sensitivity to small changes in model structure [7]. Con-
versely, if the model structure is correctly specified for the
system of interest, then much can be learned via sensitivity
tests of the model parameters, and a deeper insight can be
obtained into the mechanisms that are operating to cause
the observed system behavior. Furthermore, the model will
likely be robust in its predictions. However, the selection
of a properly specified model structure must be made prior
to model fitting and sensitivity tests. Therefore, choosing a
good model is more important than the subsequent fitting
of model parameters. The critical question, then, is as fol-
lows: given a set of models to select from, how does one
decide on the best model for a given problem? Statisticians
have developed numerous ways to guide the choice of an
appropriate model (see section 3), but they are all depen-
dent on a priori specified models, whereas an evolutionary
computation approach to model selection has the poten-
tial to incorporate novel models into the selection process.
This is the idea that I explore in this article.

The rapidly growing field of ecoinformatics is provid-
ing us with new tools for managing and analyzing increas-
ing amounts of spatially and temporally diverse ecologi-
cal data, thus aiding our efforts for data-driven inductive
modeling. At the same time, the use of model selection
methods based on information theory is becoming increas-
ingly popular among ecologists [8]. Evolutionary compu-
tation (EC), when combined with information-theoretic
model selection, can serve as a bridge linking deductive
knowledge-driven modeling to inductive data-driven mod-

eling. This article shows two ways to integrate these two
modeling approaches: with a model selection genetic algo-
rithm that uses variable-length genomes and with a poten-
tially more powerful genetic programming algorithm that
incorporates domain-specific knowledge to evolve model
structure. I first provide some background by describing the
essentials of evolutionary computation and model selec-
tion, and then I describe the modified genetic algorithm that
incorporates variable-length genomes and the information-
theoretic Akaike model selection method. Following that,
I will present some results of experiments that used noisy
synthetic data and some promising preliminary results with
real field data. Finally, I briefly describe a way to extend
this approach by using a genetic programming algorithm
instead of a genetic algorithm, and I end with some sugges-
tions for future work and thoughts of the challenges that
lie ahead.

2. Essentials of Evolutionary Computation

Evolutionary computation uses algorithms that emulate the
basic principles of biological evolution. There are several
types of evolutionary algorithms (EA); the three most com-
mon are genetic algorithms (GA), evolutionary strategies
(ES), and genetic programming (GP). These algorithms are
a class of nondeterministic (derivative-free), stochastic, it-
erative search techniques that emulate some of the prin-
ciples of Darwinian evolution (precisely, selection and re-
production of the fittest individuals, with some introduced
variation during the reproduction step). They resemble ran-
dom search methods (i.e., a Monte Carlo approach) but
with an important difference—through a selection proce-
dure, an evolution of increasingly better solutions results in
a directed search that eventually converges to an optimal
solution. These algorithms are robust and are capable of
solving a variety of combinatorial and numerical function
global optimization problems. They are often the method
of choice for difficult model fitting/optimization problems
where there is a single model structure to fit, particularly
when optimizing models that exhibit multimodality [9, 10].
The following description of the implementation of an evo-
lutionary algorithm and associated data structures is for a
simple classical GA; however, the essential principles and
components, although often modified in their implemen-
tation, nevertheless apply to all EA.

The essential components are as follows:

• Population of individual solutions

• Fitness function to evaluate the quality of each so-
lution (a.k.a. an objective or payoff function, or a
figure of merit)

• Selection mechanism for choosing some individuals
to reproduce

• Operators for rearranging and changing the informa-
tion content of those individuals chosen to reproduce

• Termination criterion
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Figure 1 shows an EA with these essential components
in the order they are typically used.

Individual solutions, often represented as randomly
generated one-dimensional arrays, encode the parameter
values of a previously chosen model structure. These lin-
ear arrays equate to chromosomes, the parameter values to
genes (binary, integer, character, or real values), and their
information content to the genotype. Fitness evaluation
consists of decoding the genotype to express the pheno-
type. This is done by running the chosen model with the in-
dividual’s parameter values and comparing the model pre-
dictions to known data. Fitness, often calculated as some
measure of total error between model prediction and ob-
served data, is expressed as a scalar fitness score that maps
directly to the quality of the predictions of that individ-
ual and is essential in the selection procedure. Selection
of mating partners is either deterministic or probabilistic
and favors individuals for reproduction with higher fitness
values. Thus, an EA achieves a directed search and not a
random walk.

Parameter values (genes) change during the search
via recombination and mutation operators. Recombina-
tion, also known as crossover, mixes genes from two par-
ent chromosomes to produce two offspring chromosomes,
each of which has some genes from both parents. Mutation
introduces random modifications to the genes, thus allow-
ing the exploration of new areas in the search space, which
in theory guarantees that every point in the search space is
possible to reach. Mutation is the ultimate source of new
genetic information for evolution since crossover only re-
combines existing information. Note that mutation alone,
without selection or crossover, amounts to a random walk
through the search space, whereas mutation with selection,
but without crossover, creates a parallel, noise-tolerant,
hill-climbing algorithm. In summary, many iterations of
the EA fit parameter values to the data via the directed evo-
lution of selecting good individuals to mate, and classical
EA accomplishes model parameter fitting but not model
selection since only one model structure is represented in
the population.

3. Model Selection Background

Considering multiple working hypotheses helps us to
minimize our human biases and tendency toward adopt-
ing a favorite hypothesis [12], which can hinder effi-
cient progress in our understanding [13]. Our hypothetico-
deductive method of science, when applied to model-
ing, consists of four basic steps that start with creating a
plausible set of hypotheses based on our knowledge and
assumptions of the system we are observing. Then, each
hypothesis, which in effect is a model, is expressed math-
ematically, then it is confronted with data to fit the param-
eters, and, finally, we select either a “best” or a best set of
models. These four essential steps of model selection pro-
vide the researcher with the ability to weigh the evidence

Recombine 

Mutate 

Evaluate

Fitness 

Test 
Termination 

Criteria 

Initialize Population 
and Evaluate Fitness 

(t = 0) 

Select Mating 
Partners 

Loop 

t = t + 1 

Figure 1. The basic iterative loop of an evolutionary algorithm.
Modified from Schwefel and Kursawe [11].

for the various hypotheses and to infer the processes likely
to have operated in generating the data patterns.

The formalization of the model selection step has a rich
history, starting with the famous postulate of William of
Occam—the simplest model that adequately describes the
empirical data is usually the best one (Occam’s razor).
There are many techniques to select the “best” model,
and Occam’s emphasis on simplicity (parsimony) provides
the philosophical basis of the quantitative model selection
methods we use today. Some of these specific methods in-
clude the classical null hypothesis approach via likelihood
ratio tests, best-subset regression, cross-validation, boot-
strapping, Akaike information criterion (AIC), Bayesian
information criterion (BIC), minimum descriptive length
(MDL), Mallow’s Cp statistic (all based on asymptotic
methods), and lately nonasymptotic methods using con-
centration inequalities such as the Talagrand inequality (for
an overview of these techniques, see [14]). Statistically,
parsimony represents a trade-off between bias and vari-
ance in the parameter estimators—the former decreases
and the latter increases with more parameters in the model.
Therefore, too few parameters cause underfitting and fail
to include effects in the model supported by the data, while
too many parameters cause overfitting (i.e., fitting the noise
in the data) and include effects in the model not supported
by the data, resulting in poor model generalization. Both of
these situations can result in misspecified models, and par-
simonious model selection methods seek to minimize both
underfitting and overfitting by finding an optimal balance
between the bias and variance of the parameter estimators.

Hirotugu Akaike introduced a model selection method
in 1973 [15] known as the AIC (see [16] for a compre-
hensive description of this method). The AIC method is
attractive for several reasons. It is widely regarded as a
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breakthrough in the theory of mathematical statistics be-
cause it formalized a robust relationship between the ex-
pected, relative Kullback-Leibler distance (a dominant
paradigm in information theory) and Fisher’s maximum
likelihood theory. It is relatively easy to calculate and use
for selecting the “best” model, and it is easy to understand
qualitatively what theAIC means—a measure of the lack of
model fit (negative log of maximum likelihood) corrected
for bias (the number of model parameters). In addition, un-
like the null hypothesis likelihood ratio tests that require
nested models and cannot quantify the relative support for
the various models, AIC does not require nested models
and allows weighing the relative support for each model.
Akaike saw his method as extending the maximum like-
lihood method, an extension that makes model selection
and parameter fitting a joint optimization problem [17].
Note that selecting a model solely on quality of fit without
regard to simplicity (i.e., via an algorithm based only on
maximum likelihood or least squares) always favors the
most complex models precisely because these are greedy
algorithms that are biased toward models with more pa-
rameters due to their inherent advantage to better fit the
data and their associated noise. Such models are overpa-
rameterized and overfit to the data. This is clearly seen in
the experimental results with AIC turned off (section 4.4).

Since EC is a proven optimization technique, incorpo-
rating AIC within an EA should extend it beyond simple
parameter fitting to include model selection that will en-
hance our abilities to choose and fit good models of eco-
logical systems.

4. Incorporating Model Selection Criteria into
Evolutionary Algorithms

Incorporating a model selection criterion into the fitness
function of an EA is known as complexity-based fitness
evaluation [18]. This approach to modeling is largely un-
explored. Most experience with this method has been with
GP (a type of EA that is based on parse trees) to con-
trol decision tree growth. Results are promising ([18] and
references cited therein). However, few studies have used
complexity-based fitness evaluation in GA. Konagaya and
Konoto in 1993 (cited in [18]) used MDL for their fit-
ness evaluation of a bioinformatics classification problem
to minimize overlearning due to noise. Model selection
and parameter estimation of linear autoregressive moving
average (ARMA) models was attempted with an EA that
combined GA and ES operators [19]. They tried different
statistical criteria in their fitness function, and although
estimation of the error series by the EA was successful,
correct model identification was achieved only 20% of the
time. In contrast, some success was reported with using
MDL in a simplex GA for selection of regressors in linear
AR models and in nonlinear polynomial models [20]. The
authors accurately identified the correct operating mod-
els and demonstrated fast convergence rates compared to
exhaustive search techniques. Therefore, EA with the in-

clusion of a model selection criterion, such as AIC, offers
the potential of an automated, efficient search technique
for good candidate models. In effect, the EA orchestrates
a competition among a community of candidate models
while simultaneously optimizing parameter fit to the ob-
served data. Furthermore, by inserting expert knowledge
into the set of candidate models, the EA can incorporate de-
ductive modeling into the optimization process. Thus, evo-
lutionary computation, when combined with information-
theoretic model selection, can serve as a bridge linking
deductive knowledge-driven modeling to inductive data-
driven modeling. Figure 2 gives an overview of this com-
bined approach. The key element that is required to im-
plement this approach is variable-length genomes in the
EA. Variable-length genomes are necessary to incorporate
knowledge in the form of multiple model structures, thus
creating a community of candidate models. Next, I describe
one way to implement effective variable-length genomes
in a GA.

4.1 Variable-Length Genomes in GA

Variable-length genomes include an evolvable on/off
switch within each gene of the chromosome, and thus the
modified GA can activate/inactivate each model param-
eter in each individual. Therefore, each individual has a
complete genome and can potentially represent the most
complex (global) model of a nested set (i.e., parameters
for all models are contained in each individual—this is
conceptually equivalent to totipotency in biological chro-
mosomes). The switches are evolvable via mutation in the
same way, as are the values of the model parameters, thus
creating virtual variable-length individuals who effectively
represent all the model structures of the set, depending on
which model parameters (genes) are switched on. In the
GA, the mutation operator randomly turns on and off these
switches, and selective pressure ultimately evolves a “best”
model structure. Figure 3 provides an overview of how the
variable-length genome GA can conduct model selection.

The modulo-remainder function creates the evolvable
switch that turns the genes on and off. Specifically, a bi-
nary switch is created by using modulus 2 on the integer-
transformed gene value.

Thus,

[
Int

(
ai × 10k

)]
(mod2) = 0 (1)

or

[
Int

(
ai × 10k

)]
(mod2) = 1 (2)

for any i, where ai refers to the real-value gene at position i
on the chromosome, and k is of sufficient magnitude to shift
the least significant digit to the unit position of the resulting
integer. The specific value of k is dynamically determined
by the magnitude of the real-value gene such that a very
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Figure 2. Conceptual view of the combining of deductive and inductive modeling via a complexity-based EA

Figure 3. GA model selection and fitting procedure. The community of candidate models is randomly initialized. Some parameters
are effectively turned off, depending on the state of their internal switches at initialization (0 indicates an inactive parameter).
Therefore, although all models have the same fixed genome length, their structure, when evaluated by the fitness function, is
functionally variable. The observations are divided into two data subsets: a training set used by the fitness function for evolving the
best models and a test set for independently validating the best-evolved models.

large integer is produced on which to perform the modulo-
remainder function—this increases the variability of the
switch by making it very sensitive to mutation. Therefore,
the least significant digit in the unit position of the integer-
transformed gene determines whether that gene is active,
whereas the most significant digits of the real value of
the same gene determine its contribution to overall fitness

(assuming the gene switch is on). Finally, the number of
active genes is counted by the fitness function and is used
in the calculation of the bias correction term of the AIC.
This modulo approach using internal gene switches has a
parallel in real organisms, where in some ribosomal RNA
and tRNAgenes, part of their coding sequence has a double
function and serves as a regulatory switch for the gene.
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In summary, these internal evolvable switches, created by
overloading the gene variables, are the essence of the model
selection GA method (hereafter referred to as MSGA).

4.2 Experimental Tests of the MSGA—Synthetic
Data

Initial testing of this method used synthetic training data
generated by a known model that was included among
the set of candidate models available to the MSGA (for
specific details of these tests, see [21]). Note that in each
test, the GA is conducting a “blind” evolutionary search
for the best model—no prior information is available to
the algorithm about the correct data-generating model.
Both noisy (maximum of 10% relative error as Gaus-
sian noise added to data) and noise-free data were used
in these tests. Three types of models (general polynomial
equations, stock and flow system dynamic models [pro-
cess models], and diffusion reaction PDE models) were
tested. The GA software package used for these tests is
a public-domain, parallel genetic algorithm function li-
brary written in ANSI C, known as PGAPack [22], and
is available from the U.S. DOE Argonne National Labora-
tory (ftp://ftp.mcs.anl.gov/pub/pgapack). The fitness func-
tions and models are coded in C, optimized, and paral-
lelized for SMP (symmetrical multiple processors), and the
numerical PDE solvers are licensed from NAG (The Nu-
merical Algorithms Group, Inc., Downers Grove, IL) and
optimized in FORTRAN for SMP. Computation times on
dual-processor Xeon workstations depended on the model
type and population sizes, but they generally were shortest
with the fifth-order polynomial models (several minutes
of CPU time) and were longest with the diffusion reaction
models (approximately 6 hours of CPU time).

4.2.1 Polynomial Models

The general polynomial for these tests was

y(x) = anx
n + an−1x

n−1 + . . . + a1x + a0, (3)

where a0, a1, . . . , an−1, an are real-valued model parame-
ters. In these experiments, both fifth and ninth-order poly-
nomials were used (i.e., n = 5 or 9). Initialization by the
GA created the community of competing models com-
posed of the complete fifth- or ninth-order polynomials
and their associated subset models. In the fifth-order poly-
nomial experiments, the maximum number of competing
candidate models was 64, and for the ninth order, it was
1024. Each individual genome represented the coefficients
of the various model structures. The “correct” model used
for generating the “true” data for these experiments was a
specific fourth-order model, y(x) = −20x4 + 20x2 + 14,
over the domain {−1.0, −0.9, −0.8, . . . , 1.0}. Noise was
added as “true” data + z*(”true” data), where z is a random
deviate from a Gaussian distribution (µ = 0, σ = 0.05).

Model fitness is expressed as total error, calculated as
the log residual sum of squares (RSS):

e = log
m∑

j=1

(
yj − ŷj

)2
, (4)

where m is the number of data points, yj is the true value
of the correct operating model at point j , and ŷj is the
predicted value of a candidate model at point j . The ŷj

value is calculated as

ŷj =
n∑

i= 0

{ [
Int

(
ai × 108

) ]
(mod 2)

}
aix

i

j
, (5)

where n is the order of the complete polynomial model,
and ai refers to the gene (coefficient) value at position i on
the chromosome. This estimated RSS is then transformed
to the maximized log-likelihood [17] and the AIC bias cor-
rection term added. Therefore, the fitness of each candidate
polynomial model is the true AIC.

4.2.2 Dynamic System Models of Leaf
Photosynthesis

These models are useful to evaluate the ability of the
MSGA to choose the correct model structure when pre-
sented with data produced from models considerably more
complex than the polynomial test models. The system dy-
namic models for these tests simulated the physiological
ecology of a leaf undergoing photosynthesis. Several sub-
models simulated the leaf’s response to variation of differ-
ent environmental factors. The leaf-photosynthesis model
simulated the dynamics of the carbon, water, and heat bud-
gets of the leaf over time. Soil water potential, herbivory,
and ozone effects were also included in the model. The
model comprised six ordinary differential equations that
describe the state variables and fluxes. External forcing
functions accounted for the influence of light intensity and
duration, temperature, humidity, and wind velocity, and
feedback loops linked the various model subcomponents
together. The nonlinearities and interdependencies in the
model produced complex behaviors in leaf temperature,
heat content, and water and carbon content. Each indi-
vidual in the GA contained 13 genes that represented the
model parameters associated with the state variables and
fluxes of the carbon, water and heat budgets, and effects of
ozone and herbivory. The “true” model output data were
generated from a subset model whose genes for ozone and
herbivore effects were turned off. These data comprised a
parallel time series of 10 metrics (photosynthetic rate, leaf
carbon, etc.) observed at 15-minute intervals over a 24-
hour period. For each candidate simulation model, a sum
of the relative error of each metric at each time point was
calculated, and a penalty for the number of active parame-
ters in the model was added to this sum. Therefore, fitness
is similar to a common analog of AIC [23].
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4.2.3 Diffusion-Reaction Models

The final tests with synthetic data used diffusion-reaction
(DR) models of the basic form shown in equation (6).

∂n

∂t
= D

(
∂2n

∂x2
+ ∂2n

∂y2

)
+ f (n) n, (6)

where D is the diffusion coefficient (a measure of how
quickly the organisms move over a surface), n is the pop-
ulation density, and f (n) is the per capita growth rate.

DR models are partial differential equations, which in-
corporate dispersal terms and population dynamics asso-
ciated with the spread dynamics of an invasive species.
Specifically, they can represent species whose densities
and dynamics change due to (1) movement and (2) birth
and death, and they have a continuous functional depen-
dence on both space and time. However, they do not mech-
anistically describe most of the key ecological factors that
influence the spread of invasions. Spatial effects such as
habitat heterogeneity, mass transport via advection, lin-
ear or nonlinear density-dependent growth, and long- and
short-distance dispersal can play important roles in inva-
sive species dynamics [24-32]. It is possible to extend equa-
tion (6) to include some of these factors. Equation (7) al-
lows for a community of candidate models that incorporate
one type of dispersal (simple diffusion), two types of pop-
ulation growth (exponential and logistic), and advection in
the X and Y directions and was used in these tests with
synthetic data. The form of the complete model is

∂n

∂t
= D

(
∂2n

∂x2
+ ∂2n

∂y2

)
− wx

∂n

∂x
− wy

∂n

∂y

+ ε
(

1 − µn

ε

)
n, (7)

where D is the diffusion coefficient, wx and wy are advec-
tion parameters, and ε and µ are growth parameters relating
to density dependence and per capita growth. The genome
length of the DR models is 5 and allows for a community
of 32 candidate models. The “true” model output data were
generated from a subset model with diffusion turned on,
linear density-dependent growth, and advection in the Y
direction turned off. Fitness for these tests was the com-
mon analog of AIC [23]. The spatial domain was a square
21 × 21 grid, and the spread dynamics occurred over 10
time units.

4.3 Experimental Tests of the MSGA—Field Data

A final test of the effectiveness of MSGA used a field
data set of the zebra mussel invasion of Lake Champlain
(United States). Lake Champlain occupies a north-south
geological fault zone and is long (193 km) and narrow
(19 km at its widest point). It is located at 44.50 lati-
tude and –73.25 longitude and is the sixth largest lake in
the United States. The predominant flow is north into the

Richelieu River in Quebec, Canada, and the mean hydro-
logic residence time is 3.3 years.Additional information on
Lake Champlain is available at http://www.worldlakes.org/
lakedetails.asp?lakeid=8518. The zebra mussel data con-
sist of a 10-year time series of the densities of veliger lar-
vae, juveniles, and adult forms of this invasive species at
23 locations in the lake. The data are publicly available
(http://www.anr.state.vt.us/dec/waterq/lakes/htm/lp_lcze
bramon.htm) and are considered the best whole-lake ze-
bra mussel data set in existence due to the consistency
of the methods used and the fact that the initial sampling
occurred at the very beginning of the invasion in 1993.
Zebra mussels were first discovered in the extreme south-
ern portion of the lake and, over the next 10 years, spread
northward throughout the entire lake. A succinct summary
of the life history of this invasive species is available at
http://nis.gsmfc.org/nis_factsheet.php?toc_id=131.

The “true” model is unknown when using field data, so
for these tests, it is necessary to use the known facts of
the life history stages of zebra mussels (specifically, the
passively dispersed veliger larval stage) and the known
hydrodynamic features of Lake Champlain as criteria for
judging whether the MSGA has evolved a “correct” model.
The larvae are released by the adults in large numbers
(∼106/adult) from late spring to early fall (a period of ap-
proximately 4 months when the water temperature of Lake
Champlain is sufficiently warm to allow spawning). This
stage of their life history is planktonic for approximately
1 month and occurs more or less continuously during this
4-month period. Thus, it is reasonable to expect that the
large-scale hydrodynamic features of the lake (predomi-
nant northward flow) will dominate the passive dispersal
of the veliger spread dynamics on an annual time scale.
Therefore, a “correct” DR model of their dynamics should
include anisotropic advection in the northern direction, and
the magnitude of the advection should approximate the
known average annual northward flow rate of the lake.
Furthermore, due to the extremely high fecundity of the
mussels and large-scale mixing of the planktonic larvae,
no Allee effect (positive density dependence over a lim-
ited range of density) is expected, but the data do suggest
some negative density dependence. To see if the MSGA
would evolve a model structure consistent with these three
expectations, a gridded spatial domain of the lake was con-
structed whose cell size was approximately 1.4 km2.

Despite the recognized high quality of the Lake Cham-
plain data set, the observed veliger larvae densities show
considerable variability typical of field data and further-
more constitute a sparse data matrix in time and space. It
was therefore necessary to process the data before con-
ducting the MSGA experiments with the field data. First,
the data were averaged over the 4-month spawning period
for each station in each year of the time series—this some-
what smoothed and effectively transformed the data to the
appropriate time scale for comparison to the known large-
scale annual hydrodynamic features of the lake. Second,
the original data were supplemented with linearly inter-
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Table 1. Effect of parsimony (AIC) and noise (N ) on the success of the MSGA

Treatment →→→ – AIC – AIC + AIC + AIC
Model ↓↓↓ – N + N – N + N

Polynomial (fifth order) 0/1000 0/1000 995/1000 983/1000
Polynomial (ninth order) 0/100 0/100 91/100 94/100

Photosynthesis 0/100 0/100 96/100 93/100
Diffusion-reaction 0/50 1/50 40/50 38/50

The numerator is the number of correct models evolved, and the denominator is the total number of replicates.

polated values to fill in the empty grid cells and then lo-
cally averaged to smooth further the training data. Only the
first 7 years of the 10-year time series were used for these
feasibility tests because this time period best depicts the
onset and subsequent spread of the invasion, whereas the
more recent years show stagnation and possible decline in
densities. Local investigators are currently researching the
cause of the stagnation and possible decline; however, no
consensus of causal factors has emerged yet.

The MSGA was then used with a genome encod-
ing for a seven-parameter DR model whose complete
form (equation (8)) can describe dispersal as both sim-
ple diffusion and mass transport advection, linear and
nonlinear negative density-dependent growth, density-
independent growth (exponential), and positive density-
dependent growth (Allee effect).

∂n

∂t
= D

(
∂2n

∂x2
+ ∂2n

∂y2

)
− wx

∂n

∂x
− wy

∂n

∂y

+ a

b
n1−2b

(
Kb − nb

) (
nb − qb

)
, (8)

where D is the diffusion coefficient; wxand wyare advec-
tion parameters in the E-W and N-S directions, respec-
tively; a is a scaled intrinsic growth rate; b is a dimension-
less constant that describes the rate of growth and density
dependence (shape parameter) of the population; n is den-
sity; K is the carrying capacity; and q is the Allee effect
population density such that for n < q, population den-
sity declines and eventually becomes extinct, whereas for
n > q, population density grows toward K .

4.4 Results

4.4.1 Synthetic Data

The initial testing with synthetic data showed that for all
the model types, the MSGA consistently evolved “correct”
model structures even when the data were degraded with
noise. When parsimonious model selection via AIC was
not active, all the evolved models were incorrect (with only
one exception) and were overparameterized and overfit to
the data (Table 1).

This is evident in Figure 4, where all the replicates with-
out AIC (parsimony off) had a considerably better fit to the

noisy data by using additional parameters to fit the noise.
Note that the larger the negative fitness value, the better
the fit to the data. However, this was achieved with mis-
specified, incorrect models, whereas greater than 90% of
the runs with AIC evolved the correct model and produced
accurate and precise estimates of the “true” parameters
despite the noisy data. The “correct” polynomial models
evolved parameter estimates that were identical (to within
0.001) of those produced with a least squares regression
on the noisy data, after using the best-subset method with
Mallow’s Cp statistic for variable selection.

4.4.2 Field Data

Twenty-nine of 36 MSGA experiments using the Lake
Champlain veliger density data evolved the “correct”
model structure with appropriate parameter values (a “cor-
rect” model is defined in section 4.3 as including the three
expectations of anisotropic northward advection, some
negative density dependence, and no Allee effect). The
“correct” models have an average parameter value for
the northward advection of the larvae of 62.9 km/yr (SD,
±2.5), which compares favorably to the independently es-
timated average of 60 km/yr calculated from the known
hydrologic residence time and length of Lake Champlain.
The average value of parameter b in the “correct” mod-
els (–1.67, SD ± 0.16) suggests a negative nonlinear den-
sity dependence. For comparison, a b value of −1.0 indi-
cates a logistic type of negative linear density dependence,
whereas a b value of 1.0 indicates no density dependence
(i.e., exponential dynamics). All of the “correct” models
had evolved a model structure in which the switch for the
Allee effect gene was turned off, thus indicating no signifi-
cant positive density dependence. Figure 5 shows the den-
sity predictions of one typical “correct” evolved model of
the spread dynamics of the veliger larvae compared to the
field data. Although this model overestimated the spread
rate in years 2 and 3 of the invasion, the general pattern
of the predicted dynamics over the 7-year time period is
consistent with the observed field data.

In summary, these results with both the synthetic and
field data show that the MSGA approach is feasible and that
overfitting of models can be avoided with the incorporation
of AIC, even with noisy data.
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Figure 4. Success of the MSGA evolving the correct data-generating model. Frequency histogram of two experiments using the
ninth-order polynomial model with Gaussian noise (µ = 0, = 0.05). Each experiment involved 100 replicates.

Figure 5. Time series of the zebra mussel veliger densities in Lake Champlain. The spatial domain of the lake is graphically shown
here as the set of 1.4 km2 grid cells used to model the veliger larvae spread dynamics. The upper panel depicts the DR model
predictions, and the bottom panel depicts the processed field data. The noticeable light area in the northern portion of the lake in
1994 is due to the veliger larvae not reaching that region of the lake in that year. The small square region in the northern portion of
the lake represents islands.
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5. An Alternative Approach—Genetic
Programming

GP is a variation of GA, in which both the model structure
and associated parameters are encoded into the individual
genomes [10]. Typically, the genome is represented as a
tree that can increase or decrease in size via variation op-
erators (mutation and recombination), and thus variable-
length genomes are intrinsic to GP. Therefore, GP expands
the search for a good model by allowing not only the pa-
rameter values but also the model structure to evolve during
the search. However, this also greatly increases the search
space and makes the evolution of a good model computa-
tionally more difficult. Nevertheless, GP has the potential
to address some of the disadvantages of the MSGA while
retaining its advantages.

5.1 Advantages and Disadvantages of the MSGA

In the MSGA, the modeler explicitly creates the set of
competing candidate models, which incurs some advan-
tages; the specified model structures include the empirical
knowledge and mechanistic understanding of experts of
the ecological system being modeled. However, there are
also disadvantages; the models invariably also include the
modeler’s biases and implicit assumptions, which can lead
to misspecification of the correct model structure. In addi-
tion, an adequately specified model must exist among the
set of candidate models contained within the global model;
furthermore, the set of competing models is closed, and
therefore the MSGA cannot generate, via the evolutionary
process, any novel model structures. Thus, our ability to
discover novel models, with the ability to generate new
understanding of internal mechanisms, is limited. These
disadvantages are not unique to the MSGA but are recog-
nized as general limitations of model selection methods.

Several different approaches have been used to mini-
mize these general limitations. One method to avoid bias
and unintentional assumptions is to use partially specified
models to improve the fitting of complex biological sys-
tems [33]. In this approach, the model structure includes
only well-understood elements, whereas less well-known
parts of the biology are represented in a flexible nonpara-
metric way. Although this approach does minimize model
misspecification problems, it does not allow for the dis-
covery of new model structures. Another approach that has
been pursued in the field of artificial intelligence is known
as automated modeling (AM) [34]. AM—specifically, a
type called compositional modeling—has been most suc-
cessful when modeling physical systems. InAM, the model
is constructed automatically by using model fragment li-
braries of varying complexity. Some researchers have at-
tempted to use these techniques on biological systems [35],
especially ecological systems, but this effort is only in the
initial stages. A related approach, known as Equation Dis-
covery, uses a context-free grammar, parse trees, and par-
simony implemented via minimum description length [36,

37]. The Equation Discovery method has been successful
in constructing models of ecological systems but is limited
by the exhaustive nature of its search method. A directed
evolutionary search with GP may be a better way to address
these limitations.

5.2 A Proposed GP Model Selection Procedure

GP can evolve a set of models from a construction set of
model components (fragments) that can be assembled in
various ways to represent a complex biological system.
There would need to be a set of rules for their assembly
(biologically impossible connections should be prevented).
It would also be necessary to incorporate some measure
of complexity to ensure parsimonious model evolution. It
may be possible to extend AIC to include the number of
components and their interconnections, and another option
would be to use MDL. The library of model components in
the construction set would include stocks (state variables;
i.e., population density, etc.), flows (fluxes; i.e., growth or
dispersal rates, etc.), inputs (environmental factors; i.e.,
temperature, currents, etc.), and protected combinations
of the previous three components that encapsulate expert
knowledge. The latter component (known as model blocks,
super-blocks, or fixed submodels, depending on their com-
plexity) would exist as predefined functions (PDF) in the
construction set. Model structure would be composed of
two primary components: stocks and flows. Stocks are state
variables that can be modified by flows. Flows are rates of
change and are determined by formulas. The operands of
these formulas are combinations of external input data,
previously calculated stock values (feedback), and math-
ematical constants. The operators are a basic set of math-
ematical functions (+, –, *, /, exp, etc.). Figure 6 depicts
this GP model selection procedure.

This GP approach shares some similarity with AM but
differs in that it relies on Darwinian evolution to direct
the search for good model structures. Model fitness would
be evaluated by comparing model predictions to a subset
of the measured data. Another subset of the data would
be used for validation of the best-evolved model. This ap-
proach is similar to one adopted for modeling industrial
processes [38, 39]. Another group in New Zealand is using
grammar-based GP to evolve models of water quality. Their
approach differs from this method in that their grammar
rules significantly bias the model search space to a limited
set of structured equations—specifically, single-equation
time-series models [40].

6. Summary and Conclusions

Evolution by natural selection is a superb optimizer of
biological structure and function. The behavior of ecolog-
ical systems derives from the optimized biological struc-
ture, function, and interactive mechanisms of its compo-
nent parts. Akaike’s significant contribution to our under-
standing of mathematical statistics brought together model
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Figure 6. GP model selection and fitting procedure. The model construction set is initialized randomly but can also be “seeded”
with models drawn from the set used in the MSGA approach. State variables are represented as rectangles, fluxes as arrows, and
inputs as circles. The observations are divided into two data subsets: a training set used by the fitness function for evolving the
best models and a test set for independently validating the best-evolved models.

selection and parameter fitting under a common theoreti-
cal framework of optimization. Therefore, since we seek to
understand the important operating mechanisms of evolu-
tionarily optimized ecological systems through modeling,
it is good sense to explore the potential of combining algo-
rithms of evolutionary optimization with model selection
methods to develop better models of these systems.

The results reported here suggest that this approach has
significant potential and warrants future exploration. Nev-
ertheless, formidable challenges lie ahead, specifically in
increasing the computational efficiency of these algorithms
to explore adequately the very large search spaces. Faster
computers, as well as clusters of computers, will help to
alleviate this difficulty, but theywill not eliminate this prob-
lem. Of the two methods outlined here, the MSGA is more
computationally tractable than GP because it constrains
the search to the a priori specified closed set of candidate
models; however, it is more likely to suffer from biases
and incorrect assumptions. In theory, GP does not suffer
from these weaknesses and has the potential of discovering
novel models, but because it attempts to search all model
structure and parameter space simultaneously, it too must
constrain the search by inserting expert knowledge and by
the judicious choice of a finite set of mathematical opera-
tors for model building.
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