
The Cause of All Evils: Assessing Causality
Between User Actions and Malware Activity

Enrico Mariconti, Jeremiah Onaolapo, Gordon Ross, and Gianluca Stringhini

University College London
{e.mariconti,j.onaolapo,g.stringhini}@cs.ucl.ac.uk,g.ross@ucl.ac.uk

Abstract
Malware samples are created at a pace that makes it dif-
ficult for analysis to keep up. When analyzing an un-
known malware sample, it is important to assess its ca-
pabilities to determine how much damage it can make
to its victims, and perform prioritization decisions on
which threats should be dealt with first. In a corporate
environment, for example, a malware infection that is
able to steal financial information is much more criti-
cal than one that is sending email spam, and should be
dealt with the highest priority. In this paper we present a
statistical approach able to determine causality relations
between a specific trigger action (e.g., a user visiting a
certain website in the browser) and a malware sample.
We show that we can learn the typology of a malware
sample by presenting it with a number of trigger actions
commonly performed by users, and studying to which
events the malware reacts. We show that our approach is
able to correctly infer causality relations between infor-
mation stealing malware and login events on websites, as
well as between adware and websites containing adver-
tisements.

1 Introduction
The malware problem is becoming more difficult to
tackle as time passes: already in 2013, a new malware
sample was released in the wild each second [4]. Mal-
ware can span from threats to the critical infrastructure of
a country [12] to malicious software sending unwanted
content to Internet users, such as email spam [18]. The
huge amount of malware threats observed every day re-
quires an effective risk assessment and appropriate prior-
itization, in which the potential damage that each piece
of malware can cause to companies and their customers
needs to be efficiently determined. For example, the
spam email malware constitutes an annoyance to any in-
fected network, but is much less critical than a banking
malware that would steal financial information from the

company. For this reason, certain types of malware must
be dealt with higher priority than others.

The first step that is needed to tackle each malware
threat is analyzing the malware sample to understand its
capabilities and the potential damage that the sample can
cause to the victim network. In particular, it is impor-
tant to determine the purpose of the malware infection.
Knowing the type of infection can guide mitigation ef-
forts, and allows to prioritize cleanup of an infection
over an other. This prioritization process is called triag-
ing. In the past, malware triaging approaches used bi-
nary analysis to make their decisions [5, 9]. Although
effective, these approaches have limitations due to the
capability of cybercriminals to heavily harden their bi-
nary code [8, 15].

In this paper we tackle the problem of malware triag-
ing from a different angle. Our basic insight is the fol-
lowing: many categories of malware require victim activ-
ities to be triggered. For example, information stealing
malware sends stolen credentials to its controller only af-
ter it observes the user inputing these credentials into a
web login form. If we can simulate different types of ac-
tivity commonly performed by users and we then study
how different malware samples react to such activities,
we can then infer the typology of these malware samples.

In our approach, we first set up virtual machines to
automatically perform activity that is typical of human
users. We call the different types of activity user trig-
gers. We then infect these virtual machines with malware
and study how these samples react to each user trigger.
Following the previous example, we expect that an infor-
mation stealing malware sample will be triggered after
the victim will log on a website and upload the user’s cre-
dentials to a Command and Control (C&C) server. It will
not present any particular behavior, however, if presented
with other user activity, such as browsing on public web-
sites. Our approach then applies Bayesian inference to
assess causality relations between user triggers and mal-
ware samples. These relations can then be used to assess

the type of malware samples (e.g., if a certain sample
belongs to the category of information stealer malware).
Note that we are able to infer causality, and not simple
correlation, because we are in full control of the user trig-
gers that are provided (or not) to the malware sample.

…

𝐴2

𝐴1

𝐴𝑁

Network
monitor

Network
monitor

Network
monitor

Labeling

Labeling

Labeling

Labeling of
experiment

Thompson
sampling

Causality
relations

Host and
malware
activity

Network
traffic

Labeled
network
conversations

Beta
distributions

Correlation
probabilities

Figure 1: Overview of our approach.
We test our approach on multiple types of malware,

namely information stealing malware, triggered by lo-
gin events, adware, triggered by users navigating to web-
pages containing web advertisements, and spamming
bots which perform their nefarious activity regardless of
the activity performed by the victim. In summary, this
paper makes the following contributions:
• We propose a methodology to assess causality relations

between a user action and malware activity. We run
malware samples in virtual machines performing user
triggers, and infer the typology of the malware sample
under analysis by studying how it reacts to the different
triggers and using Bayesian inference.

• We present an instantiation of our approach in which
we consider two types of user triggers (login events and
website navigation) and three types of malware (infor-
mation stealing, adware, and spambots).

• We evaluate our system showing that it is able to cor-
rectly infer causality between the trigger events and
malware types.

2 Background: causality
This section will formalize the definition of causality that
we use and how it is related to our work. The sources of
this definition are in Lewis’s work ([13]) where there is
the definition of causality through “counterfactual anal-
ysis”. The idea is to make a minimal modification to the
variables set and observe if the outcome changes or not;
if it happens, it is possible to determine whether there is
a dependency relation between the changing variable and
the outcome.

In our case, the outcome is the presence of new con-
nections operated by the malware and the only thing
that is changed is the trigger. If, among the used trig-
gers, there is one trigger that makes the malware gen-
erate new connections, then in that test, there is a con-
dition of causality between the trigger and the malware

network operations. As explained in the next section, be-
ing in an experimental environment, there are issues re-
lated to the sensitivity of the system and to the noise due
to unexpected network connections. These issues will
be addressed through the use of Beta distributions for the
Thompson sampling used in the Bayesian Inference tests.

Other causality models can be found in the litera-
ture. The most known is probably Pearl’s causality
model [14]; Although the importance of Pearl’s work, we
decided to rely on a simpler model, as the system did not
require formalizations as complicated as Pearl’s model.

3 Methodology
The goal of our approach is to infer the typology of a
malware sample by learning causality relations between
user actions (e.g., logging into a website) and the activity
performed by the malware sample. To this end, we ob-
serve the network activity generated by infected Virtual
Machines (VMs) and we apply statistical tests to assess
causality.

An overview of our approach is displayed in Figure 1.
We run a malware sample in a VM in which we execute
a simulated user activity, called trigger. We then record
network traffic generated by the VM and separate it be-
tween traffic that is relative to the user trigger (e.g., the
traffic related to shopping websites), traffic that is gener-
ated by the malware sample before the trigger happens,
and traffic that is generated by the malware sample af-
ter the trigger happens. We then extract the occurrences
frequency of a certain activity related to a specific trig-
ger, and perform Bayesian inference to determine corre-
lation between this activity and the corresponding trig-
ger. As we will explain, our Bayesian inference process
involves extracting Beta distributions from the data and
performing Thompson sampling to assess the causation
probabilities. The decision of using a more complicated
method such as Bayesian inference instead of a simpler
chi-square test is because chi square only takes into ac-
count the proportion between quantities while Bayesian
inference also considers the uncertainty in the measure-
ments by using randomic sampling [20].

3.1 Setting up user triggers
In this section we explain and formalize the approach
setup. Our approach takes into account a set of mal-
ware samples and a set of user triggers, and studies
how each malware sample reacts to a specific user trig-
ger. More formally, we define a set of malware sam-
ples M1, ...,Mi, ...,MK and a set of possible trigger events
A1, ...,A j, ...AN . Each experiment runs a malware sample
Mi in the presence of each trigger A j, one at a time. This
formalization is extremely scalable, in fact, the structure
is still valid by increasing the number of malware types
or the possible trigger events.

Instantiation of the experiments. We set up our exper-
iment to take into account malware samples from three
different types and study their relation to two user trig-
ger events. The malware families that we study are in-
formation stealer malware (identified as Inf in the rest of
the paper), adware (Ad), and other malware (Ot), where
“other” includes malware samples that we typically do
not expect to be triggered by user activity (e.g., spam-
bots that send emails regardless of what the owner of the
infected computer does). The trigger events that we used
are the navigation to popular shopping websites (Nav)
and the log in event into the Gmail webmail provider
(Log). To correctly label network conversations at the
next step, we also need to run an infected VM in which
no user trigger is executed. We also identify network
traffic generated by the operating system regardless of
user activity and the malware sample infecting the ma-
chine; to this end, we run a not infected VM. We call this
test Idle. The combinations of malware types Mi and user
triggers A j used in this paper are summarized in Table 1.

Doing
nothing Navigation Logging in

Not infected Idle Nav Log
Info Stealer Inf InfNav InfLog
Adware Ad AdNav AdLog
Other Ot OtNav OtLog

Table 1: Summary of our test cases.

Experimental environment. We set up a virtual envi-
ronment in which different VMs are configured to run.
The structure is similar to Botlab, created by John et
al. [10].

A webserver manages the download of malware by the
VMs and the additional content needed for the experi-
ments. A mailserver is a sinkhole that receives all the
SMTP packets the VMs generate. This design avoids
our VMs from sending spam to the Internet. To allow
the connectivity of the virtual network, a router imple-
ments rules of network address translation, SMTP pack-
ets redirection, and bandwidth restrictions, as described
and suggested in [16]. To avoid the detection of the vir-
tual environment by the malware samples, we used the
Pafish tool [1] checks.

3.2 Extraction and labeling network con-
versations

The network dump files collected during our experiments
contain information on the IP addresses contacted by the
VMs during each of the tests. We define a conversation
as the exchange of packets that have in common the tuple
formed as source IP address, source port (TCP or UDP),
destination IP address, and destination port. Conversa-

tions are then used for labeling. This way can be agnostic
to the network payloads themselves.

This phase aims at assigning a “label” to the network
conversations observed by a certain experiment. The
goal is to identify the conversations that compose the
user trigger first, and we can then label accordingly the
malware activity that happens before and after the trig-
ger.

For each test, we extract the list of network conversa-
tions, resolve the DNS domain associated with the desti-
nation IP address, and proceed with labeling them. More
specifically, we assign four different labels to network
conversations:
Common: operating systems such as Linux and Win-
dows perform network traffic as part of their behavior,
regardless of any user activity or program running on the
machine. Examples of this include automated software
updates and synchronization with network shares. To
avoid considering this traffic as part of other labels, we
run our VM without any malware sample or user trigger
(“Idle” test in Table 1) and label any observed traffic as
common, filtering it out when elaborating other labels.
Trigger: these conversations are those generated by the
VM as part of a user trigger activity, for example the set
of connections generated by visiting websites. We la-
bel conversations as Trigger if they are observed in the
tests when the VM is not infected (marked as “Nav” and
“Log” in Table 1) and were not marked as Common in
the test “Idle.”
Untriggered: these conversations are performed by a
malware sample independently from the user trigger ac-
tion. We use this label for conversations that are gen-
erated by the malware when no user trigger is present
(“Inf,” “Ad,” and “Ot” tests in Table 1)
Triggered: these are the most important conversations
for this work, because they are the ones that have the
potential to present a correlation with the user trigger.
We mark as Triggered any conversation that happens in
a test in which a user trigger is happening, and that was
not previously marked with any other label.

We first perform the “Idle” tests, followed by the tests
in which only malware or user triggers are present, fol-
lowed by the ones that combine a trigger and a malware
sample. As we will explain later, the variability of the
set of IP addresses and domains contacted as part of dif-
ferent trigger activities and by different malware samples
forced us to re-run our tests multiple times. Table 2 re-
ports the number of performed runs.

Table 3 shows which test assigned which label to a
contacted domain. Apart from the test Idle, the tests
without infection were giving a different trigger label to
their contacted domains, while the domains contacted
from tests without trigger are Untriggered ones, indi-

cating that the samples contact those domains indepen-
dently from the machine action.

Test Runs Test Runs Test Runs
Idle 42 Nav 108 Log 30
Inf 114 InfNav 40 InfLog 60
Ad 87 AdNav 73 AdLog 71
Ot 401 OtNav 159 OtLog 157

Table 2: Number of repetitions per test.

Doing Logging
nothing Navigation in

Not Navigation Login
infected Common Trigger Trigger

Info Info Stealer
Stealer Untriggered Triggered Triggered

Adware
Adware Untriggered Triggered Triggered

Other
Other Untriggered Triggered Triggered

Table 3: Labels encoding per each test.
Labeling settings. The labeling phase is the most del-
icate: we continuously performed an accurate tuning of
the translation of IP addresses to the contacted domains
because stealthy malware may be undetected if it uses
the same domains as legitimate traffic or too many “Trig-
gered” labels were assigned to contacted domains when
the network identification was too fine grained.

As mentioned, we map IP addresses to domains when
labeling network conversations. This works in most
cases, because domains used by malware are not the ones
used by legitimate applications. However, in some cases
a domain can be used by both malware and legitimate
traffic. One example of this is the use of Content Deliv-
ery Networks (CDNs). The biggest issue for our experi-
ments were Amazon and Akamai servers: those address
spaces are extremely wide and are used by a large va-
riety of clients, from Amazon itself for advertisements
on its website to malware samples hosting content to
their domains. It is not possible nor to simply assign
amazonaws.com a specific label, nor to assign one to the
exact IP. Therefore we found a good balance in using the
first two octets of the IP addresses and dividing in eight
groups the third one, giving the corresponding label to
each of these subnetworks.

Another problem occurred when a malware sample
was contacting many IP addresses on the same network
but not all of them: it happened that the sample contacted
different IP addresses in different test runs. A similar is-
sue is given by advertisements used by Amazon: it asks
to several addresses the required information and every

time a different address can be contacted. For this reason
we ran some of the tests more times than others, increas-
ing the labeling reliability.

3.3 Labeling of experiments
As we discussed, our approach assigns a label to each
network conversation, whether it happens independently
of a user trigger (untriggered), it is part of the trigger it-
self, or it happens as a consequence of the user trigger
(triggered). We run each experiment as a combination
of user trigger and malware sample, however, it is com-
posed of multiple activities that generate a multitude of
network conversations. To assess whether the malware
running inside a certain VM as part of an experiment
was triggered or not by a user action, we must “label” the
whole experiment as triggered or not. For example, if we
observe a new connection after the VM has logged into a
website we can mark the experiment as “triggered.” Oth-
erwise, if no new activity is generated after the user trig-
ger, we can mark it as “untriggered.”

To label an entire experiment, we look at the labels as-
signed to the single conversations as explained in the pre-
vious sections. If any of the conversations is marked as
“triggered” then we label the entire experiment as such.
Otherwise we label the experiment as untriggered. A
single sample is not sufficient to assess the relation be-
tween the malware sample and the trigger; for example,
we might be mistakenly considering an experiment as
triggered because the malware sample starts contacting
a previously-unseen domain — however this can easily
be the consequence of a change of C&C server (for ex-
ample due to fast flux) rather than a reaction to the user
trigger. For this reason we repeat each test several times
and apply Bayesian inference to the set of results. Zand
et al. [21] already applied statistical analysis and showed
its validity in repeated tests for the study of causality in
network traffic; they applied Chi-Square tests to assess
causality between services and they repeated the tests
varying some of the parameters to validate the test. In
this work we applied Bayesian Inference on malware
traffic instead of Chi Square tests on services on the net-
work.

3.4 Statistical analysis
We use statistical analysis to assess whether there is a
connection between what is a relation between the user
activity performed by the VM and the network activity
by the malware.

After the labeling procedure described in the previous
section has been carried out, we have a set of frequencies
at which different labels (i.e., triggered and untriggered)
have occurred in the tests. The fraction of triggered and
untriggered tests is then used to estimate the proportion
parameter θ of a Binomial(θ) distribution based on the

sequence of binary observations where the observations
are 1 in triggered experiments, and 0 in untriggered ones.

We estimate the proportion parameter using Bayesian
inference to capture all uncertainty about its value. When
performing Bayesian inference for the Binomial distribu-
tion, it is common to use the conjugate Beta(α,β) distri-
bution as a prior. In this case, the posterior distribution
is Beta(α +N,β +M) where N denotes the triggered la-
bel occurences during the test, and M denotes the oc-
curences of the untriggered labelst [17]. The α and β

parameters in the prior are chosen to take prior informa-
tion into account, and we use the non-informative setting
α = β = 0.5

Once the posterior distribution has been obtained, we
detect increases in the proportion parameter θ . This de-
tection would make us understand whether there is a
stronger relation between the trigger and the triggered
communications among the different malware types; it
can be done by integrating the joint posterior distribution
over the relevant region of space. We use an approach
based on Thompson sampling [19] for this purpose. We
sample a random value from each of the Beta distribu-
tions and note which distribution produced the highest
observed value. We repeat this procedure many times
and divide the counts of the highest values by the number
of repetitions. After the normalization we have a corre-
lation probability of each test for the analyzed sequence
and, as said in [23], because our environment is fully
controlled, we can assess causality between the test with
the highest probability and the sequence. In case of this
strong relation it is possible to affirm that the malware
samples that are part of a certain family are triggered by
a certain action in the real world and operate different
actions on the network because of the user trigger.

3.5 Limitations
The actions that can be detected by the presented sys-
tem are a large variety and, because the system is content
agnostic, this approach may also detect attacks through
covert channels. The system is limited in detecting those
samples that contact always the same C&C server during
different phases of the attack: an Info Stealer sample that
communicates the credentials to the same C&C server
used in the first phase would not result as Triggered and
can be misclassified in a detection system based on this
work. At this stage, we cannot use unknown samples be-
cause we cannot infer causality through unknown sam-
ples; with the development of a detection system based
on the causality inference it will be possible to use un-
known malware samples.
4 Dataset
In Section 3.1 (Table 1) we illustrated which malware
samples we used in this work. Although our approach
can be used to assess relations between any user trigger

and malware type, we decided to work with three mal-
ware types and two user triggers. More precisely, we ran
20 Zeus samples [3] as Info-stealers, 10 Shopper-pro and
3 CloudGuard samples as Adware [2], and 20 samples of
other families. The use of a limited quantity of samples is
due to different reasons, the most important being that we
need active communication between the C&C server and
the malware sample for our experiments. To collect the
malware samples we periodically downloaded the most
recent samples from VirusTotal.

As mentioned, we performed our tests multiple times
(Table 2). The main reason for these repetitions was
the need to establish strong statistical evidence to al-
low us assessing causality links between user actions
and malware activity. Another reason for the runs is
that both malware samples and legitimate services vary
their servers frequently, especially by using fast flux and
CDN. The Nav test had to be repeated multiple times be-
cause the advertisements pulled by Amazon change con-
stantly, due to the use of CDNs, and we must label these
connections correctly, to avoid noisy unreliable tests.

4.1 Behavior of malware samples by type
Before applying all the procedure described in Section 3,
we manually analyzed the network traffic originated by
the tests to understand the typical behavior of the differ-
ent malware types. These are the characterizing traits:
Info stealers. These samples typically try to contact a
certain number of C&C Servers to receive instructions
about what to do in case of relevant data to steal (i.e.,
where to upload the stolen data). When relevant data is
stolen, the malware communicates with different C&C
Servers to upload the stolen data.
Adware. This type of malware operates a few connec-
tions to C&C servers to receive instructions about the
hosts to contact when a website containing advertise-
ments is visualized by the user. When the user navi-
gates to a website containing advertisements, these are
substituted by malicious ones. The sample’s goal is im-
mediately reached: the visualization of the malicious ads
generates money to the malware operator.
Other. This group of malware samples were mainly
Spambot samples. The Spambot samples are operating
several different actions: they are contacting different
C&C servers by using HTTP, HTTPS, and proprietary
protocols; after these communication they start sending
emails to victims by using the SMTP protocol. As we
mentioned, our mailserver worked as a sinkhole for these
emails. The large amount of communications caused
mis-labeling and noise in the results.
5 Evaluation
In this section we evaluate our system. We present the la-
beling results on how many tests were triggered by which
user triggers. We then describe how we extracted Beta

Figure 2: The Beta distributions related to the **Nav
tests.

Figure 3: The Beta distributions related to the **Log
tests.

distributions from the experiments and how we assessed
causality, providing evidence on the validity of our work.

5.1 Labeling results
In Tables 4 and 5 we show what fraction of tests pre-
sented the “Triggered” or “Untriggered” label. Table
4 shows quite high values of triggered Adware sam-
ples (64.4%) while info stealers present a lower value
(55%). These tests use the VM that navigates to shop-
ping websites, loading the related advertisements, and
runs the malware sample. Because of the adware modus
operandi, we expect many triggered activities from the
adware samples, rather then from the other malware
types. Most of the adware samples are triggered by the
navigation user trigger, however, a relevant number of
info stealer samples seems triggered as well; these la-
beling errors are ruled out by the statistical tests. In other
words, the statistical tests are able to determine that there
is no causal link between a user navigating to a web-
site and activity by information stealing malware. On
the other hand, it is able to assess that adware is likely
triggered by navigation.

Table 5 shows the result of the experiments for the
tests in which the user trigger is a login event on the
Gmail website. There is a high fraction of triggered Info
stealers samples (92%), while only a small quantity of
triggered Adware samples are triggered; the Other type
reports 29% of its tests as “Triggered,” but these triggers
are ruled out by the statistical tests.

5.2 Beta distributions
To infer causality through the use of Bayesian infer-
ence, the first step is the creation of the Beta distri-
butions from the results presented in the previous sec-
tion. These results are used to draw the a posterior Beta
distributions for each test as (β (NumberO f Triggered +
0.5,NumberO f NotTriggered +0.5). The Beta distribu-
tions that we used to model the variables are shown in
Figure 2 and Figure 3. With the Test**Nav (all possible
malware types, VM that is doing navigation) we observe
a certain similarity between the curves in shape, height

and position; these similarities are stronger observing
only the Test AdNav and Test OtNav distributions. The
distribution for the Test**Log tests show more differ-
ences between distributions; in fact the distributions are
not close and the curve related to the InfLog tests (Info
stealer) is much higher than the others. We can expect
that the statistical tests will show a quite balanced situ-
ation between Tests**Nav while Tests**Log will give a
preference in their results.

5.3 Statistical evaluation of causality and
experimental validity

We ran Thompson sampling on the Beta distribution 200
times and calculated the average of the results over 10
repetitions; each result is a value between 0 and 1 that
represents the probability of a causal relationship be-
tween a test and its label (“Triggered” or “Untriggered”).
This probability takes into account the uncertainty given
by mis-labeling due to the previously-explained issues
therefore a big gap between the highest probability and
the second one allows to assess causality.

In **Nav tests, Test AdNav is dominant. Test InfNav
has 0.157 probability of being the cause of the triggered
event among these tests while the probability of AdNav
tests is 0.843. In OtNav tests, the triggered cases are not
relevant. The mis-labeled OtNav tests did not affect the
results of the statistical tests (probability equal to zero).
The difference between the highest probability (the Ad-
Nav case) and the second one (InfNav) allows to indicate
that the navigation user trigger caused the Adware net-
work traffic. The statistical tests for **Log tests have
a very clear outcome: the triggered info stealer actions
are caused by the login to Gmail user trigger because the
probability given by the statistical test is 1, while there is
no relation between the login into gmail and the actions
of the other malware types (the probability related to the
other tests is zero).
Validity of the experiments. For this work we empiri-
cally decided the number of samples to use, how many
times the tests were repeated and how many observations
with random sampling were necessary. We evaluated if

Triggered Untriggered
Test percentage percentage

InfNav 55% 45%
AdNav 64.4% 35.6%
OtNav 22% 78%

Table 4: Labels for the tests in which the VM is nav-
igating to amazon.com.

Triggered Untriggered
Test percentage percentage

InfLog 92.6% 7.4%
AdLog 16.9% 83.1%
OtLog 29.2% 70.8%

Table 5: Percentages of the different labels for the
tests with Log VMs.

the number of repetitions operated for each test can be
considered sufficient. We repeated the statistical test us-
ing different portions of the operated runs. When the
**Nav tests were operated, at least 80% of the repetitions
was needed for results to achieve enough confidence as
with using the full set. On the other hand, **Log tests
were derived from beta distributions extremely different,
in fact the tests were giving reliable and stable results
already with a small percentage of the runs.

Similarly to the procedure used for the test repetitions,
we empirically validate the number of observations used
during the Thompson sampling phase: starting from two
observations, arriving to 200, we observed that more
than 50 observations are needed to have stable results
on **Nav tests, while even a minimum amount of ob-
servations is enough with **Log tests because the Beta
distributions in this case are extremely different and in-
dicate that InfLog tests have a clear correlation with the
user trigger.

6 Discussion
In this section we will discuss the results of our frame-
work in assessing the causality between a user-trigger
and network activities performed by malware samples.

6.1 Labeling Results
As we already discussed, the labeling phase presented
many challenges due to the several domains contacted
by some malware samples and by the VM navigating to
shopping websites. Despite our best attempts, whitelist-
ing websites confirmed to be benign and the granularity
tuning cannot completely remove mislabeling mistakes
when large server domains (e.g. amazonaws) were con-
tacted. For example, tests with Spambots are considered
triggered because of two advertisements domains con-
tacted only during OtNav and OtLog tests.

6.2 Results and Validity
We ran statistical tests to assess the relation between the
user trigger and one of the tests. We expected a strong
relation between Adware triggered traffic and the nav-
igation trigger (Test AdNav) and between Info Stealer
triggered tests and the login trigger (Test InfLog). Both
relations were clearly assessed, even if some mislabel-
ing affected the navigation case. To better understand if
this noise influenced the experiments we observed that

Test OtNav and Test OtLog do not present different re-
sults (Tables 4 and 5), while the tables show different
behaviors with Test InfNav and Test InfLog or with Test
AdNav and Test AdLog. These differences indicate that
the malware samples are influenced by the user trigger
events; in the case of the login, the significance of the
result was not affected by the noise when we applied
Bayesian Inference while the noise has been more effec-
tive in the navigation case, although our statistical anal-
ysis was still able to rule out these mislabeling.

The validity paragraphs (Section 5.3) show that the ex-
periments are not biased by an incomplete dataset or a
non sufficient number of observations. Because the va-
lidity criteria is respected we can argue that both the sta-
tistical tests indicated a causal dependency between the
navigation user trigger and adware as well as between the
login trigger and information stealing malware.

In its current form, the framework does not take into
account information on when a network flow appears
within a test, but only if it appears or not. Mislabeling
could be reduced in the future by using this information.

This work to be improved into a fully-fledged detec-
tion system. Malware samples could be run against dif-
ferent user triggers and an alarm could be raised when a
type of malware that is considered of particular risk will
be generated (e.g., an information stealing malware sam-
ple that has the capability of damaging to the company).
7 Related Work
Causality is a delicate topic: although we can use tests
to infer correlation, we cannot infer causality because it
does not only establishes the presence of a relation be-
tween two variables, but its direction. According to [23]
“correlation does not necessarily indicate causality and
ideally, a controlled experiment would allow firm causal
inference”. As the tests and the environment (Section
3.1) are fully controlled, we can assess causality where
the statistical tests are giving evidence of correlation be-
tween our incoming variable (the operated test) and the
outcome (the conversations labels).

Correlation and causality topics are widely explored in
some fields of computer actions and network communi-
cations like services dependency, the most recent papers
on this topic are Orion [7] and Rippler [21].

However, the topic we tackle is not the causality be-
tween services but between events and malware activ-

ity. Another important point the previous work analyzed
is the malware samples similarity. The number of mal-
ware samples is dramatically increasing every day, but
new samples are often using part of the code of previ-
ous ones and, as consequence, the behavior is similar
too. Chakradeo et al. [6] analyzed the phenomenon on
mobile malware while Bitshred [9] speeds up malware
identification by taking advantage of malware triaging.
Malware triaging is important with respect to our work
because of the similarities between samples’ network be-
havior (shown in Sigmal [11]); moreover, some samples
need a trigger event to do certain operations, a problem
tackled by Brumley et al. [5] by automatically analyzing
the binaries, while we are looking to the network level
of the phenomenon. These researches analyzed the bi-
naries similarities, but not the network operations caused
by network events.

A more recent work [22] is more similar to ours be-
cause it looks to malware communications, but limit-
ing itself to HTTP and DNS events to detect malicious
triggered events; they assessed causality because of the
detection of the malicious events, but without any test
as evidence. Moreover the mentioned work used its
own proof-of-concept malicious samples that were writ-
ten by the researchers to act in a predefined way while a
real sample may act differently every time depending on
many factors that can affect its reactions to trigger events.

8 Conclusions
In this paper we assessed the causality relation between
user actions and malware activities on the network. User
actions were identified as the triggers of malware net-
work traffic even in case of strong noise affecting the
statistical tests. The causal relation between a specific
trigger event and a certain type of malware can bring to
the identification of the type of malware that is infecting
the network. The malware type identification may lead
to prioritization choices when a network administrator
has many alarms to manage and has to understand which
ones are the highest network threat.

9 Acknowledgments
We wish to thank the anonymous reviewers for their
comments. This work was funded by the EPSRC grant
number EP/N008448/1. Enrico Mariconti was funded by
the EPSRC under grant 1490017, while Jeremiah Onao-
lapo was supported by the Petroleum Technology Devel-
opment Fund (PTDF), Nigeria.

References
[1] ALBERTO ORGEGA. Pafish (Paranoid Fish). https://github.com/

a0rtega/pafish.

[2] AYCOCK, J. Spyware and Adware. Springer Science & Business Media,
2010.

[3] BINSALLEEH, H., ORMEROD, T., BOUKHTOUTA, A., SINHA, P.,
YOUSSEF, A., DEBBABI, M., AND WANG, L. On the analysis of the zeus
botnet crimeware toolkit. In International Conference on Privacy Security
and Trust (2010).

[4] BRADLEY, TONY. Report: Average of 82,000 new malware threats per
day in 2013. http://www.pcworld.com/article/2109210/
report-average-of-82-000-new-malware-threats-per-day-in-2013.
html, 2014.

[5] BRUMLEY, D., HARTWIG, C., LIANG, Z., NEWSOME, J., SONG, D.,
AND YIN, H. Automatically identifying trigger-based behavior in malware.
In Botnet Detection (2008).

[6] CHAKRADEO, S., REAVES, B., TRAYNOR, P., AND ENCK, W. Mast:
triage for market-scale mobile malware analysis. In ACM conference on
Security and privacy in wireless and mobile networks (2013).

[7] CHEN, X., ZHANG, M., MAO, Z. M., AND BAHL, P. Automating net-
work application dependency discovery: experiences, limitations, and new
solutions. In OSDI (2008).

[8] CHRISTODORESCU, M., JHA, S., KINDER, J., KATZENBEISSER, S.,
AND VEITH, H. Software transformations to improve malware detection.
Journal in Computer Virology (2007).

[9] JANG, J., BRUMLEY, D., AND VENKATARAMAN, S. Bitshred: feature
hashing malware for scalable triage and semantic analysis. In ACM Con-
ference on Computer and Communications Security (CCS) (2011).

[10] JOHN, J. P., MOSHCHUK, A., GRIBBLE, S. D., AND KRISHNAMURTHY,
A. Studying Spamming Botnets Using Botlab. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2009).

[11] KIRAT, D., NATARAJ, L., VIGNA, G., AND MANJUNATH, B. S. Sig-
mal: A static signal processing based malware triage. In Annual Computer
Security Applications Conference (ACSAC) (2013).

[12] LANGNER, RALPH. To Kill a Centrifuge. http://www.
langner.com/en/wp-content/uploads/2013/11/
To-kill-a-centrifuge.pdf , 2013.

[13] LEWIS, D. Counterfactuals and comparative possibility. Journal of Philo-
sophical Logic 2 (1973), 2161–2173.

[14] PEARL, J. Causality. Cambridge university press, 2009.

[15] RAD, B. B., MASROM, M., AND IBRAHIM, S. Camouflage in malware:
from encryption to metamorphism. International Journal of Computer Sci-
ence and Network Security (2012).

[16] ROSSOW, C., DIETRICH, C. J., GRIER, C., KREIBICH, C., PAXSON, V.,
POHLMANN, N., BOS, H., AND VAN STEEN, M. Prudent practices for de-
signing malware experiments: Status quo and outlook. In IEEE Symposium
on Security and Privacy (2012).

[17] SCOTT, S. L. A modern Bayesian look at the multiarmed bandit. Applied
Stochastic Models in Business and Industry 26 (2010), 22–35.

[18] STONE-GROSS, B., HOLZ, T., STRINGHINI, G., AND VIGNA, G. The
underground economy of spam: A botmaster’s perspective of coordinating
large-scale spam campaigns. In USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET) (2011).

[19] THOMPSON, W. R. On the likelihood that one unknown probability ex-
ceeds another in view of the evidence of two samples. Biometrika 25
(1933), 285–294.

[20] TROTTA, R. Bayes in the sky: Bayesian inference and model selection in
cosmology. Contemporary Physics 49 (2008), 71–104.

[21] ZAND, A., VIGNA, G., KEMMERER, R., AND KRUEGEL, C. Rippler:
Delay Injection for Service Dependency Detection. In IEEE Conference on
Computer Communications (INFOCOM) (2014).

[22] ZHANG, H., YAO, D., AND RAMAKRISHNAN, N. Detection of stealthy
malware activities with traffic causality and scalable triggering relation dis-
covery. In ACM Symposium on Information, Computer and Communica-
tions Security (ASIACCS) (2014).

[23] ZHANG, J., DURUMERIC, Z., BAILEY, M., LIU, M., AND KARIR, M.
On the Mismanagement and Maliciousness of Networks. In Symposium on
Network and Distributed System Security (NDSS) (2014).

https://github.com/a0rtega/pafish
https://github.com/a0rtega/pafish
http://www.pcworld.com/article/2109210/report-average-of-82-000-new-malware-threats-per-day-in-2013.html
http://www.pcworld.com/article/2109210/report-average-of-82-000-new-malware-threats-per-day-in-2013.html
http://www.pcworld.com/article/2109210/report-average-of-82-000-new-malware-threats-per-day-in-2013.html
http://www. langner. com/en/wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf
http://www. langner. com/en/wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf
http://www. langner. com/en/wp-content/uploads/2013/11/To-kill-a-centrifuge.pdf

	1 Introduction
	2 Background: causality
	3 Methodology
	3.1 Setting up user triggers
	3.2 Extraction and labeling network conversations
	3.3 Labeling of experiments
	3.4 Statistical analysis
	3.5 Limitations

	4 Dataset
	4.1 Behavior of malware samples by type

	5 Evaluation
	5.1 Labeling results
	5.2 Beta distributions
	5.3 Statistical evaluation of causality and experimental validity

	6 Discussion
	6.1 Labeling Results
	6.2 Results and Validity

	7 Related Work
	8 Conclusions
	9 Acknowledgments

