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Figure 1: (a.) Informationflow across a networkwith our basic implementation of distributed consent. Blue nodes have the low-
est security settings and are susceptible to surveillance from third-party applications or websites. Purple nodes have stricter
security settings but share their posts and data with all their neighbors. Orange nodes follow a distributed consent model and
only share their data with purple nodes or other orange nodes. (b.) The same network where a third party directly observes
a handful of low-security accounts is highlighted in red with shading. All nodes sharing their data with directly observed ac-
counts are also de facto observed and shown in red. Nodes at a distance L > 1 can also be observed if the third party leverages
some statistical procedure, inferring data up to a distance of two from directly observed nodes. (c.) We show the remaining
unobserved or protected subnetwork.

ABSTRACT
Personal data are not discrete in socially-networked digital en-
vironments. A user who consents to allow access to their pro-
file can expose the personal data of their network connections

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9352-2/22/06. . . $15.00
https://doi.org/10.1145/3531146.3534640

to non-consented access. Therefore, the traditional consent model
(informed and individual) is not appropriate in social networks
where informed consent may not be possible for all users affected
by data processing and where information is distributed across
users. Here, we outline the adequacy of consent for data trans-
actions. Informed by the shortcomings of individual consent, we
introduce both a platform-specific model of “distributed consent”
and a cross-platform model of a “consent passport.” In both models,
individuals and groups can coordinate by giving consent conditional
on that of their network connections. We simulate the impact of
these distributed consent models on the observability of social net-
works and find that low adoption would allow macroscopic subsets
of networks to preserve their connectivity and privacy.
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1 INTRODUCTION
One key focus of the burgeoning field of data ethics concerns how
big data and networked systems challenge classic notions of privacy,
bias, transparency, and consent [33]. In particular, the traditional
privacy model, which relies on individual self-determination and
individual consent, we argue, is no longer appropriate for the digital
age. First, the traditional privacy model requires that consent be
informed, which may not be possible in the context of large data
sets and complicated technologies. Second, the traditional privacy
model presumes individual control over personal information, even
though the flow of information in networked systems precludes
anyone from having such control over any piece of data. While
the modern information environment shows both conditions as
problematic, and while we briefly discuss the information condition,
we focus most of our attention on the individuality condition.

Individual consent (by which we mean requiring that individual
end-users consent in order for some action or outcome to be permis-
sible) has many limitations—notably, we live in a highly networked
[37] and advanced technological society, where digital decisions
and actions are interconnected and affect not just ourselves but our
digital community as a whole. In a digital age, individual consent is
flawed [11] and ineffectual when protected class data and social pro-
files can be easily inferred via our social networks [6, 10, 24, 38, 52].
The individual consent model works most effectively in a physical
space with accepted boundary norms [48, 62], linear contacts be-
tween two discrete parties, and no externalities. This, however, does
not translate well to a digital realm where personal data boundaries
are fuzzy and interwoven. The current over-reliance on individual
consent online has also led to a negative externality of less legiti-
mate consent due to consent desensitization, in part, because users
are now faced with a deluge of consent requests [53]. Thus, a new
approach to data privacy and consent in this context is needed.

A new data privacy model will need to consider several fac-
tors: the networked virtual space that we occupy; integration of
group consent; and a mechanism for distributed moral responsibil-
ity when data privacy is breached or data are processed, combined,
or manipulated in unethical manners [22]. In this paper, we will
focus on distributed consent in particular and evaluate, in a math-
ematical model, its potential to increase online social networks’

general privacy. We aim to cover the latter data privacy concerns
in future work. In addition, future work could explore the potential
for early adopters of distributed consent to influence their network
neighbors (e.g. via cascade effects towards a contagious taste for
privacy).

1.1 A Critique on the Adequacy of Individual
Consent for Data Transactions

We will call the means by which information is shared personal
data transactions. Broadly speaking, a personal data transaction
is any transaction in which one party gives or reveals personal
information to another, so the category is vast; it includes every
behavior and every speech act that imparts information of some
kind to another.

We can narrow the broad category of personal data transactions
in three ways for our purposes here. First, we are interested in
those transactions for which the primary purpose of the actions or
transaction is the transfer of information. We will not attempt to give
a complete conceptual framework here, but we can provide some
indication of what we mean. If A gives B money, and B gives A a
shirt, information has been exchanged, but the primary purpose
of A’s giving money, and B’s giving the shirt was not the infor-
mation exchange—it was the exchange of goods. If A asks B how
their day was and B replies “pretty good,” information has been
exchanged, but it is possible that the primary purpose was not the
information exchange but rather the demonstration of caring or the
strengthening of solidarity. So we will focus on data transactions
where the primary purpose behind the transaction is the transfer
of information itself—though it is important to know that the infor-
mation might be valued because of further downstream uses of the
information. If A asks B about where B grew up, what B’s mother’s
maiden name is, and the name of B’s childhood pet, then B’s re-
sponses would be data transactions—even if A’s ultimate reason
in asking the questions were to get access to B’s online banking
accounts.

Second, we are interested in those transactions which are about
personal information. As with the previous case, we cannot precisely
conceptualize personal information here. The general idea is that
personal information is information about an identifiable living
person [43]. If A downloads all of the 1911 Eleventh Edition of the
Encyclopaedia Britannica and gives it to B, that is a data transaction
in the broad sense but is likely not a transfer of personal information
in the sense that we are interested in here (assuming that B is
not an entry in the encyclopedia). If A gives B information about
A’s whereabouts over the past 24 hours or information about A’s
food preferences, that is personal information. It is important to
note that personal information need not be information about the
person giving it to someone else; A can give B information about
C’s food preferences or whereabouts, which would constitute a
data transaction. Here again, the boundaries are difficult to layout
precisely.

Where do the limits of personal data lie? SupposeAwere to giveB
a copy of a biography of Barack Obama: A’s giving B the biography
is outside of the scope of data transactions that we are interested
in because the personal information about Obama contained in the
biography is presumed to be public. Data transactions are valuable
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insofar as some party is gaining something of value, and discrete
information that is previously known is not valuable. Moreover, that
suggests a third way to restrict the domain of data transactions that
we are interested in: we are concerned only with data transactions
that deal with non-public information.

So when we talk about personal data transactions, we are talk-
ing about exchanges of personal information between two parties
where the exchange of information is the (or a) primary purpose
of the exchange, where the information is personal, and where the
information is non-public. Personal data transactions of this form
make up a significant and increasing portion of our modern lives.
The following examples are just two of many but highlight personal
data exchanges that have the potential to be highly impactful on
our moral lives.

As one example, consider our use of social media.Whenwemake
an account on social media, we potentially engage in three different
kinds of personal data transactions. First, there are the data transac-
tions between the person with the account (the “end-user”) and the
social media company or platform. Second, there are the data trans-
actions between one end-user and other end users on the platform
between whom there are some network connections. Third, there
are data transactions between end-users and third-party auxiliaries
(e.g., individuals, apps, bots) that receive or process data to enhance
the end user’s social network experience. As examples of these,
consider Facebook: anyone creating a Facebook account shares
with the site all of the information they intentionally put on the
site (their profile information, their network connections/friends,
their posts). There is also a host of information that they might not
be aware they are putting on the site (their location, the amount of
time they spend reading posts or watching ads). The Facebook user
also builds networks of social connections (nodes) on the platform.

Selected information is shared among various nodes on the
friendship network in accordance with the end user’s preferences.
End-user A might share a lot of information with friends B and
C . User A is close friends with B and C and may want to share
information such as profile data, location data, and the content
of all of their posts. User A is an acquaintance with users D and
E and may want data sharing to be limited to only some posts
or only some photos, or no location information or information
about A’s friend network. The third kind of information flow is
that which is shared with third parties. For example, third parties
might be designers of games or quizzes that can be run on the
Facebook platform, such that those third parties can then collect
information Facebook possesses about the end-user playing the
game. (Cambridge Analytica is an example of a third party who
acquired information from end-users through games or apps on
the Facebook platform; Facebook has since changed some of its
policies on third-party data acquisition.) Third-party websites can
also allow users to sign in with their Facebook accounts, and those
third parties can then get some user information when people use
their Facebook accounts to log in. While not every social media
site offers the same options for how information is shared across
those three modalities, having an account on any social media site
entails sharing information in each of those three different ways.

1.2 A Theory of Consent
The fact that people have putatively consented to all of the personal
data transactions that we identified above is supposed to be doing
a lot of normative work: it takes information gathering actions
that would have been impermissible and supposedly makes them
permissible. As we have seen, our modern lives are filled with
personal data transactions. And while it has been argued that the
ubiquity of these personal data transactions is such as to entail
that we are living within a de facto surveillance state [67], there
is at least one important prima facie difference: surveillance states
are typically imposed on subjects without their consent, so that
personal information in a surveillance state is gathered without
any consideration to the preferences of the surveilled, whereas (it is
claimed) we freely consent to the personal data transactions that we
are subject to. (Note that we are not here endorsing this argument;
we present it merely in order to motivate our analysis of the role
of consent in personal data transactions.) In this way, consent for
personal data transactions functions analogously to how consent
functions in medical ethics and how consent functions in sexual
ethics.

To borrow a phrase used by both Heidi Hurd and Larry Alexan-
der, consent is a kind of “moral magic”: “it transforms acts from
impermissible to permissible” [2, 28]. This is true in generic ways;
A’s entering B’s house can be either a trespass or a permissible visit
based on whether B has consented to A’s entering. It is particularly
true in matters of sexual ethics, where the moral status of a sexual
act crucially depends on whether the act is consented to at the
time that it is performed [19]. Furthermore, it is equally valid for
medical ethics, where invasive medical procedures and treatments
are impermissible unless consented to by the patient.

Regardless of the legality, it is reasonable to think that if A were
to persistently and systematically surveil B (going through B’s
trash, compiling every public record about B, recording all of B’s
public movements), and B were not a public figure who might be
an appropriate target of community scrutiny, then that would be
an impermissible form of information gathering. Of course, if B
were to consent to their information being gathered in this way
by A (say they are the willing subject of a documentary), then
the information-gathering would thereby become permissible. So
consent would have the same kind of moral magic as it does in
other contexts [42].

Likewise, personal information transactions open up the risk
of one’s autonomy or integrity being violated. After all, personal
information is personal—and as such, it potentially enables others
to identify them and predict or control one’s behavior in a way
that compromises one’s autonomy and capacity to act on one’s
intentions and one’s own conception of the good. It is true that we
share personal information with others around us all the time; the
mere sharing of personal information does not compromise one’s
autonomy. However, we typically share personal information with
those we trust to use the information correctly. We share informa-
tion that is anodyne enough to not threaten our ability to pursue
our own goals; we do not typically share personal information with
those we know intend to use that information to circumvent our
autonomy or act contrary to our interests. This is why privacy is
important even for those who do not think themselves to have a
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strong taste for privacy: autonomy matters because it is the means
by which we pursue the good, and privacy is connected to auton-
omy. Getting legitimate consent to personal data transactions helps
to ensure that one’s autonomy is safeguarded.

Finally, personal data transactions often involve commercial par-
ties, either as one of the parties to the data transaction (as happens
when you upload your information to Facebook) or as the platform
in which data transaction occurs (as when you share your data
with your friends through Facebook). Commercial parties have an
interest in limiting their liability. To this end, obtaining putative
consent to acquire and process data helps limit the legal liability
they face. Companies and commercial agents have a vested interest
in preventing the end users of social media sites and data tech-
nologies from complaining. Obtaining consent helps support the
argument that the end-users have, indeed, forfeited their right to
complain about any consequences arising from the personal data
transactions.

1.3 Consent in Data Transactions
Before discussing the limitations of the individual consent model
for personal data transactions, it is worth addressing one question:
Why would we ever have thought that consent was relevant for
data transactions at all? After all, the argument goes, data trans-
actions are just one species of transaction. Moreover, transactions
are necessarily mutually consensual; if they were not, they would
not be transactions. An exchange in which A gets a beer and B
gets a dollar is a transaction if they both agree, but it is robbery or
coercion if eitherA or B does not consent to the exchange. (The fact
that both A and B receive something is irrelevant; if A breaks into
B’s house and steals B’s property, it is no less a robbery just because
A left something behind in exchange.) Likewise, the objection goes,
that if A and B are engaged in a personal data transaction, then
it is irrelevant to ask whether the transaction is consensual; if it
were not, it would not be a personal data transaction but would
instead be a data theft or something similar. If this is right, it is as
unnecessary to ask whether a data transaction is consensual as it
would be for the cashier at a clothing store to explicitly ask every
patron whether they consent to trade their money for the clothes
they wish to buy.

One reply to this objection is to say that we actually do care
about obtaining consent for some exchanges precisely because we
want to ensure that the exchange is a “transaction” rather than a
“theft.” When the stakes are high. There is a possibility of future risk.
In other words, we do seek to clarify the consensual nature of the
exchange, but when the stakes are low and there is a low perception
of risk, we are less concerned [1, 21, 55]. This reply is correct, but
we think an important point is in danger of being obscured. In the
case of ordinary transactions, there is less danger of the transaction
being non-consensual precisely because there is little danger of the
parties to the exchange not knowing what they are exchanging;
whenA gives B money, and B givesA a shirt, both parties are aware
that the transaction happened because both parties have clearly
gained something and have lost something.

Moreover, there are positive actions that A and B both perform,
without which the transaction cannot take place; A must hand
over the money, and B must hand over the shirt. However, we can

easily imagine transactions in which these conditions are not met—
perhaps, for instance, it is not clear among the parties precisely
what has been gained and what has been lost after a transaction.
(One might think of the “sale" of the island of Manhattan by Native
people that Peter Minuit orchestrated on behalf of the Dutch; what
exactly is one selling if the land is still there after the transaction is
done?) Alternatively, imagine transactions for which no positive
actions need to be taken, like arrangements that automatically
deduct money from a bank account or other store of value without
anyone needing to do anything. It is certainly not challenging to
sway our intuitions towards thinking of these “transactions" as theft
or, at a minimum, theft-adjacent. The same issues arise with data
transactions (whether legitimate or not). We might wonder whether
the exchange of data between A and B is actually a transaction if
one or both parties are not clear on precisely what has been gained
or lost—but, as we will see, this is a common feature of most modern
personal data exchanges. It is certainly not like a transaction for a
shirt, where one minute you have a dollar and the next minute you
do not; after a personal data exchange is complete, you have just
as much of your own personal data as you started with. Personal
data exchanges often do not require any positive action on behalf
of the parties; we lose data in personal data exchanges all the time,
through no action of our own. So while it is acceptable to say that
valid transactions are consensual, it is also true that not every data
exchange is a data transaction in that strict sense. It is reasonable
to ask for explicit consent to data exchanges so that all parties are
confident that it is a data transaction and not a mere exchange.

It is a reasonable strategy, but it is nevertheless a failed one.
As we will see, there are systematic reasons why personal data
exchanges cannot be justified by individual consent.

2 RESULTS
2.1 A General Overview of the Problems with

Individual Consent
We can now provide a very general overview of the problems with
individual informed consent when applied to data transactions.
Note that we are assuming for the sake of this discussion that the
relevant data are, in fact, adequately subject to control by individu-
als. This is a problematic assumption; data often implicate multiple
individuals or are otherwise ‘co-owned’ and thus are not properly
the things that individual consent can govern. This important point
requires a fuller discussion, but we make this simplifying assump-
tion here because social networks cannot function in anything like
their current form without it.

Consent, in this context, should not be mistaken for a state of
mind or an attitudinal event [31, 64] and it must meet certain criteria
in order to be considered a valid. The legitimacy of consent hinges
on a number of criteria [9]:

(1) the subject has sufficient accurate information and under-
stands the nature of the agreement,

(2) the agreement is entered into without coercion,
(3) the agreement is entered into knowingly and intentionally,
(4) the agreement authorizes a specific course of action.

In the context of personal data transactions, digital consent also
rests on the four criteria mentioned above. The user agrees to the
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specified service terms and privacy policy outlined by the data
processor. Notably, the four criteria listed above fail in the context
of personal data transactions and classic Privacy Policies and Terms
of Service (ToS) agreements.

First, most users entering into consent agreements know very lit-
tle about data processing or the risks of handing over their data. The
dense legal and technical nature of ToS agreements task non-experts
to consent to something they do not understand [17]. This dynamic
takes advantage of asymmetry in technical and legal knowledge.

Second, it is difficult to opt-out of these services since online
platforms are an important social ecology where people form per-
sonhood, maintain personal relationships, and build valuable net-
worked counter-publics [23, 29, 30, 50]. Nevertheless, there is little
to no power on the part of the individual to negotiate the ToS with
these companies, as consent in these ToS is typically presented on a
take-it-or-leave-it basis and offers no conditions of choice [44, 54].
Online privacy then turns into an unfortunate social optimization
problem [62], where the user must choose between the pressures of
disclosing too much personal information (being digitally crowded)
and being socially isolated [4].

Third, the volume of consent requests a user faces has led to a
troublesome externality where the user is fatigued and habitually
agrees to everything due to consent desensitization [17]. This dele-
gitimizes the premise that each act of putative consent reflects the
individual user’s autonomous judgment.

Fourth, the language in ToS agreements is typically so broad and
open-ended that data processors have the flexibility to manipulate
the data in many ways. The consent scope cannot be so broad as
to allow actions that the user could not have considered or would
otherwise not have consented to. An adequately limited scope of
consent also implies that there should be somemechanism for a user
to check if their data are indeed following the agreed-upon course
of action. However, data processors often make it very difficult
[32], if not impossible, to track personal data, know what they have
collected or how it is being processed, and hold them accountable
for misuse [13, 57].

A fundamental assumption for individual consent is that the
user has power over their personal data and can trade their per-
sonal privacy in exchange for using an online service [14]. Perhaps
more importantly, a significant concern with the individual con-
sent model is that personal data, in this context, are distributed
information that contains information about more than a single
individual and spans a broader communication boundary than the
user is aware [48]. In reality, these data may not belong wholly to
the individual. Therefore, it is not appropriate for the individual
to act alone in controlling the course of action or the flow of these
data. Perhaps the first step to understanding the impact of this issue
in an online social media context is to understand how different
levels of consent impact the flow of networked data and observ-
ability in the first place. It will be important for us to understand
if the network effect has a strong influence on privacy to justify
group-level consent settings.

2.2 A Threat Model for Leaky Individual Data
in Social Networks

The densely interconnected nature of online social ecology creates
a significant problem with the model of individual consent. When
users share personal information online, they are also leaking per-
sonal information about others in their social network (digital or
otherwise) [6, 24]. According to Bagrow et al., “due to the social
flow of information, we estimate that approximately 95% of the po-
tential predictive accuracy attainable for an individual is available
within the social ties of that individual only, without requiring the
individual’s data” [6].

One example of leaky data is when a user attempts to sign on to
a new online service. They may be prompted to skip the hassle of
entering their personal information manually and instead opt to
use an existing account to act as a secured access delegation [63] in
order to gain quicker access to the new third-party online service.
The online service can ask to gain access to the user’s online social
network, phone or email contacts, location, and other personal data.
Through these leaky data, third parties can be granted access to a
wealth of knowledge about people who never consented to share
their information with that particular service.

Similarly, attackers can breach social accounts via various meth-
ods, including phishing attacks, malware, and data breaches [18, 27,
59]. They can also create fake social accounts and then use those
fake accounts to befriend real accounts. To extend their reach, those
attackers can then monitor the activity of other accounts that are
directly connected to compromised or fake accounts. By leveraging
network effects, attackers can further indirectly observe the social
activity of groups of accounts that are several hops away from the
captive accounts, starting with accounts that are one hop away
[16, 60].

Leveraging those captive accounts, the attackers traverse the
social graph or segments of it and record profile information and
social activity that would later be used in future phishing and spam
attacks, influence manipulation attempts [65], and disinformation
campaigns [5], among others. Given the massive size and connected
nature of online social networks, the potential reach of attackers
and the resulting harm both have the capacity to rise to catastrophic
levels. We describe examples of real-world incidents that demon-
strate the severity of this problem in our discussions.

2.3 A Model of Distributed Consent and
Network Observability

To account for the distributed nature of personal data (i.e., the
distributed online self), we consider a simple model of distributed
consent. Imagine a social network platform where individuals have
the following privacy options:

0. Individuals share their data with all their connections and are
vulnerable to third-party surveillance (similar to Facebook
accounts with access for “Apps, Websites and Games” turned
on).

1. Individuals share their data with all their connections but
are not directly vulnerable to third-party surveillance.

2. Individuals only share their data with their connections
whose privacy levels are set at least 1.
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N. Individuals only share their data with connections whose
privacy levels are set at least to N − 1.

Options 2 and greater are currently unavailable on popular social
media platforms but are a first-order implementation of what we
call distributed consent. Simple implementations of this concept
could be an attractive setting to adopt if the platforms wish to
address privacy concerns and keep users. Individuals who pick this
option are stating that they want to be part of a local group that
agrees on minimal privacy settings. It is a consent conditional on
the consent of their neighbors in the network structure.

Imagine now that a third party wishes to observe this population,
either by releasing a surveillance application on the social network
or by explicitly gaining control of their accounts through similar
malware. Say they can directly observe a fraction φ of individuals
with privacy level set to 0 through this attack. They can then lever-
age these accounts to access neighboring individuals’ data with the
privacy level set to 1 or 0, therefore using the network structure
to observe more nodes indirectly. They can further leverage all
of these data to infer information about other individuals further
away in the network, for example, through statistical methods,
facial recognition, and other data sets.

Deep surveillance processes are relevant to other network sys-
temswhere it is possible to indirectly observe nodes within a certain
distance from directly observed nodes. Deep surveillance allows us,
for example, to monitor an entire power grid without monitoring
the voltage and line currents everywhere in the system [66]. It
was recently shown that the surveillance process itself could be
generally modeled through the concept of depth-L percolation [3]:
Monitoring an individual allows one to monitor their neighbors
up to L hops away. Depth-0 percolation is a well-studied process
known as site percolation. The third-party would then be observing
the network without the help of any inference method and by ig-
noring its network structure. With depth-1 percolation, they would
observe nodes either directly or indirectly by observing neighbors
of directly observed nodes, e.g., by simply observing their data
feed or timeline. Depth-2 percolation would allow one to observe
not only directly monitored nodes but also their neighbors and
neighbors’ neighbors, e.g., through statistical inference [6]—and so
on, with deeper observation requiring increasingly advanced meth-
ods. The model is illustrated in Fig. 1 and detailed in our Methods
section.

To study the interplay of consent and observability on social
networks, we combine our distributed consent and depth-L perco-
lation models on subsets of Facebook friendship data informed by
empirical work on the demographic population’s taste for privacy.
We assume that one-third of the population has a taste for privacy
[34]. These data are anonymized with all metadata removed and are
simply used to capture the density and heterogeneity of real online
network platforms. We use distributed consent with a security level
up to N = 2 and an observation process with L = 2 (observing
nodes two hops away from the compromised account). As we will
see, those values mean that the third party is more sophisticated
than our distributed consent mechanism, and no one is guaranteed
to be unobservable. We then set 1% of accounts with the lowest
security setting to be compromised and directly observed such that
that between 90% and 100% of the population will be observed given

the default security settings. We then ask to what extent distributed
consent can preserve individual privacy even when a large fraction
of nodes can be directly observed and third parties can infer data of
unobserved neighbors. How widely should distributed consent be
adopted to guarantee connectivity and privacy of secure accounts?

The results of our simulations are shown in Fig. 2 and Fig. 3.
We focus on the number of observed nodes of different security
levels and on the size of the giant component of unobserved nodes.
This last quantity refers to the size of the largest subpopulation of
accounts that are not observed and maintain connected pathways
of any lengths between one another, thus preserving both their in-
dividual privacy and the global connectivity objective of the social
network. In classic percolation theory, only one giant component
can span the entire system [58], meaning only one subset of nodes
can scale with the total size of the social network. Yet, from recent
results on network observability [3], we also know that giant ob-
served components can co-exist with giant unobserved components.
This is where distributed consent can play a large role: Even if a
third-party surveillance system scales with the size of the social
network, it is theoretically possible for accounts to maintain their
individual privacy and global connectivity at scale.

Figure 2 shows the results of our model in populations facing
either a very strong attack (1% of compromised accounts, chosen
to observe almost the full population) or a more modest attack
(0.05% of compromised accounts, chosen for about 50% observa-
tion). Against a strong attack, we find that while extremely low
adoption levels of distributed consent have little impact on the ob-
servability of the system, moderate adoption (roughly 1 in 5 users)
can lead to a transition where observability now drops sharply with
the adoption of distributed consent; see Fig. 2(a, e). There are few
unobserved nodes at a low adoption rate of distributed consent. All
are mostly disconnected from each other and therefore observable
through compromised neighbors. At higher levels of adoption rate,
the system transitions to an unobservable and connected phase
where privacy can co-exist with connectedness and information
flow; see Fig. 2(b, f). With large-scale adoption of distributed con-
sent (say one-third of users), we find that close to half of all accounts
are now protected even against very strong attacks, even if their
privacy settings only prevent about 22% of data flow around them.

Against the more modest attack, increases in the adoption of
distributed consent lead to an increase in smaller but smoother and
more reliable protection. With 33% adoption, populations can halve
the size of their observed population and conversely double the
size of their unobserved component.

To understand these results, notice that any user with privacy
settings set to a greater value than the percolation depth will be
unobservable. If we had set simulated naive attackers who observe
at a depth L = 1 only, adopters of distributed consent would have
been fully protected. Indeed, users using the security setting N will
only share their data with users using settings of N −1 or more, and
this statement holds for allN . We thus know that users using setting
N will be at least N steps away from users using the lowest setting,
which are the only directly observable nodes. Users with security
level set to 1 < N < L can however be observed indirectly through
their relationships. At low levels of adoption of distributed consent,
a large amount of luck is required to remain unobservable (e.g.,
having zero connections with low-security users). At higher levels
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Figure 2: We use the anonymized Facebook100 dataset [61]. We assume that one-third of the population has a taste for privacy
[34], split between security options 1 and 2 (i.e., classic or distributed consent) according to the adoption rate of distributed
consent shown on the horizontal axis. At the same time, the remaining two-thirds will use the default setting with the lowest
security, option 0. We set 1% (top row) or 0.05% (bottom row) of accounts with security option 0 to be directly observable by
a third-party app, which can also observe neighbors up to two hops away in the network. These values are chosen to model
attacks that observe nearly the entire population (top row) or about a half of it (bottom row). We then vary the adoption
rate and measure the total fraction of observed accounts (blue curves), the relative size of the largest unobserved connected
component (black curves), and the fraction of observed individuals with security option 1 (orange curves) or two (pink curves).

of adoption, users of distributed consent connect to and therefore
protect, one another. However, these connections are localized and
do not spread throughout the entire system. We find that when
roughly 25% of nodes with a taste for privacy adopt distributed
consent, a large macroscopic component of connected unobservable
nodes emerge even against the strongest attack. This component
reflects a parallel, protected community that is unobservable but
still connected to the rest of the social network.

Even though a phase transition in connected unobservable nodes
occurs at a fairly low level of distributed consent adoption, these
nodes provide secondary protection to other users. The pervasive
adoption of group consent is required to fully protect a network.
Again, a single observable neighbor is all it takes for one vulnerable
node to be indirectly observed. Because of this and because of the
density of most online networks platforms, it is extremely hard to
completely protect vulnerable nodes even if distributed consent
provides some secondary protection to all nodes. We thus see the co-
existence of both observed and unobserved connected components
at the medium adoption level of distributed consent. Interestingly,
these components are interconnected, with data flowing both ways
across observable and unobservable components, yet the users in
the latter remain fully protected from statistical inference of their
data.

Importantly, the macroscopic but unobservable component that
we see emerge with increased adoption of distributed consent does

not only contain adopters of distributed consent. Early adopters of
distributed consent provide some low amount of herd privacy to
the population, protecting otherwise vulnerable users; see Fig. 2(c,
g). Users with lower privacy settings can thus also benefit since
the adoption of distributed consent in one’s neighborhood reduces
the probability that one of their neighbors is directly or indirectly
observed, thereby reducing the probability that they are themselves
observed. However, as long as a majority of users rely on the default
lax security settings, this effect will be limited as a single compro-
mised neighbor is sufficient to observe a node. However, we do
find much stronger herd privacy effects against more moderate
attacks. Moreover, similar effects provide non-linear returns on rel-
ative protection of distributed consent users, Fig. 2(d, h), consistent
with our previous observation of the emergence of an unobserved
component.

Finally, in Fig. 3, we reproduce the large attack against a popu-
lation with a stronger taste for privacy and compare our previous
results with those obtained by halving the fraction of unprotected
nodes (two thirds to one third). Unsurprisingly, the stronger the
taste for privacy, the stronger the effects of distributed consent;
both at the macroscopic level (the fraction of observed nodes and
the size of the unobserved component in panels a, b, e, and f) and
at the microscopic level (herd privacy effects shown in panels c,
d, g, and h). To make the comparison easier, we plot all quantities
against the fraction of users with a taste for privacy (any security
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Figure 3: We reproduce results from Fig. 2 but using populations with different taste for privacy. The results in the top row of
this figure match the top row of Fig. 2 but are now shown as a function of the nodes with a taste for privacy (security level
greater than 0) that opt for distributed consent (security level greater than 1). We then change the fraction of the population
with a taste for privacy from 33% (top row) to 66% (bottom row). Qualitatively, the results are very similar. Therefore, the key
quantity that drives the macroscopic effects of distributed consent is not its total adoption but its relative adoption within
individuals that cannot be directly observed.

level other than the lowest) that opt for distributed consent. This
ratio collapses all results on similar curves and therefore appears
to be the critical quantity in determining the privacy level of a
population.

2.4 A Model of Coordinated Consent Across
Platforms

Currently, there is a David and Goliath problem [36]; the inequality
of knowledge and power between the user and the data collector
functionally takes away the individual’s ability to control their
personal information realistically. Part of the problem we believe
is that the terms of the agreement are predicated solely on the
platform’s norms. Users do not have the option to opt-out and pay
for the service in exchange for limiting information flow for most
online social networks. There is a high cost on the user’s side to
read and understand all ToS agreements presented to them [40].

There is little to no power on the part of the individual to negoti-
ate the ToS with tech companies. Online consent in its current state
creates an unfortunate social optimization problem, where the user
must choose between the pressures of disclosing too much personal
information (being digitally crowded) and being socially isolated
[4, 8]. Moreover, this also implies that most platforms have little
power to change the digital ecosystem on their own if users can be
exposed to other platforms with laxer security and privacy policies.
Multiple platforms create a multilayer network where information
flows through social connections and across platforms through

different layers of the network. This complex network structure
exposes users to whichever platform offers them the least privacy.

Our second model focuses on coordinated consent across plat-
forms. Inspired by previous work on automated ToS tools [7, 26, 35,
41, 45, 47, 51], we envision a consent passport model where instead
of relying on every platform to offer advanced privacy settings and
therefore asking users to adjust their settings on every platform
individually, users could use a consent passport stating their desired
privacy settings before they join a platform. This could take the
form of a key enabling a user to set their privacy baseline criteria
based on their taste for privacy. The key will act to shift the burden
[15, 25, 56] away from the user to read and understand the legalese
of the platform’s privacy policy and ToS. The consent key would
restrict login and present a warning [12] when the user attempts
to enter sites that do not meet a minimum privacy criteria in their
ToS and privacy settings. This key is intended for users who have a
taste for privacy but do not want to fall prey to consent desensiti-
zation. The consent passport will need to be dynamic in nature so
that users can remain autonomous in their decision-making and
easily opt to enter a platform with discordant privacy settings if
they trust the site or decide that the privacy cost is worth the risk.
Importantly, this ensures that a given user’s security settings will
be coordinated across platforms, which might be the only way to
confidently protect them in a complex multilayer ecosystem.

To include a consent passport within our simulation model, we
turn our network data into a multilayer infrastructure by duplicat-
ing the Facebook networks’ structure to represent two platforms
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Figure 4:We again use the anonymized Facebook100 dataset [61].We now create amultilayer network by doubling the original
data,mimicking a two-platform ecosystem.We use the same parameters as in Fig. 2, assuming that for each platform, only one-
third of accounts have changed their default security setting to options 1 or 2 (i.e., classic or distributed consent) according to
the adoption rate of distributed consent shown on the horizontal axis. The remaining two-thirds will use the default setting
with the lowest security, option 0. To account for the doubled network density and the fact that users can be observed on
either platform, we now set 0.25% of accounts with security option 0 to be directly observable by a third-party app that can
also observe neighbors up to two hops away through any layer of the network. We then vary the adoption rate of distributed
consent (horizontal axis) and, within that subset of the population, vary the adoption of consent passport (different panels).
In the resulting systems, we measure the relative size of the largest unobserved connected component. Randomly protecting
users on a single platform does not protect anyone if spyware can jump network layers, but distributed consent coordinated
across platforms through a consent passport can restore our ability to create an unobservable componentwithin themultilayer
ecosystem.

where users are randomly assigned security setting independently
on each platform. However, a subset of users adopts a consent pass-
port which guarantees that they will follow our previous model
of distributed consent on both platforms. We again use depth-L
percolation with L = 2 in the resulting systems to simulate a third
party’s ability to observe network users. As a worst-case scenario,
we allow the depth-L percolation process to be able to jump be-
tween layers of the networks freely, e.g., observing a Facebook
neighbor of an individual directly observed through Instagram. As
detailed in our Methods section, we classify any user as observed if
they are observed on either platform.

Figure 4 shows that distributed consent alone cannot protect you
if your security settings are not coordinated. Indeed, we parametrize
the system such that the networks are roughly equally observable.
However, there is no emergence of a giant unobservable component
even with medium adoption of consent passports (50% adoption
among distributed consent users, left panel). It is only at very high
adoption of consent passports that we start seeing a non-linear
benefit in unobservability (90% adoption, middle panel) and only at
near-perfect adoption that we protect more users than we prevent
data flow (95% and above, right panel). These results demonstrate
that multi-platform ecosystems are a much more complex beast to
protect; users participating in multiple platforms are only as secure
as their weakest security settings. Therefore, coordinating privacy
settings across platforms is a critical part of the solution. We discuss
this problem further in the next section.

While our current results illustrate how mathematical and com-
putationalmodels can contribute to the study of consent and privacy

policies, it is critical to keep all of their assumptions and approx-
imations in mind before drawing conclusions about real-world
applications. In the case of our model, we have assumed that all
users generate and share similar amounts of data, that all users with
a given security setting areas are susceptible to privacy breaches,
and that security settings are uncorrelated with the connectivity
in the network. In practice, one might imagine that high-profile
accounts tend to have higher security settings but that they might
also face more frequent attacks. Accounting for correlations be-
tween network structures, taste for privacy, and susceptibility to
breaches could be included in the model, but these mechanisms
first require further empirical studies.

3 DISCUSSION
3.1 Implications
In recent real-world incidents, attackers reportedly leveraged on-
line social networks to target groups of people. In 2020, BBC News
reported that a foreign intelligence agent allegedly used LinkedIn, a
prominent online social network, to locate and befriend “former US
government and military employees” [49]. Additionally, the same
BBC article reported that Germany’s intelligence agency stated that
foreign agents “used LinkedIn to target at least 10,000 Germans” in
2017. And another example comes to mind: the Cambridge Ana-
lytica case [65], in which political entities made attempts to sway
the political stance of groups of people via Facebook, another large
online social network.
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In view of these real-world examples, the need for a model of
distributed consent, as presented in this paper, becomes more ap-
parent. Although the proposed model would not completely stop
the attackers, it offers a better level of protection to users of online
social accounts than the status quo. In other words, the broad reach
of attackers within the threat model presented previously could be
restricted with the deployment of the model of distributed consent.
We hope that online social network platforms will consider and
adopt models where users can have more power to coordinate their
privacy with their network neighbors and across platforms. We also
hope that policymakers would actively push for adopting similar
models to help make online social networks safer for all users.

3.2 Conclusion
Altogether, in this work, we provided a philosophical critique of
individual consent in the context of data transactions and used a
modeling framework to suggest potential solutions.

As part of our philosophical critique, we listed four criteria for
the legitimacy of informed consent. We argued that none of the four
criteria are met by individual consent within online media’s com-
plex ecosystem. Further, a fundamental problem is that if personal
data are distributed across individuals, so should be their consent.

Our results based on computational models and simulations sug-
gest that even the simplest implementation of distributed consent
could allow users to protect themselves and the flow of their data in
the network. They do so by consenting to share their data condition-
ally on the consent or security settings of their contacts, thereby
not sharing their data with users who might, in turn, make them
available to third parties. This simple condition allows users to
authorize a specific course of action for their own personal data
(criterion 4).

While this protection disconnects them from some other users,
only a relatively low level of adoption of distributed consent is re-
quired to create a connected macroscopic sub-system within exist-
ing online network platforms. This sub-system consists of different
individuals, including some that are granted secondary protection
despite their low-security settings and remain connected to the rest
of the system such that information still flows throughout the entire
population of users. Via this protected sub-system, distributed con-
sent removes the de facto coercion (criterion 2) involved in forcing
individuals to choose between relinquishing control of their data
or simply not participating in a platform.

Beyond the actual protectionmechanism, this new consentmodel
may also have interesting behavioral impacts on the users. Expos-
ing users to this type of coordinated privacy setting might prompt
them to reflect on their personal data’s distributed nature and its
flow through online media. This realization may encourage users
to openly voice their social boundaries to their social network or
restrict sending sensitive information to social neighbors who do
not share their taste for privacy [34]. Imagine a user publishing a
post to their social network before enacting the new privacy set-
tings, urging those who want to remain connected to change their
settings as well. Beyond the utility of limiting the social network’s
observability, this measure could also serve as an important edu-
cational tool on the interconnectedness of personal data (criterion
1).

In a modest form, distributed consent could allow concerned
users to protect themselves without entirely leaving a platform. It
would also let platforms maintain a large critical mass of observable
users that chose to remain vulnerable and who are not granted
sufficient protection through their contacts.

That being said, legitimate consent criterion 1 (understanding
the consent agreement) and criterion 3 (or consent fatigue) remains
an issue that will need additional consideration in future work.
An important caveat is that a useful implementation of distributed
consent might require platforms to provide additional education
regarding data privacy. Regarding criteria 1 and 3, the consent pass-
port attempts to shift the agreement’s burden to platforms rather
than users. In doing so, it may provide additional protection in com-
plex multi-platform ecosystems. There are many types of privacy
violations that are not solved by distributed consent. These data are
still leaky; individual users can still aggregate information about
their neighbors without their explicit consent. Finally, while the
distributed consent model goes beyond the strict individuality of
the traditional privacy model, it does so modestly; it still models the
agents, choices, and values as fundamentally individual. Obviously,
there is no silver bullet to solve this multi-scale complex problem;
data privacy is a significant societal issue with multi-level inter-
dependencies that must be considered thoughtfully and ethically.
Much work remains to be done in this area.

Future work should extend to look at possible collective be-
havior around the adoption of new consent models. Indeed, the
greatest hurdle to herd-like immunity against network observabil-
ity is our assumption that only one-third of the population has a
taste for privacy such that two-thirds of users will never deviate
from the default lax security settings. Users signaling their adoption
of distributed consent and potentially influencing their network
neighbors to do the same could then spark a contagious taste for
privacy whose co-evolution with observability could be modeled
using tools from network epidemiology [46].

Beyond new notions of consent, effective data privacy measures
will need to take a systems-level approach and integrate a mech-
anism for distributed moral responsibility [22] that will simulta-
neously involve both top-down and bottom-up interventions. Do-
ing so will involve a synergy between increased governmental
and professional regulation, technological intervention, distributed
consent, and citizens’ empowerment. Increasing data privacy and
protection is not only an essential public service but a democratic
imperative [20, 23, 50]. Access to data privacy and protection is
a growing global issue [39], and it must be investigated through
further multidisciplinary collaboration.
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A RESEARCH METHODS
A.1 Data.
We use network data from the anonymous Facebook100 [61] data set with-
out any associated metadata and for the sole purpose of having realistic
network structures from a social media platform. The original data set
presents 100 complete and independent networks of Facebook “friendships”
from 100 American colleges and universities collected as a single-day snap-
shot in September 2005. Figures 2 and 4 show simulations of our models
independently on the 95 Facebook networks with more than 2000 nodes,

showing the individual averages obtained from each set of parameters on
each network.

A.2 Observability Model.
Our observability model runs on a directed (or undirected[3]) network of
potential data flow where a link from i to j means that user j receives data
from user i . We simulate an observability process by selecting a fraction φ
of users whom a third party directly observes. For an observability process
of depth L = 0, the simulation is now over, and a fraction φ of users have
been observed. For an observability process of depth L = 1, all currently un-
observed users whose data are received by directly observed users are now
also observed (call those users the first generation of indirectly observed
users). For an observability process of depth L = 2, all currently unobserved
users whose data are received by the first generation of indirectly observed
users are now also observed. While the model can be extended to any depth
l , Figs. 2 and 4 both use L = 2. In these figures, we measure the fraction of
observed individuals (directly and indirectly observed), the largest compo-
nent of unobserved individuals connected through uninterrupted data flow,
and the fraction of observed individuals with a given security setting.

A.3 Distributed Consent Model.
Our distributed consent passport constrains data flow in social media net-
works and the possibility of users being directly or indirectly observed. We
define a general distributed consent model but implement it using only three
distinct security settings: Users at level 0 share their data with all network
neighbors and can be directly observed by a third party; users at level 1
share their data with all network neighbors but can not be directly observed
by a third party; users at level 2 only share their data with neighbors at level
1 or 2 and can not be directly observed by a third party. Security levels are
randomly assigned to nodes in a network (uniformly at random) at the start
of every run of the model with the following probabilities given an adoption
frequency x of distributed consent: 2/3 of users are assigned to level 0, 1/3 -
x are assigned to level 1, and x are assigned to level 2. In Fig. 2, a fraction
φ = 1% of users at security level 0 are then directly observed, and the
observability model then runs as defined above but with the directionality
of data flow limited by security level 2.

A.4 Consent Passport Model.
We extend the distributed consent passport to a general multilayer network
where users are part of multiple platforms. In Fig. 4 we do this by doubling
the original network to obtain a two-platform system where social con-
nections exist on two platforms at once. Given an adoption frequency y
of consent passport, we force a fraction y of the fraction x of adopters of
security level 2 to have level 2 on both platforms. On both platforms inde-
pendently, we then distribute uniformly at random the remaining (1 − y)x
fraction of adopters of level 2 without the passport, then the 1/3-x fraction
of level 1 users, and the 2/3 fraction of level 0 users. In Fig. 4, we then
select φ = 0.25% of users at security level 0 on at least one platform to be
directly observed. The observability model then runs as usual but indirectly
observing the network neighbors j of observed node i if data flows from j
to i on at least one platform.

A.5 Data and Code Availability.
All data and all codes for model implementation and figure replication are
available from https://github.com/antoineallard/distributed-consent.
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