
Master of Sheets:
A Tale of Compromised Cloud Documents

Jeremiah Onaolapo
Northeastern University
jonaolapo@ccs.neu.edu

Martin Lazarov
University College London

martin.lazarov.12@alumni.ucl.ac.uk

Gianluca Stringhini
Boston University

gian@bu.edu

Abstract—As of 2014, a fifth of EU citizens relied on cloud
accounts to store their documents according to a Eurostat
report. Although useful, there are downsides to the use of
cloud documents. They often accumulate sensitive information
over time, including financial information. This makes them
attractive targets to cybercriminals. To understand what happens
to compromised cloud documents that contain financial informa-
tion, we set up 100 fake payroll sheets comprising 1000 fake
records of fictional individuals. We populated the sheets with
traditional bank payment information, cryptocurrency details,
and payment URLs. To lure cybercriminals and other visitors
into visiting the sheets, we leaked links pointing to the sheets
via paste sites. We collected data from the sheets for a month,
during which we observed 235 accesses across 98 sheets. Two
sheets were not opened. We also recorded 38 modifications in
7 sheets. We present detailed measurements and analysis of
accesses, modifications, edits, and devices that visited payment
URLs in the sheets. Contrary to our expectations, bank payment
URLs received many more clicks than cryptocurrency payment
URLs despite the popularity of cryptocurrencies and emerging
blockchain technologies. On the other hand, sheets that contained
cryptocurrency details recorded more modifications than sheets
that contained traditional banking information. In summary, we
present a comprehensive picture of what happens to compromised
cloud spreadsheets.

I. INTRODUCTION

It is hard to imagine life without online accounts, for
instance, webmail accounts for business and personal com-
munication, e-commerce accounts for online shopping, and
cloud storage accounts for convenient document storage and
sharing. As of 2014, 21% of EU citizens relied on cloud
accounts to store their documents.1 This shows the widespread
utility and adoption of cloud storage platforms. However,
there are downsides to the use of cloud accounts. Like most
online accounts, cloud accounts often accumulate sensitive
information over time, for instance, financial and personal
secrets. This makes them attractive targets to cybercriminals
seeking to steal and monetize such information [12].

It is hard to study attacker behavior in online accounts
and documents unless one is in control of a large online
service. Hence, there is limited research literature in this
space. Previous work has shown that cybercriminals target
online accounts and services to steal financial information
from them, and trade stolen information via various outlets [5].

1https://ec.europa.eu/eurostat/statistics-explained/index.php/Internet and
cloud services - statistics on the use by individuals

Such financial information includes payment card information,
cryptocurrency wallets, and online banking details. The advent
of cryptocurrencies has introduced a new wave of cyber-
criminals targeting users and platforms, and stealing digital
money (cryptocurrency wallets), as seen in the 2014 high-
profile attack on a cryptocurrency exchange known as Mt.
Gox2 ($460 million in losses).

To understand what happens to compromised cloud docu-
ments containing financial information, we set up 100 fake
payroll sheets comprising 1000 fake records of fictional indi-
viduals. For comparison, only five decoy sheets were deployed
in a related previous study [8]. We scaled up experiments by
a factor of 20, compared to [8]. We populated the sheets with
traditional bank payment information, cryptocurrency details
(unlike [8] that relied on traditional bank information only),
and payment links. We also installed scripts in the sheets
to notify us about the activity of visitors in them. To lure
cybercriminals and other visitors into visiting the sheets, we
leaked links pointing to the sheets via paste sites. By doing
so, we mimicked the modus operandi of cybercriminals that
steal and distribute stolen financial information online.

We ran experiments and collected data for a month. We
observed 235 accesses across 98 sheets. Two sheets were
not opened. We also recorded 38 modifications in 7 sheets.
We present detailed measurements and analysis of accesses,
modifications, edits, and devices that visited fake payment
URLs in the sheets (with emphasis on IP addresses, browsers,
and operating systems).

Contrary to our expectations, bank payment URLs received
many more clicks than cryptocurrency payment URLs despite
the popularity of cryptocurrencies and emerging blockchain
technologies. On the other hand, sheets that contained cryp-
tocurrency details recorded more modifications than sheets that
contained traditional banking information; 38 modifications to
7 cryptocurrency sheets and no modification to bank sheets.
We also observed attempts by cybercriminals to cover their
tracks—one out of every three persons that visited payment
URLs covered their tracks while doing so, by visiting via TOR
network.

In summary, we present a comprehensive picture of what
happens to compromised Google spreadsheets. The findings
in this paper will help other researchers to understand what

2https://www.wired.com/2014/03/bitcoin-exchange/

happens to stolen cloud documents and providers of cloud
services looking to understand ways to secure accounts and
assets on those cloud services. This is essential because our
daily activities depend heavily on cloud services.

II. BACKGROUND

In this section, we describe cloud documents, with specific
focus on Google Sheets, and explain why Google Sheets
constitutes a good fit for our experiments.

A. Cloud documents

Word processing, desktop publishing, and data processing
tasks can be carried out on local machines using desktop tools
such as Microsoft Word, Scribus, and Apache OpenOffice
Calc, among others. It is also possible and easy to use cloud-
based tools for such tasks. They usually do not require com-
plex installation processes unlike their desktop counterparts.
They also allow users to collaboratively edit documents from
any location. Examples of cloud-based tools for creating and
editing cloud documents include Google Sheets, Microsoft
Office 365, and Zoho Office Suite. These tools offer remote
document hosting and editing services, and are accessible via
a web browser. Next, we describe Google Sheets, the cloud-
based platform that supported our experiments in this paper.

B. Google Sheets

Here, we focus on Google Sheets, a cloud-based data
processing tool that allows users to create and modify sheets,
and carry out data processing tasks on those sheets. Google
Sheets also enables users to extend the functionalities of
their sheets by incorporating scripts in them, leveraging the
power of Google Apps Script3 (a scripting engine for building
lightweight web applications and augmenting Google Apps).
This makes Google Sheets a good fit for our experiments
since the embedded Google Apps Script engine allows us to
instrument sheets to “phone home” (report activity data).

To create sheets, a user will first have to set up at least
one Google account to host sheets. Afterwards, the user can
create new sheets via a web browser. Alternatively, users
can upload existing sheet data, for instance, comma-separated
values (CSV) files that already contain data formatted in rows
and columns. Users can edit cells in sheets, delete rows and
columns of cells, perform computations and transformations
on cells, and delete entire sheets, among other operations.

For collaborative purposes, the owner of a sheet can config-
ure the sheet to allow other users or visitors to view, comment
on, or edit the sheet. Inviting collaborators to such sheets
usually involves explicitly granting them specific permissions
(to view or edit). The sheet owner can also generate a long
link that points to the sheet, such that anyone that knows the
long link can view or edit the sheet, depending on the privilege
level assigned to the long link. The sheet owner can then send
the long link to collaborators. They will visit the long link
to gain access to the sheet. Figure 1 shows an example of a

3https://developers.google.com/apps-script/overview

Fig. 1. One of the ways to share a sheet with collaborators is by generating
a long link that points to the sheet. In this example, anyone that knows the
long link (highlighted in grey) can view and edit this sheet. Alternatively, the
sheet owner can explicitly enter collaborators via the “People” field.

sheet configuration setting that allows visitors with knowledge
of the long link to edit the sheet.

III. METHOD

In this section, we describe the process of creating and
instrumenting sheets prior to experiments, and how we ex-
posed the sheets to cybercriminals. We also describe the
data collection infrastructure that powered experiments in this
paper.

A. Creating honey sheets

We created sheets containing two types of financial informa-
tion, namely traditional bank payment information (bank ac-
count numbers and sort codes) and cryptocurrency information
(Bitcoin addresses). We designed the sheets to look like payroll
spreadsheets by including salary information. Note that the
sheets in [8] did not include any cryptocurrency information
while half of our sheets in this paper did.
Fake data in cells. We created 100 sheets and generated fake
personal data to fill their rows and columns (1000 records). We
also included salary information from Monster.co.uk,4 a
website that provides salary information to the general public.
Fake banking information. We included traditional banking
information (fake sort codes and fake bank account numbers)
in half of the sheets, following the conventions of the following
popular UK banks: HSBC, Lloyds Bank, Santander, Barclays,
and Standard Chartered.
Fake Bitcoin addresses. We needed fake but realistic-
looking cryptocurrency information for the other half of honey
sheets. To this end, we generated 500 fake Bitcoin addresses,
following Bitcoin address specifications described on a Bitcoin
wiki,5 and included them in 50 sheets.

4https://www.monster.co.uk/career-advice/article/uk-average-salary-graphs
5https://en.bitcoin.it/wiki/Address

2

Honey URLs. To observe if visitors to the sheets were
going to carry out attacks on the “account owners” listed in
the sheets, we included some fake payment URLs, which we
refer to as honey URLs, in the sheets. These honey URLs,
which point to non-existent pages on bank websites and
cryptocurrency exchanges, allow us to track clicks on them. To
track clicks, we leveraged the functionality that link shorteners
provide. By including short URLs (honey URLs) in the sheets
instead of actual destination URLs, we achieve our goal of
click tracking (via click analytics functionality provided by
link shorteners) and hide the true destination of honey URLs.
We chose cutt.ly, a link shortener that provides a free click
analytics dashboard and an API that allows easy download of
click analytics data.

This concludes the process of creating honey sheets and
adding fake financial data to them. Next, we describe the data
collection infrastructure that was deployed to monitor honey
sheets.

B. Data collection

In this section, we present the main components of the
honeypot infrastructure that was deployed to collect data
from honey sheets (see Figure 2). Next, we describe its key
components.
Safehouse webmail account. We installed scripts (Google
Apps Script) in each sheet to report changes in the sheet back
to us via a dedicated safehouse webmail account. Precisely, the
scripts send notification emails containing periodic snapshots
of sheets to the safehouse webmail account. We then retrieve
those emails via an email client and parse them to compare
snapshots of sheets automatically. This allows us to record
differences in snapshots and changes in sheets over time.
Honey URL analytics. As mentioned in Section III-A, short
URLs in honey sheets provide information about clicks on
them. This includes information about click origin (country),
click count, and device information (that is, the device that
was used to click on the link). We collected click analytics
data once daily by leveraging cutt.ly analytics API (recall
that we used cutt.ly link shortener service to create honey
URLs), and stored it locally in JSON files, for later analysis.
Bouncy web server. The cutt.ly analytics API provides
useful click analytics data but does not reveal IP addresses
of people that visit honey URLs. To overcome this limitation,
we configured a third of the cutt.ly-generated honey URLs
to point to a custom web server under our control, otherwise
known as a bouncy web server. This web server enables us to
record IP addresses and additional header information (which
short URL analytics do not provide). On receiving a request
for a web resource, the bouncy web server parses the request
path and redirects the visitor to a bank website, if the request
path contains the token “banking-8102,” a cryptocurrency
exchange website if the request path contains “crypto-8102,”
or google.com if the request path does not contain either
of those tokens.6 The “bouncy” behavior of the web server

6In case the reader wonders what “8102” stands for in request paths, it has
no special significance. It is simply year “2018” written backwards.

TABLE I
TO LURE VISITORS TO HONEY SHEETS, WE LEAKED LONG LINKS

POINTING TO THE SHEETS THROUGH PASTE SITES ON THE SURFACE WEB
AND THE DARK WEB. WE CHOSE THESE PASTE SITES BECAUSE THEY

ALLOW PUBLIC PASTES.

Name Type URL
Pastebin Surface Web https://pastebin.com/
Paste.org.ru Surface Web http://paste.org.ru/
Stronghold Dark Web (via TOR) http://nzxj65x32vh2fkhk.onion/

helps to keep up the appearance of visiting “payment links”
and hides the existence of the bouncy web server.
Health inspector. To inspect the state of the honeypot
system (to ensure that all components work as expected), we
periodically run the health inspector to check that latest ac-
tivity reports have been retrieved from the safehouse webmail
account. It also examines click analytics data for recency. Out-
of-date data indicates that one or more components of the
honeypot infrastructure have failed.

C. Leaking long links

Previous work has shown that cybercriminals often post
samples of their loot via online outlets usually to brag about
their prowess or attract potential buyers [12]. Mimicking their
modus operandi, we leaked long links7 pointing to the sheets
on paste sites (see Table I), to lure cybercriminals to visit
the sheets. Each long link was leaked along with a short
description, for instance, “leaked payroll” or “bitcoin payment
lists.” We configured each sheet in a way that anyone could
access and edit it, provided they know the long link that points
to it.

Prior to leaking the 100 long links, we divided them into
five chunks, each chunk comprising 20 long links. We leaked
all chunks twice daily to ensure good temporal coverage on
paste sites, thus compensating for timezone differences among
visitors to the paste sites. We also randomized the order of
links in each chunk prior to leaking, thus ensuring that each
long link had a fair chance of being visited. After leaking the
long links, we recorded accesses to sheets and tracked clicks
on honey URLs inside them.

D. Threats to validity

We acknowledge that there are some factors that may
affect the validity of our findings. First, our honey sheet data
comprises fake financial data which may be obvious under
close scrutiny, and can possibly influence the behavior of
visitors. Second, our honey URLs (embedded in sheet data)
are short URLs, and short URLs are generally treated with
suspicion. This may negatively affect the perception of visitors
to honey sheets. Third, we leaked long links pointing to the
sheets through paste sites only. Our findings may not be
representative of malicious activity in cloud documents stolen
via other outlets, for instance, malware-laden endpoints or

7Long links look like this: https://docs.google.com/spreadsheets/d/
1AX4ZDODx3J***. On the other hand, honey URLs look like this:
https://cutt.ly/B***.

3

Fig. 2. Honey sheets infrastructure.

underground forums. Finally, there is also the possibility that
automated tools (crawlers) visited the long links in addition to
human visitors. This may affect the validity of our findings. To
mitigate this risk in future work, it is possible to incorporate
an additional CAPTCHA-like step in the process of accessing
the sheets to ensure that only manual accesses by humans
pass through. This can be achieved by leaking links that point
to a web domain under our control which will serve up an
interstitial page containing the CAPTCHA. If a visitor passes
the CAPTCHA (and thus prove they are indeed human), they
will be redirected to the sheet that they were trying to access in
the first place. However, this approach may discourage visitors
from proceeding because of the increased cognitive workload
that CAPTCHA solving involves.

Despite these concerns, this paper offers insights into ma-
licious activity in compromised cloud documents.

E. Ethics

The experiments in this paper involve deceiving cyber-
criminals into interacting with cloud documents. In line with
standard ethical practices, we took the following precautions.
First, we used fake financial data (randomly generated) in the
sheets. Thus, we ensured that no real person or account was
harmed in our experiments. Second, to avoid spamming other
accounts, we did not leak credentials of the Google accounts
that hosted our honey sheets. We only leaked the long links
that point to honey sheets, thus limiting the possible harm
that our experiments may cause otherwise. Third, we obtained
approval from our institution prior to running experiments.

IV. DATA ANALYSIS

In this section, we present detailed measurements of visitor
activity in the honey sheets.

A. Activity overview

We conducted experiments from July 11, 2018 until August
14, 2018. During this period, 98 sheets were accessed 235
times.8 These sheets comprise 48 sheets containing banking
information and 50 sheets containing cryptocurrency infor-
mation. We recorded 38 modification events during which 7
sheets were modified by visitors. We observed 219 clicks on
honey URLs. Those clicks originated from 30 countries.

B. Timing of activity in sheets

Leak to first access. First, we set out to understand how
long it took for visitors to access the sheets after we leaked
long links pointing to them. Let us denote the time of first
leak as tleak. For each opened sheet, we record the time of
its first open event (first access) as t0 and compute the time
lag between leak and first access as t0− tleak. Figure 3 shows
a CDF of time lags. Less than 10% of opened sheets were
visited within the first 22 hours since first leak. However,
accesses increased rapidly afterwards—by the 25th hour since
first leak, 80% of the sheets had been opened. It is possible
that the initial time lags between first leak and first accesses
were due to reluctance of visitors to visit links, since links can
be potentially malicious, generally speaking.

8We define an access as a file open event, in other words, a sheet open
event.

4

0 5 10 15 20 25 30
First access: Time elapsed since first leak (hours)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Fig. 3. Time difference between leak and first access (CDF). Less than 10% of
opened sheets were visited within the first 22 hours since first leak. However,
accesses increased rapidly afterwards—by the 25th hour since first leak, 80%
of the sheets had been opened.

Timeline of accesses. Next, we set out to understand the
spatial patterns (with respect to time) of all accesses during
experiments. 98 sheets received 235 accesses. These comprise
48 bank sheets and 50 cryptocurrency sheets. Let us denote
the time of a given access as ta and the time of first leak as
tleak. For each access, we computed its relative access time as
ta−tleak. We then plotted a timeline of accesses (see Figure 4),
with the time of first leak tleak as the reference point. Figure 4
corroborates our previous findings in Figure 3—it shows
sparse accesses during the first day since the initial leak. From
the beginning of the second day, it shows a sharp increase in
accesses to bank sheets and cryptocurrency sheets. Figure 4
also shows that accesses to cryptocurrency sheets spanned a
longer time period than accesses to bank sheets—the last ac-
cess we recorded in a bank sheet was on the 25th day after first
leak, whereas we observed accesses in cryptocurrency sheets
afterwards. Next, we study the modifications that visitors made
to some of the honey sheets.

C. Modifications and edits in sheets

We observed 38 modifications in 7 cryptocurrency sheets.
No bank sheet was modified. A closer look at the modified
sheets revealed that most of the modifications were recorded
when visitors resized columns in sheets (changes made to sheet
structure are recorded as modifications). This happened in
cryptocurrency sheets because visitors wanted to view Bitcoin
addresses, which are long strings, partly obscured in the
default states of the cryptocurrency sheets. Interested visitors
thus had to resize the Bitcoin wallet column for a better view.

Next, we studied modifications that resulted in changes
to values of cells in sheets (otherwise known as edits). We
observed that a Bitcoin address in cell D4 of a cryptocurrency
sheet was replaced with another Bitcoin address. We looked
up the new Bitcoin address on a Bitcoin address verification
tool (blockchain.info), but it returned no result. We also

0 5 10 15 20 25 30 35
Time between leak and access (in days)

0

20

40

60

80

100

S
he

et
ID

Bank

Bitcoin

Fig. 4. Timeline of accesses. 98 sheets received 235 accesses. These comprise
48 bank sheets (“Bank”) and 50 cryptocurrency sheets (“Bitcoin”). Note that
accesses to cryptocurrency sheets spanned a longer time period than accesses
to bank sheets.

looked up our list of fake Bitcoin addresses to see if it was
copied from another cryptocurrency sheet, and this lookup
also yielded no result. This indicates that the Bitcoin address
entered by the visitor was either a yet-to-be-used Bitcoin
address that belonged to them (with intent to commit fraud
by receiving payments meant for the original recipient listed
on the compromised sheet), or a fake Bitcoin address made
up by them.

In another cryptocurrency sheet, we observed that one of
its records (fields B10—E10) had been replaced with values
that were exactly the same record. This indicates that a visitor
(accidentally) “cut” the original values and pasted them back
in the sheet. The next record was modified similarly, with
most values intact, except for the Bitcoin address field. The
Bitcoin address of that record was replaced with a different
string9 that did not fit the specification of Bitcoin addresses
and was also absent from the list of fake Bitcoin addresses
we initially generated. We observed another edit in a separate
cryptocurrency sheet in which the Bitcoin address of one of
its records was replaced by a copy of the string mentioned
previously. This indicates that the same visitor modified both
sheets (by pasting that string in both sheets).

In summary, the majority of sheet modifications comprised
column resizing actions by visitors, while actual edits involved
changes to Bitcoin addresses. Next, we study the patterns of
clicks on payment URLs within the sheets.

D. Click activity

Recall that we included two types of honey URLs in the
sheets, namely bank URLs and cryptocurrency URLs. In this
section, we present measurements of clicks on those URLs.
We recorded 219 clicks on honey URLs, comprising 135 clicks
on bank URLs and 84 clicks on cryptocurrency URLs. Those

9String: qzpweklwh85u0h2x44ffv4tsfhxww96v8c7kylnwyu. We
are yet to figure out what it stands for.

5

TABLE II
SUMMARY OF CLICKS ON HONEY URLS. DIRECT HONEY URLS LEAD

VISITORS DIRECTLY TO THE DESTINATION URL (BANK OR
CRYPTOCURRENCY PAGE), WHILE BOUNCY URLS SURREPTITIOUSLY

ROUTE VISITORS THROUGH OUR BOUNCY WEB SERVER BEFORE
REDIRECTING THEM TO THE DESTINATION URL.

Type of honey URL Click count
Direct bank 98
Bouncy bank 37
Direct Bitcoin 69
Bouncy Bitcoin 15
Total 219

0 5 10 15 20
Link click counts

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Bank

Bitcoin

Fig. 5. URL click counts. The bank link with the highest click count recorded
18 clicks while the cryptocurrency link with the highest click count recorded
14 clicks.

clicks originated from 30 countries. We present a detailed
summary of click counts in Table II.
Click counts. We wanted to observe differences in clicks
on bank URLs and cryptocurrency URLs. To this end, we
counted those clicks, by link type, and plotted CDFs of click
counts. Contrary to our expectations, honey URLs of the bank
type consistently received more clicks than honey URLs of
the cryptocurrency type. We expected the opposite to happen,
given the recent surge in interest of the general public in
cryptocurrencies and blockchain technologies. The bank link
with the highest click count recorded 18 clicks while the
cryptocurrency link with the highest click count recorded 14
counts, as Figure 5 shows.
Statistical test. To test the statistical significance of differ-
ences in click counts by link type, we relied on the two-
sided Kolmogorov-Smirnov (KS) test to examine the CDFs
in Figure 5. The null hypothesis states that both samples
under examination belong to identical statistical distributions.
The output of the test is a KS statistic and p-value. A small
KS statistic or high p-value shows that we cannot reject the
null hypothesis. The KS test returned an inconclusive result
(statistic=0.4667, p-value=0.0515).
Click locations. During the analysis of cutt.ly click
analytics data (on honey URLs), we collated a list of countries

that clicks originated from. We also carried out geolocation
(country-level resolution) of IP addresses that visited our
bouncy web server. We used IP-API,10 an IP geolocation
service that provides timezone and location information for
IP addresses, to achieve this. We then plotted the resulting
locations, comprising 30 countries, on a world map, as shown
in Figure 6. As the map shows, most of the countries are
located in Europe. It is possible that some visitors connected
to the sheets and clicked on honey URLs via proxies or VPNs.
We found some TOR exit nodes (see Section IV-E) among
the IP addresses that visited the bouncy web server via honey
URLs.

E. System configuration of accesses

In this section, we study the devices that visitors used while
clicking on honey URLs in sheets.
IP addresses and TOR exit nodes. Recall that a subset of
honey URLs point to our bouncy web server, which allows
us to collect IP addresses of visitors clicking on them, in
addition to click analytics. We recorded 35 IP addresses that
visited the bouncy web server from 20 countries. 12 of the
IP addresses were TOR exit nodes. Note that this is only a
subset of the IP addresses that visited the honey sheets—not
all visitors to honey sheets click on honey URLs. Also, only a
third of our honey URLs, the ones that point to the bouncy web
server, can track IP addresses. Hence we have a partial view
of IP addresses. Nevertheless, it is surprising that 34% of the
recorded IP addresses were TOR exit nodes. It shows that one
out of every three persons that visited our honey URLs covered
their tracks while doing so, by visiting via TOR network.
Browsers. We extracted browser information from click ana-
lytics data and grouped browser-clicks by URL type. Figure 7
shows the distribution of browsers that were used to visit
honey URLs. Visitors that clicked on honey URLs had an
unusual preference for Firefox—the top browser responsible
for more than 80% of clicks on bank and cryptocurrency
URLs. We also observed clicks from Chrome, Opera, and other
browsers.
Operating Systems. We also extracted information about the
operating systems of devices that connected to honey URLs.
Visitors that clicked on honey URLs had a preference for
Windows devices, as shown in Figure 8. In cryptocurrency
URL clicks, even though Windows devices dominate, we
observe a slightly wider range of operating systems than
devices that clicked on bank URLs. In both URL types, we
observed a small fraction of clicks from Android devices.
Cryptocurrency URLs recorded a tiny fraction of visits from
iPhones and Linux devices, both of which were absent from
clicks on bank URLs. This indicates that cryptocurrency URLs
attracted a slightly more diverse set of visitors than bank
URLs.

V. DISCUSSION

Implications of our findings. We observed differences in
document modifications, depending on the content of the

10http://ip-api.com

6

Fig. 6. Origins of clicks on honey URLs.

Bank Bitcoin
0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

cl
ic

ks

Firefox

Chrome

Opera

Edge

Internet Explorer

Safari

Other

Fig. 7. Distribution of browsers.

Bank Bitcoin
0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

cl
ic

ks

Linux

iPhone OS

Mac OS

Android

Windows

Other

Fig. 8. Distribution of operating systems.

7

documents. Particularly, documents that contained cryptocur-
rency information were subject to more modifications than
documents containing banking information, despite receiving
fewer accesses than sheets that contained bank information.
Similarly, we observed differences in URL clicking behavior
across different types of URLs in documents. This knowledge
can be used during the development and training of detection
systems to protect cloud documents. Such detection systems
could be built to adapt their statistical models depending on
document type and content. We also recorded defacement
activity (and “cut-and-paste” activity) in the sheets. For in-
stance, we observed an instance in which a meaningless string
was pasted in two sheets, among other modifications. Such
behavior likely deviates from regular everyday use of cloud
documents and could potentially help in identifying anomalous
behavior in them. Even though such actions occur during
benign account usage, a surge in potentially destructive activity
could be flagged as an anomaly (potentially malicious) and
they would trigger additional automatic checks and reviews
by human operators. In other words, it is possible to develop
and train tools based on machine learning methods that do
not require balanced training datasets of positive and negative
examples (one-class Support Vector Machines, for instance)
on “normal” document activity. Malicious activity will likely
deviate from normal activity and will thus be flagged as such.
Limitations. We had limited visibility into the sheets because
of unauthenticated accesses (visitors do not need to authenti-
cate before interacting with the sheets). As a result, we were
able to record only a subset of IP addresses that visited the
sheets, not the entire set. Also, it is hard to update scripts in
honey sheets—such updates must be carried out and tested
manually in each sheet. Once experiments are in motion, such
updates may taint experimental results.
Future work. In the future, we plan to continue exploring
the ecosystem of stolen accounts and gaining a better under-
standing of the underground economy surrounding them. We
will explore ways to make honey documents more believable
to attract more cybercriminals and keep them engaged. We
intend to set up additional scenarios, such as studying attackers
who have a specific motivation, for example, compromising
accounts that belong to political activists. We also intend
to carry out further studies on the impact of demographic
attributes (including employment status, religious affiliation,
and political affiliation, among others) of online accounts and
documents on the behavior of cybercriminals that gain illicit
access to them. These will provide comprehensive insights into
attackers’ motivations and resulting activity.

VI. RELATED WORK

Honeypots based on online accounts have been deployed to
study social spam in OSNs [16], [9], [14] and email spam [13].
DeBlasio et al. [3] studied compromised websites by register-
ing on those websites using honey webmail accounts. They
monitored illegitimate accesses to the honey accounts that
happened as a result of data breaches on those websites. They

observed attackers that leveraged the problem of password
reuse across online services. Other studies also investigated
the behavior of criminals in compromised webmail and cloud
document accounts via honeypots [2], [10], [8]. Kedrowitsch et
al. [7] explored ways to improve Linux sandboxes for analysis
of evasive malware. Barron and Nikiforakis [1] deployed
honeypot machines and observed how system properties of
those machines influenced the behavior of attackers. Kaprav-
elos et al. [6] used honeypots to study malicious browser
extensions and highlighted the huge risks that malicious
browser extensions pose to users. Wang et al. [15] investigated
malicious web pages by deploying VM-based honeypots that
ran on vulnerable operating systems. Stone-Gross et al. [11]
hijacked the Torpig botnet for ten days by taking advantage
of weaknesses in communication protocols of the botnet.
Stringhini et al. [14] studied social spam using 900 honeypot
profiles. Bursztein et al. [2] investigated manual hijacking of
accounts rather than automatic hijacking by botnets. They
show that manual hijacking is not common, and demonstrate
that phishing is the primary method that manual hijackers
use to acquire user credentials. To understand the phishing
ecosystem, Han et al. [4] deployed sandboxed phishing kits,
recorded live interactions of various parties with those kits,
and shed light on the phishing life cycle.

VII. CONCLUSION

To shed light on what happens to compromised cloud
documents, we set up 100 sheets containing fake financial
records of fictional individuals. We then lured cybercriminals
and other visitors into visiting the sheets. We observed 235
accesses across 98 sheets and 38 modifications in 7 sheets.
We presented detailed measurements and analysis of resulting
activity in the sheets. In summary, we have presented a
comprehensive picture of what happens to compromised cloud
spreadsheets.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments.
This work was supported by EPSRC grant EP/N008448/1 and
a Google Faculty Award. Jeremiah Onaolapo was supported
by the Petroleum Technology Development Fund (PTDF) of
Nigeria.

REFERENCES

[1] T. Barron and N. Nikiforakis, “Picky Attackers: Quantifying the Role of
System Properties on Intruder Behavior,” in Annual Computer Security
Applications Conference (ACSAC), 2017.

[2] E. Bursztein, B. Benko, D. Margolis, T. Pietraszek, A. Archer,
A. Aquino, A. Pitsillidis, and S. Savage, “Handcrafted Fraud and
Extortion: Manual Account Hijacking in the Wild,” in ACM Internet
Measurement Conference (IMC), 2014.

[3] J. DeBlasio, S. Savage, G. M. Voelker, and A. C. Snoeren, “Tripwire:
Inferring Internet Site Compromise,” in ACM Internet Measurement
Conference (IMC), 2017.

[4] X. Han, N. Kheir, and D. Balzarotti, “PhishEye: Live Monitoring
of Sandboxed Phishing Kits,” in ACM Conference on Computer and
Communications Security (CCS), 2016.

[5] A. Haslebacher, J. Onaolapo, and G. Stringhini, “All your cards are be-
long to us: Understanding online carding forums,” in APWG Symposium
on Electronic Crime Research (eCrime), 2017.

8

[6] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and
V. Paxson, “Hulk: Eliciting malicious behavior in browser extensions,”
in USENIX Security Symposium, 2014.

[7] A. Kedrowitsch, D. D. Yao, G. Wang, and K. Cameron, “A First Look:
Using Linux Containers for Deceptive Honeypots,” in Workshop on
Automated Decision Making for Active Cyber Defense, 2017.

[8] M. Lazarov, J. Onaolapo, and G. Stringhini, “Honey Sheets: What
Happens to Leaked Google Spreadsheets?” in USENIX Workshop on
Cyber Security Experimentation and Test (CSET), 2016.

[9] K. Lee, J. Caverlee, and S. Webb, “The social honeypot project:
protecting online communities from spammers,” in World Wide Web
Conference (WWW), 2010.

[10] J. Onaolapo, E. Mariconti, and G. Stringhini, “What Happens After You
Are Pwnd: Understanding the Use of Leaked Webmail Credentials in
the Wild,” in ACM Internet Measurement Conference (IMC), 2016.

[11] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your Botnet is My Botnet:
Analysis of a Botnet Takeover,” in ACM Conference on Computer and

Communications Security (CCS), 2009.
[12] B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna, “The underground

economy of spam: A botmaster’s perspective of coordinating large-scale
spam campaigns,” in USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET), 2011.

[13] G. Stringhini, O. Hohlfeld, C. Kruegel, and G. Vigna, “The harvester, the
botmaster, and the spammer: on the relations between the different actors
in the spam landscape,” in ACM Symposium on Information, Computer
and Communications Security, 2014.

[14] G. Stringhini, C. Kruegel, and G. Vigna, “Detecting Spammers on
Social Networks,” in Annual Computer Security Applications Conference
(ACSAC), 2010.

[15] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,
and S. King, “Automated web patrol with strider honeymonkeys,” in
Symposium on Network and Distributed System Security (NDSS), 2006.

[16] S. Webb, J. Caverlee, and C. Pu, “Social Honeypots: Making Friends
With A Spammer Near You,” in Conference on Email and Anti-Spam
(CEAS), 2008.

9

