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Abstract

A large body of research in network and social sciences stud-
ies the effects of interventions in network systems. Nearly all
of this work assumes that network participants will respond
to interventions in similar ways. However, in real-world sys-
tems, a subset of participants may respond in ways purpose-
fully different than their true outcome. We characterize the
influence of non-cooperative nodes and the bias these nodes
introduce in estimates of average treatment effect (ATE). In
addition to theoretical bounds, we empirically demonstrate
estimation bias through experiments on synthetically gener-
ated graphs and a real-world network. We demonstrate that
causal estimates in networks can be sensitive to the actions of
non-cooperative members, and we identify network structures
that are particularly vulnerable to non-cooperative responses.

1 Introduction

Experimentation is an important facet of responsible gover-
nance, especially in the digital public sphere [46]. Without
experimentation, firms that control the platforms we use to
power the public sphere will make changes based on observa-
tional data or by fiat [48]. While experimentation on platforms
such as online social networks (OSNs) has at times been con-
troversial, experimentation is not harmful per se, and can in
fact be the only mechanism for mitigating harm when imple-
menting design changes [39, 47].

In OSNs, users often do not know whether they are cur-
rently receiving an experimental treatment. In this setting,
consent to participate in the experiment is not decoupled
from participation in the service. Furthermore, users may be
aware that the platform makes extensive use of A/B tests, and
that may even be explicit in the OSN terms of service. Non-
participation in an OSN means not using the service, which
for many users is unacceptable.

Others have studied and addressed consent models in these
contexts [25,33,34]; we will not address consent here. Instead,
we recognize that there are experiments that may not require

Figure 1: An instance of non-cooperative-but-not-malicious
behavior on Facebook, a large online social network.

the level of consent or control that users desire, while still
being ethical. We focus on a direct consequence of this phe-
nomenon: non-cooperative behavior when the user believes
they are being experimented upon.

Figure 1 illustrates such behavior. This seemingly innocu-
ous example belies two major concerns: (1) users may believe
they are currently in an experiment due to external informa-
tion or events (e.g., an upcoming election or a global pan-
demic), causing them to engage in non-cooperative behavior,
and (2) users may interact with others who are also in the

experiment, causing any estimation of treatment effect to be
tainted by spillover or peer effects. While peer effects have
been studied extensively, the models that correct for spillover
on average treatment effect (ATE) typically assume that the
measured outcome for an individual is some combination of
their true outcome and some additional effect resulting from
exposure to other experimental subjects. When participants re-
spond in ways purposefully different than their true outcome,
their non-cooperative outcomes are observed by neighbors,
resulting in a change in behavior of neighboring participants
due to spillover effects.



Contributions. We examine how non-cooperative partic-
ipant (NCP) behavior and its resulting peer effects can in-
fluence effect estimates. We compare the effect that subsets
of non-cooperative nodes can have on treatment effect esti-
mates in network (relational) and non-network (propositional)
settings. To our knowledge, this is the first exploration of
the effect of non-cooperative behavior on cluster-randomized
designs for causal estimation in networks. We make the fol-
lowing contributions:

1. We introduce a framework to unify the study of non-
cooperative behavior and the estimation of treatment
effect in network settings. (Section 4)

2. We derive terms for the bias in ATE resulting from non-
cooperative behavior using a standard linear estimator
of individual and peer treatment effect. (Section 5.3)

3. We demonstrate empirically that non-cooperative behav-
ior can result in biased estimates of ATE for the same
linear estimator using simulations on both synthetic and
real-world graphs. (Section 6.4, Section 6.5)

4. We derive expected bias and both theoretically and em-
pirically explore the difference between random and
targeted placement of non-cooperative nodes in the net-
work. (Section 5.4)

5. We identify specific graph topologies that are particularly
vulnerable to non-cooperative influence. (Section 5.2,
Section 6.4)

In this work, we study the organization of non-cooperative

participants (NCPs) and whether the spillover effects of
their behavior can bias the effect estimates of A/B tests con-
ducted on the network. Our analysis assumes the set of non-
cooperative participants is known. For logical consistency, we
will assume NCPs are placed before treatment is assigned. We
use uniform edge-weighting designs, i.e. peer effects weight
outcomes of neighbors equally. We assume NCPs behave
according to the same behavioral model, which may be con-
ditioned on the treatment received.

Non-cooperative behavior has been documented in OSNs,
both in the academic literature and news media under a variety
of non-cooperative user behaviors: privacy-preserving data
obfuscation methods e.g. k-subscription [52], teens using
account-sharing rings on Instagram to protect their privacy
while applying for college [51], and shopper participation in
grocery loyalty card swapping pools [17] as cited in Brunton
and Nissenbaum [14].

We define our threat model with respect to experimental
design in Section 4 and provide a set of realistic real-world
scenarios in Section 7. In Section 8, we consider the ethical
implications of the use of bias correction methods to address
the effects of non-cooperative behavior.

2 Problem Formulation: Peer Effects

of Non-Cooperative Behavior

Peer effects describe the phenomenon in which interaction be-
tween subjects (often people) causes the treatment or outcome
of an experiment to differ from the treatment or outcome of a
subject in isolation. Understandably, network and social sci-
entists care a great deal about quantifying and controlling for
peer effects. OSNs allow for unprecedented study of peer ef-
fects; they are a unique source of data on social influence, and
the role of social media platforms themselves in emotional
and social contagion is well documented [20, 39].

Academic social scientists are not the only entities inter-
ested in understanding social behavior on OSNs. The pop-
ularity of social networking platforms has also encouraged
some advertising campaigns to use fake reviews and bot ac-
counts to sway public opinion by simulating grassroots sup-
port for products and ideas. Commercial organizations have
used fake product reviews to influence consumer purchasing
patterns [4, 55, 72], and political organizations have recruited
real and automated users in attempts to influence voting be-
havior and policy positions [15, 54, 64]. So-called “astroturf”
campaigns are one example of this phenomenon [54]. The
proliferation of disinformation by powerful actors has led to
a study of discord-maximization agents in OSNs [27]. Non-
cooperative behavior, as explored in this work, is not always
high stakes, as Figure 1 demonstrates. However, real-world
instances of adversarial non-cooperation could also lead to
devastating effects; we discuss two hypothetical instances in
Section 7.

Given the growing concern over the influence of non-
cooperative and sometimes targeted adversarial behavior in
large social media platforms [4, 37, 54, 71], we would like
to better understand the potential effects of participant non-
cooperation on effect estimation. This work seeks to answer
the following research questions:

RQ1 How can we measure the effects of a non-cooperative
node?

RQ2 Under what circumstances can these effects be large?

RQ3 What types of networks are structurally vulnerable to
the amplification of non-cooperative peer effects?

One of the challenges to developing accurate estimates
of peer effects is that non-cooperative and even adver-
sarial behavior can take many forms. Bots, competitor-
owned accounts, paid individuals, non-compliers, and discord-
maximizers might all function as adversaries in the estimation
of treatment effect relative to some network experiment. Non-
cooperative behavior can influence the behaviors and out-
comes of those exposed to non-cooperative outcomes, which
might mask, influence, or otherwise manipulate the true es-
timand of interest. These individuals may also distort the



treatment exposure topology of the network, further biasing
measures of treatment effect.

Detecting specific behaviors of non-cooperative users re-
quires custom code tailored to the behavior of each form of
non-cooperation, yet different behavioral models may have
similar implications for effect estimation. Furthermore, non-
compliance behavior does not need to be adversarial to result
in bias effects, and the effect estimate bias may even be the
goal of a non-malicious user, e.g., in order to preserve their
privacy [52]. We discuss ethical aspects of non-compliance
behaviors, their detection, and the implications of their re-
moval in Section 8. We revisit the detection and prevention

tasks in Section 9.

2.1 Network Topology and Diffusion

of Peer Effects

Non-cooperative nodes block the flow of treatment effect
through a behavioral outcome intervention. This will have
different implications depending on the properties of the local
graph. We consider edge-weighting effect estimation models
out of scope, but note one may study similar effects of edge-
weighting by considering graph samples with variations in
graph degree distributions. We discuss this connection further
in Section 4.2 and conduct an empirical study in Section 5.2.

We specifically study the impact of graph topology in this
setting as any estimate of peer effect will be gated by the
connectivity of the network. The study of the relationship
between graph topology and the diffusion of treatment effect
(and the effects of non-cooperative participation) has connec-
tions with work studying e.g. information diffusion across
networks [8,9,56]. Influence maximization is concerned with
identifying the set of nodes in a (social) network to target
in order to maximize the spread of some quantity of inter-
est [20, 35, 38]. A similar problem is the study of diffusion
over a network and, in particular, resource-constrained diffu-
sion maximization. In this setting, node selection is associated
with some cost, and the total cost of the set of selected nodes
cannot exceed some budget [2]. This is similar to reasoning
about NCP node selection, though our work is interested in
studying the effects of non-cooperative behavior under vari-
ous selection procedures rather than maximizing the effect.

If the goal of the set of non-cooperative participants is to
maximize bias in the experimental estimate, it is unlikely
the entire network will consist of NCPs even in the worst
case. We instead consider bias for a set of NCPs up to a
dominating set of non-cooperative participants. A dominating
set X of a graph is a set of vertices such that every node in the
network is covered by, or shares an edge with, a member of
X . This is a similar coverage model as a Sybil attack, where
attackers seek to weaken redundancy protections and subvert
reputation systems by controlling a disproportionate share of
user identities in a peer-to-peer system [21, 67].

2.2 Related Work: Estimating Effects with

Non-Cooperative Participants

Some models of non-cooperative behavior can be cast as
non-participatory or non-compliance behavior in an experi-
mental study. For example, Kang and Imbens [37] introduce
peer encouragement designs under one-party compliance, an
approach to estimating causal estimands which is robust to
some forms of non-cooperative behaviors in a network setting
achieved through non-compliance.

We treat adoption of more robust estimators as an orthog-
onal concern, since ATE and its variants are by far the most
commonly used estimators for causal effects. We might in-
stead consider alternative methods for estimating treatment ef-
fect (e.g., average treatment effect on the treated, local average
treatment effect, peer encouragement designs), which may be
less vulnerable to non-cooperation biases but introduce other
weaknesses in causal effect estimation in the non-cooperative
setting.

3 Estimating Causal Effects

A/B testing is the standard method for estimating the effect
of treatment on a particular outcome of interest.1The proce-
dure uses random assignments of treatment in a population
to determine the difference in outcome after receiving that
treatment. Consider two example experiments:

Exp1 An OSN serves video content to a worldwide audience.
Developers at the OSN may want to select between
software-defined high and low video bitrates to see
if bitrates affect the percentage of videos watched to
completion (modeled after an experiment in Tosch et
al. [66]).

Exp2 The same OSN provides users with a stream of per-
sonalized curated content. The administrators of the
service might ask how the sentiment of curated content
(e.g., positive content vs. neutral content) influences
the amount of time a user spends with the service (mod-
eled after an experiment in Kramer et al. [39]).

In both experiments, the administrators would like to con-
duct an experiment to measure the relationship between two
outcomes by exposing some users UA to one treatment (e.g.,
content with positive-leaning sentiment or high bitrates), and
exposing others UB to another treatment (e.g., content mea-
sured to be neutral or low bitrates).

If the treatment is served to each user in individual silos,
we can directly compare the outcome (e.g., average amount of
time spent browsing or video completion rates) between the
two groups UA and UB. For each individual, we are concerned

1We use the term treatment to refer generally to the assignment status of
a unit to some experimental protocol, which may include multiple treatment
arms or the control arm.



with estimating the effect of treatment on outcome. Let N

be the size of the user population, and zi be the treatment
assignment to user i. Here we consider only binary treatments
(i.e., zi = 1 or zi = 0).

Let Yzi be the outcome of user i under treatment assignment
z (also denoted Yi(Z = z)). Treatment is assigned randomly to
users, and the treatment assignment of each user is fixed once
assigned:

E
x

p
1

Y0i Average daily video completion rate for
user i, where i’s software bitrate was set
to the low value

Y1i Average daily video completion rate for
user i, where i’s software bitrate was set
to the high value

E
x

p
2

Y0i Average number of minutes per day user
i spent browsing, where i received neutral
sentiment content

Y1i Average number of minutes per day user
i spent browsing, where i was received
positive sentiment content

3.1 Propositional Setting

There are many methods described in the literature to measure
the effect of treatment on some population. In this work, we
will focus on the estimation of the average treatment effect

(ATE), t, the average difference in outcome under contrasting
treatments:

t = 1
N

N

Â
i

(Y1i �Y0i) (1)

Each individual unit (user) can only receive a single treatment
assignment, so we cannot observe both Y1i and Y0i. Instead,
we will estimate t under the potential outcomes framework of
Rubin [62]. This framework relies on the use of counterfac-

tuals. A counterfactual value is the outcome of an individual
under the alternative treatment assignment.

Our aim is to quantify the difference between the mean
outcomes of the population under global treatments (where ev-
ery individual receives treatment A and in a parallel universe,
every individual receives treatment B). There are several meth-
ods for estimating t using counterfactuals. The simplest pro-
cedure takes the difference between mean outcomes in each
treatment group:

t̂ = 1
N1

N1

Â
i,zi=1

Y1i �
1

N0

N0

Â
i,zi=0

Y0i (2)

Structural estimation methods learn a model of outcome de-
pending on the unit’s treatment assignment and other unit-
specific attributes, then estimate each unit’s counterfactual
outcome [32, 53]. Matching designs pair units in treatment

to units in control using e.g., nearest neighbor, and use the
outcomes of the matched units to estimate the counterfactual
outcomes [58].

The causal estimation framework discussed so far has been
in the propositional setting, where the data is independent and
identically distributed (iid). The potential outcomes frame-
work assumes that our population samples are iid and the
outcome of an individual i is dependent only on i and her
treatment assignment. That is, the treatment assignment of
other individuals does not interfere with i’s outcome. This is
referred to as the Stable Unit Treatment Value Assumption
(SUTVA) [61].

It is easy to see how SUTVA holds for Exp1: if each user is
randomized into a software bitrate treatment implemented as
a software configuration setting, then the bitrate only affects
views on that device. Unfortunately, SUTVA may not hold
for Exp2. We assumed that the accounts in Exp2 were siloed,
but this may not always be true. If users can share content
to others’ content streams, it becomes possible for a user
assigned one treatment to effectively receive both treatments
due to the exposure from their peers. Fortunately, there are
statistical methods for correcting this kind of spillover or peer
effect.

3.2 Relational Setting

When units can interact, and through interaction expose
other units to additional treatments, we are in a network or
relational context. In Exp2 this happens when the OSN con-
tent stream includes the curated content mixed with other
user-generated content. Additional positive content served to
users in UA may increase the amount of positive user content
created and shared by those users, potentially affecting the
time-on-site estimates of users in UB. With the addition of this
social component, we must revisit the experimental design.

3.2.1 SUTVA Violations

In the relational paradigm, the properties of one unit (e.g.,
user) are typically not independent of other units (the data is
non-iid). Let G = hV,Ei be an undirected graph representing
the relationships among the population, where two nodes
vi,v j have an edge ei, j if and only if there is a relationship
between vi and v j.

The edges between nodes are avenues of treatment expo-

sure. When units in treatment B are exposed to treatment A,
the outcome of those exposed units is potentially influenced
by that exposure. This treatment spillover or interference in-
troduces bias in estimates of ATE by mixing outcomes due to
differing treatments [57]. Figures 2a and 2b show an example
network of units in a relational context and the corresponding
causal-relational model for SUTVA violations in that network,
respectively.
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(a) Example network of units, e.g., users in an OSN, in a rela-
tional context. Units i, j, and k represent compliant participants;
r is a non-cooperative participant (NCP). This network structure
undergirds the peer effects of treatment and outcome on con-
nected nodes depicted in Figures 2b (no NCPs) and 3 (r is an
NCP).
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(b) Causal-relational model corresponding to treatment assigned
over the sample network shown in Figure 2a. In the networked
environment, the treatment (T ) and outcome (Y ) of unit j can
cause the outcome of another unit i, which in turn can influence
the outcome of another unit k. Solid lines correspond to causal re-
lationships in both the propositional and relational environments;
dashed lines correspond to causal relationships that occur only
in the relational environment and that imply SUTVA violations.
Double-headed arrows between outcomes represent temporal
unrolling over multiple timesteps.

Figure 2: Contrasting propositional and relational models.

If a user whose treatment was positive content shares that
content with their friends, then their treatment assignment
spills over to their friends’ treatment assignments. Now the
outcome of each user depends on the vector Z of treatment
assignments across the network rather than just individual
treatment assignment zi. This is a violation of SUTVA.

To estimate treatment effect, we must determine the differ-
ence between global treatment assignments Yi(Z = 1

N) and
Yi(Z = 0

N) for every unit in parallel universes:

t = 1
N

N

Â
i=1

�
Yi(Z = 1

N)�Yi(Z = 0
N)
�

(3)

That is, we wish to control for spillover by ensuring that all
units that could affect this unit’s treatment receive the same
treatment as our unit of interest. However, each unit can only
receive one treatment assignment. If the network graph has a
single component and Z assigns both treatments, at least one
unit will experience spillover from a unit assigned a different
treatment.

3.2.2 Measuring Spillover via Treatment Exposure

The treatment assignment vector Z over the graph results in
varying levels of treatment exposure for each node in the
network; that is, Z captures both the assigned treatment and
any spillover due to networked nodes [6]. If treatment assign-
ment to nodes across the network is assigned uniformly at
random, the probability that a node’s neighborhood (i.e., set
of adjacent nodes) is assigned global treatment A or global
treatment B is 2�di where di is the number of nodes adjacent
to i. This probability becomes very small very quickly, so the
probability of a single node being exposed to both treatment
assignments is high. To minimize this exposure between dif-
fering treatment assignments, Ugander et al. [68] introduce a
cluster-randomized treatment design which clusters the graph
and assigns treatment to entire clusters, a procedure termed
graph cluster randomization. This treatment design reduces
exposure to the alternative treatment assignment.

To estimate unit-level outcomes for global treatment A
(Y1i) and global treatment B (Y0i), the authors assume multiple
treatment assignment vectors for a given unit can map to
the same potential outcome. We use I[Z 2 W1

i
] to denote the

indicator function for Z belonging to the set of treatment
assignment vectors under which YZi = Y1i (i.e., assigned to
treatment A). When the function is true, unit i is network-

exposed to treatment. The analogous definitions hold for units
network-exposed to treatment B.

Under this assumption, the ATE can be estimated using a
Horvitz-Thompson estimator, which uses inverse probabil-
ity weighting over outcomes for units network-exposed to
treatment A and network-exposed to treatment B [68]:

t̂ = 1
N

N

Â
i=1

⇣
YZiI[Z 2 W1

i
]

P(Z 2 W1
i
)
� YZiI[Z 2 W0

i
]

P(Z 2 W0
i
)

⌘
(4)

Ugander et al. identify a number of exposure model defini-
tions for approximating W1

i
, W0

i
. One definition uses a neigh-

borhood portion threshold q such that Z 2 W1
i

when at least
qdi of i’s neighbors receive treatment, and Z 2 W0

i
when at

least qdi of i’s neighbors are assigned to control.

3.2.3 Additive Exposure Models

Gui et al. [30] introduce an estimator which separates treat-
ment effect into both individual treatment effect b, and peer

or network effect g, i.e., the effect of neighbors’ outcomes on
that unit’s outcome.2 Individual and peer effect estimates are
taken from the coefficients of a linear model of outcome g

using individual treatment assignment zi and the portion of
treated neighbors si. Returning to the content curation exam-
ple, if we believe the browsing time for one user influences

2Estimation of peer effects is an active area of research. New estimators
have been proposed since Gui et al. (e.g., [65]), some of which are not linear,
making decomposition of peer effects into non-cooperative and compliant
components quite challenging. As this is the first analysis of non-cooperative
units in A/B tests, we sought a more tractable estimator.



browsing time for their friends, then their treatment assign-
ment affects that user’s friends’ outcomes through its effect
on that user’s browsing time. This, too, is a SUTVA violation.

The linear additive model assumes that ATE is additive
in individual and network effects. Instead of binning units
according to their network exposure to treatment and control
as in Ugander et al. [68], the portion of treated neighbors si

is used directly in the effect estimation:

g(zi,si) = a+bzi + gsi (5)

ATE is then estimated as the sum of the individual treat-
ment and treatment exposure parameters, b̂+ ĝ. This estima-
tion method allows a spectrum of treatment exposure across
the network without throwing out outcomes from partially-
exposed units, and is robust to SUTVA violations from out-
come interference (e.g., peer effects).

4 Threat Model

Given this framework for causal inference, we define a non-

cooperative participant (NCP), or non-cooperative node as
an individual in the population who responds under an inten-
tionally different response model. Non-cooperative outcomes
may bias estimates of the experimental quantity of interest.
There are a number of models for non-cooperative behavior.
For example, bots may not respond to treatment in the same
way as human users, or competitor-owned accounts and paid
users may engage in user manipulation unrelated to an exper-
iment in progress, where the effects of that manipulation may
interfere with the outcome of interest.

Combating non-cooperation is fundamentally an arms
race [5, 10]; it is therefore impossible to produce a generic
model that covers all possible models of non-cooperative
behavior. The behavioral model can be arbitrarily complex.
Indeed, sophisticated NCPs are likely interested in masking
some behavior to avoid detection. NCPs may be acting in
isolation or coordinating with other participants. It is even
possible for a group of non-cooperative participants to inter-
fere with an experiment without knowing one is underway.

We leave the characterization of real-world behavior to
other researchers who are better positioned to assess end-
user behavior in networked environments such as OSNs. Our
focus remains on exploring whether current network A/B
testing methodology is robust to non-cooperative behavior.
Thus, we focus our analysis on the worst-case models of
non-cooperative behavior. In the propositional setting, the
data is iid, so bias in estimated treatment effect is determined
only by the distorted response of non-cooperative participants.
Correcting for this bias is mathematically straightforward.

In the network setting, however, treatment of a single in-
dividual may expose the neighbors of that unit to treatment,
so bias is induced both through the NCP’s outcome and the
peer effect that NCP applies to its neighbors. We consider the

case with interference from both treatment and outcome (see
Figure 2b). This means the behavior of the NCP additionally
influences the outcome of its neighbors, so non-cooperative
bias in the network setting can diffuse through the network
via peer effects into outcomes of neighboring participants.

Assumptions. Recall this work conditions on the fact that
there is access to a high-quality classifier for non-cooperative
participants. OSNs have established systems to identify non-
cooperative behavior. Our system provides the follow-up anal-
ysis once NCPs are identified. OSNs can use the theoretical
approach in this work to provide a foundation for solutions
deployed on live data. OSNs may employ tests which detect
the presence of peer effects [7, 63].

We assume that each non-cooperative participant in the net-
work follows the same behavioral model and that the outcome
of individuals is bounded.

4.1 Non-Cooperative Behavioral Models

We consider the following set of possible behavioral models
a non-cooperative participant might follow:

Uniform-Random The participant responds randomly from
a uniform distribution over the outcome space, regardless
of treatment assignment.

Maximum The treated participant responds with the maxi-
mum outcome, and the control participant responds with
the minimum outcome, in order to inflate the estimated
treatment effect.

Minimum The treated participant responds with the mini-
mum outcome, and the control participant responds with
the maximum outcome in order to minimize the esti-
mated treatment effect.

Pooling Several participants coordinate to exchange or
pool their outcome responses, resulting in incorrectly
recorded outcomes (swapped with other individuals in
the NCP pool).

The Uniform-Random behavioral model results in an in-
crease in variance over the ATE. The non-cooperative partici-
pants inject noise into the estimate through randomly sampled
outcomes. In the network setting, this increases the amount
of random noise observed by neighbors, but does not system-
atically bias neighbor outcomes.

The Maximum and Minimum behavioral models poten-
tially bias the effect estimation in some direction. Because
these behavioral models produce extremes in their outcome
response function, participants can bias the outcomes of their
neighbors in settings with sufficiently large peer effects.

The Pooling model is a special case of bootstrap sampling:
unit outcomes are resampled from a given sample of outcomes
(i.e., outcomes of other units in the pool). This can act as a



method for data poisoning (it can result in an incorrect record
of treatment assignment), and works to obfuscate personal
data (i.e., in self-reported outcomes). The NCP behavioral
models describing the loyalty-card-swapping and Instagram-
sharing-ring examples fall under this category.

4.2 Non-Cooperative Exposure Coverage

When NCPs form a dominating set over the graph, every node
is exposed to at least one non-cooperative outcome. Determin-
ing whether a set of vertices is a dominating set reduces from
the vertex cover problem and is an NP-complete decision
problem [31]. To approximate the smallest dominating set,
we use a standard greedy procedure to select nodes from the
graph using a simple heuristic from the number of uncovered
nodes, breaking ties with node degree [19]. Following the
additive treatment exposure framework (Section 3.2.3), we
use uniform edge-weighting in the heuristic.

In the uniform edge-weight setting, nodes providing the
greatest amount of coverage are not necessarily nodes with
highest degree. Uniform edge-weighting in the peer-effects
outcome model results in an inverse-degree-weighted influ-
ence from neighbors: a node with fewer neighbors has a
larger inverse-degree weighting per neighbor. We define non-

cooperative influence, wi, of a node i in the network G as:

wi = D
�1

A1
N

i
(6)

where D is the degree matrix of G, A is the adjacency matrix
of G, and 1i is a column vector with the ith row equal to 1.
Note wi is equal to the ith column sum of the transition matrix
of G and bounded [0, N]. For comparing total influence of a
set of NCPs between different graphs, we take the sum of wr

over all non-cooperative participants r in the set and divide
by N to normalize.

To maximize non-cooperative influence over the graph, we
construct an heuristic to capture both the number of nodes
covered by a set of non-cooperative participants and the rel-
ative strength of effect they hold over their neighbors. We
define participant degree influence w0 as node influence w
calculated over non-NCP neighbors. That is,

w0
i
= Â

j2Nb(i)�R

1
d j

(7)

where Nb(i) is the set of nodes adjacent to i, and d j is the
degree of node j.

NCP selection methods. We compare the following selec-
tion methods for constructing the dominating set:

RNCP Selects nodes to represent non-cooperative partici-
pants uniformly at random.

GNCP Greedily selects nodes to represent non-cooperative
participants, using participant degree influence w0 as a
heuristic.
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Figure 3: In networked environments with non-cooperative
participants (NCPs), the non-cooperative node r can partially
block the peer effects acting between unit j and unit i (note the
arrows from Yr are no longer double-headed as in Figure 2b).
Because the NCP behaves according to some external proto-
col (e.g., Uniform-Random, Minimum, etc.), its outcome is
independent of treatment (i.e., there is no arrow from T to
Y ). Furthermore, r’s behavior can influence the outcomes of
adjacent nodes, and this influence is independent of treatment.

RNCP selection procedures up to dominating sets result
in larger sets containing nodes with a range of neighborhood
sizes, which in this setting control the strength of ties. GNCP
selection is equivalent to a heuristic greedily selecting nodes
with strong ties in the degree-weighted setting.

5 Bias from Non-Cooperative Participants

We are interested in exploring how non-cooperative behav-
ior in network systems can influence ATE estimation (RQ1).
Previous work has shown that variance over ATE estimation
using graph cluster randomization is large and sensitive to
several choices in the experimental setup: e.g., estimation pa-
rameters, clustering method, and treatment assignment each
influence the variance over the ATE estimate for a particular
graph [23, 30, 65, 68]. Given the plurality of factors that influ-
ence the variance over ATE estimation, we focus our analysis
on the bias in the ATE estimate due to non-cooperative be-
havior. Since we are interested in examining bias in the most
extreme case, the Maximum and Minimum behavioral models
are of greater interest as those extreme-response behaviors
result in stronger peer effect, especially in estimation methods
that include the neighborhood outcome mean as a parame-
ter in the effect estimation. We constrain our analysis to a
single behavioral model shared between all non-cooperative
participants in the network. We assume NCP node identities
and behavioral functional forms are known; see Section 9 for
a discussion relaxing these assumptions. For an example of
how NCPs disrupt peer effects, contrast the causal relational
diagram of Figure 2b, which highlights spillover effects, with
the causal relational diagram of Figure 3, which highlights
non-cooperative spillover.

Let dR(x̂,k) denote the bias in the estimate of x due to k

non-cooperative participants in the population.



5.1 Non-Cooperative Participation in the

Propositional Setting

In the propositional setting, the only influence an NCP can
exert on the estimated ATE is through its own behavior. We
can therefore separate the outcomes of non-cooperative par-
ticipants from the outcomes of compliant units:

t̂ = 1
N1

N

Â
i=1
zi=1
i/2R

Y1i �
1

N0

N

Â
i=1
zi=0
i/2R

Y0i

| {z }
ATE for compliant units

+
1

N1
Â
r2R

zr=1

Y1r �
1

N0
Â
r2R

zr=0

Y0r

| {z }
ATE for NCPs

(8)

where R is the set of non-cooperative participants in the popu-
lation. Note that the non-cooperative outcomes Y1r and Y0r are
defined by the non-cooperative behavioral function. When the
non-cooperative outcome function is constant, we can derive
the bias due to non-cooperative behavior:

t̂ = 1
N1

N

Â
i=1
zi=1
i/2R

Y1i �
1

N0

N

Â
i=1
zi=0
i/2R

Y0i +
|R1|
N1

YR1 �
|R0|
N0

YR0
| {z }

Bias

(9)

where R1, R0 are sets of non-cooperative participants receiv-
ing treatment or in control, respectively, and YR1, YR0 are non-
cooperative outcomes under treatment and control. So the
bias introduced from non-cooperative behavior in the propo-
sitional case is given by:

dR(t̂, |R|) =
|R1|
N1

YR1 �
|R0|
N0

YR0 (10)

5.2 Non-Cooperative Participation in the

Relational Setting

In systems with outcome interference, the treatment effect
diffuses through the network. This requires a temporal com-
ponent in the model. In the first time-step, the treatment in-
fluences only the nodes for which it was assigned. For sub-
sequent time-steps t, outcome is a function of both zi, the
unit’s treatment assignment, and Yzi( j, t�1), the outcome of
each neighbor j of i at time t �1.

5.2.1 Non-Cooperative Influence and Graph Topology

Non-cooperative participants in the network setting are par-
ticularly interesting because these nodes can block the flow
of treatment effect through the network. Non-cooperative be-
havior defined irrespective of Yzi( j, t�1) blocks peer effect that
would normally spill-over and affect the outcome of j and,
through j, j’s neighbors. This distorts the diffusion of treat-
ment effect over the network, and the degree of that distortion
increases as the number of time-steps increases and treatment
further propagates across the network. Naturally, diffusion of
treatment effect through the network also allows exposure to

adversary behavior to propagate through the network. This
is why astroturf campaigns are effective: artificial accounts
target individuals susceptible to peer effects and push them
toward a particular outcome, and those individuals in turn
affect their neighbors.

Given the relationship between non-cooperative partici-
pants, neighborhood outcomes, and ATE bias, we would like
to examine how placement of NCP nodes in the network graph
relates to the strength of non-cooperative bias.

5.2.2 Empirical Study of Influence and Topology

It is likely that differences in network topology can affect
the strength of total non-cooperative influence (RQ3). To ex-
amine the relationship between topology and NCP set selec-
tion, we empirically analyzed the increase in total normalized
non-cooperative influence as the number of NCPs increases
using the random and greedy selection procedures for three
different random graph generation procedures: small-world
networks [70], forest-fire models [42], and stochastic block
models [26]. All parameters were chosen either from exam-
ples in the corresponding papers (i.e., [70], [42], and [26]),
or tuned to match median edge counts for stochastic block
models, which are designed to model real-world community
structure. Generating graphs with the same number of nodes
and median edge count ensures that comparisons between
generated graphs are specific to differences in graph topology
alone.

Small-world networks. Small-world networks are gener-
ated by constructing a lattice with a given degree and then
rewiring edges to new nodes with rewiring probability psw.
A rewiring probability of 0 produces a regular lattice, and a
rewiring probability of 1 produces a random (Erdős-Rényi)
network. When the rewiring probability falls in the range
[0.01, 0.1], the network is considered a small-world network.
These networks have large clustering coefficients and short
diameters, which are properties found to be consistent with
many real-world networks [70].

Forest-fire models. Forest-fire models are a type of prefer-
ential attachment graph. Graphs are constructed by adding
nodes one at a time. When a node n is added to the network,
an edge is added between n and some other node a chosen
uniformly at random from the current set of nodes. Then,
some number x,y of additional edges are added between a

and other nodes in the graph: x is the number of new outgoing
edges from a, and y is the number of new incoming edges
to a. These parameters are controlled by parameters pff, r

and assigned by sampling from geometric distributions with
means pff/(1� pff) and rpff(1�rpff), respectively. Networks
generated in this way have long-tailed in- and out-degree dis-
tributions, community structure, shrinking graph diameter,



and densification following a power law, each of which are
properties identified in real-world networks [42].

Stochastic block models. Stochastic block models (SBMs)
are a widely used benchmark for graph generation in the com-
munity detection literature. These models are generated by
constructing individual communities of bounded size, each
generated using some intracommunity connection probabil-
ity, and adding edges between communities according to a
community mixing probability. SBMs have ground truth com-
munities by construction, and the networks generated fol-
low a power law distribution in node degree and community
size [26].

Our analysis considers these three graph generation pro-
cedures for graphs of size 500, 1000, and 5000. We se-
lected graph generation parameters such that the median
number of edges in generated graphs fell within 10% of the
same edge count (1350, 4600, and 125,000 edges for each
graph size, respectively). For forest-fire models, we generate
graphs with forward-burning probability pff and backward
burning ratio r pairs (pff,r) 2 {(0.32,1.031), (0.37,0.892),
(0.37,0.946)}. For small-world networks, we generate graphs
with rewiring parameter psw 2 {0.03,0.05,0.1}. For stochas-
tic block models, we generate graphs with intracommunity
attachment probability 0.8 and intercommunity attachment
probability 2 {0.1,0.2,0.3}. For each graph setting, we gen-
erate 100 graphs of that type. Results were consistent across
size and parameter settings within each graph type, so we
report results for 1000-node graphs with a single parameter
setting. For forest-fire models, we set (pff,r) = (0.37,0.892).
For small-world networks, we set psw = 0.05. For SBMs, we
set µ = 0.2.

Findings. Figure 4 shows the increase in total normalized
non-cooperative influence as the number of non-cooperative
participants increases for SBMs, small-world graphs, and
forest-fire models with 1000 nodes. Both GNCP and RNCP
selection procedures are considered. Influence of NCPs is
closely related to the connectivity and degree distribution of
the graph.

Small-world graphs show low total non-cooperative influ-
ence, even under GNCP selection of NCPs. This is due to the
construction procedure for the graph. The degree distribution
in small-world graphs is tight, so all nodes have nearly the
same number of neighbors. As a result, no individual node is
likely to have a significantly greater influence than any other
in the network and there is little difference between the NCP
sets constructed under GNCP or RNCP selection procedures.

Forest-fire models require the largest dominating sets (35%
of the nodes), and naturally reach the highest non-cooperative
influence. As the size of the NCP set increases, there is
a significant and increasing difference between the non-
cooperative influence of NCP-sets selected under GNCP com-

Figure 4: Total normalized influence of non-cooperative par-
ticipants as the number of NCPs increases in stochastic block
models, small-world networks, and forest-fire models. We
considered cases where NCPs are selected either uniformly
at random (RNCP, dashed) or greedily using the participant
degree influence as a coverage heuristic (GNCP, solid).

pared to NCP-sets selected under RNCP. A dominating set
selected under GNCP in the forest-fire simulations total an
average of 0.69 influence over the graph, and the curve of
total influence increases linearly in the number of NCPs.

SBMs also show a large difference in total non-cooperative
influence between NCP selection methods. When NCP sets
are selected under RNCP, their average non-cooperative influ-
ence (wr) is 0.17, whereas dominating sets constructed under
GNCP selection have an average non-cooperative influence
of 0.57.

In forest-fire models, the difference in total non-cooperative
influence between NCP-sets selected under GNCP and RNCP
is a consequence of the long tails of the degree distributions.
Since nodes of high degree must be drawn from the tails of the
degree distribution, they are less likely to be selected under
RNCP. Nodes with low degree are more likely to be selected
under RNCP as the probability density of low degree is much
higher in these degree distributions.

5.3 Bias in Average Treatment Effect (ATE)

We will now examine bias in estimated ATE due to non-
cooperative participation (RQ1). First, we can derive the bias
due to NCPs in the linear estimator from Gui et al. [30],
shown in Equation 5. Let s be a vector containing the portion
of treated neighbors for each node in the network. Recall that



t̂ = b̂+ ĝ. The parameters b,g are estimated as (see Eq. 5):

b̂ =
(Âs2)(ÂZY )� (ÂZs)(ÂsY )

(ÂZ2)(Âs2)�Â(Zs)2 (11)

ĝ = (ÂZ
2)(ÂsY )� (ÂZs)(ÂZY )

(ÂZ2)(Âs2)�Â(Zs)2 (12)

We can simplify these expressions using the definition of Z.
Since treatment is binary, ÂZ

2 = ÂZ = N1, the number of
units receiving treatment, and ÂZY is the sum of outcomes
from units receiving treatment, ÂY1.

b̂ =
(Âs2)(ÂY1)� (ÂZs)(ÂsY )

N1(Âs2)�ÂZs2 (13)

ĝ = N1(ÂsY )� (ÂZs)(ÂY1)

N1(Âs2)�ÂZs2 (14)

There are two ways a non-cooperative participant r influ-
ences the estimated parameters: (1) through its own outcome,
Yr, and (2) through neighborhood exposure to its outcome. In
this additive framework, we assume that gÂ

YA j

d j
is the portion

of an individual j’s outcome, Yj, due to network effect. Be-
cause of the additive functional form, we can separate these
two sources of bias. We let b̂R, ĝR be the bias in estimated
parameters due to the outcome from a set of non-cooperative
participants R, and b̂Y , ĝY be the bias in estimated parameters
due to neighborhood exposure to outcomes from R, so that

dR(t,k) = b̂R + ĝR + b̂Y + ĝY (15)

Since these parameters are estimated as sums over each
unit individually, we can divide b̂ and ĝ into terms accounting
for outcomes from compliant units separately from outcomes
of non-cooperative participants. Then the estimate of the pa-
rameters due to non-cooperative outcome is given:

b̂R =

|R1|Y1R Â
�
sr

2�� (ÂZs)
✓

Â
r2R

srYr

◆

N1 (Âs2)�ÂZs2 (16)

ĝR =

N1 Â
r2R

srYr � |R1|Y1R ÂZs

N1 (Âs2)�ÂZs2 (17)

So the bias in estimates b̂, ĝ due to non-cooperative outcome
is:

b̂R + ĝR =

|R1|Y1R

�
Âs2 �ÂZs

�
+(N1 �ÂZs)

✓
Â

r2R

srYr

◆

N1 (Âs2)�ÂZs2

(18)
Note that the only terms of b̂R + ĝR related to the placement
of non-cooperative participant r in the network is in exposure
to treatment, sr. Now we consider the bias due to the network
effects of non-cooperative behavior.

Reasoning about bias due to non-cooperative network influ-
ence through parameter estimation is difficult, since the bias
due to non-cooperation is dependent on the strength of the
true network effect, g, which is only calculated in the linear
estimator through the portion of the neighborhood receiving
treatment. Further, even if non-cooperative outcome is sep-
arated into (1) the portion of its outcome independent of its
neighbors, (2) the portion of outcome due to unbiased peer
effects, and (3) the portion of outcome due to peer effects
from NCPs, we still must account for the non-cooperative
peer effects in i’s NCP-exposed neighbors in (2), which may
be exposed to a different non-cooperative participant than r.
Instead of reasoning about the strength of non-cooperative
diffusion, we can approximate the bias induced by a single
NCP r’s outcome on non-NCP neighbor j’s outcome using
the fact that Yr skews Yj relative to the distance between Yr

and the mean outcome of j’s neighbors excluding r: ȲA j\r.
Then the bias in Yj due to Yr is µ 1

d j
(Yr � ȲA j\r), where d j is

the degree of node j, and Yr is the outcome of non-cooperative
participant r under treatment assignment zr. So the total bias
induced by r on its neighbors’ outcome is approximated by:

b̂Y + ĝY = Â
j2Ar

1
d j

(Yr � ȲA j\r)

= wr Â
j2Ar

(Yr � ȲA j\r)⇡ wr(Yr � Ȳ
A2

r
)

(19)

where Ȳ
A2

r
is the mean outcome in r’s two-hop neighborhood.

Then the total ATE bias due to non-cooperative participants
in the network is:

dR(t,k) =
|R1|Y1R

�
Âs2 �ÂZs

�
+(N1 �ÂZs)

✓
Â

r2R

srYr

◆
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+ Â
r2R
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Yr � Ȳ

A2
r

⌘

(20)

5.4 Expected Bias

We now examine the expected bias under random and domi-
nating non-cooperative node placement (RQ2).

Recall the assumptions that NCPs behave according to
their treatment assignment, and are placed either uniformly
at random across the graph (RNCP), or greedily according
to graph structure (GNCP). That is, the GNCP procedure
does not consider treatment assignment across the graph in its
heuristic. For logical consistency, we will assume NCPs are
placed before treatment is assigned. Thus, in our expected bias
analysis, we will not optimize NCP placement with respect
to treatment assignment.

We specifically consider the bias induced by an NCP r on
its neighbors’ outcome, b̂Y + ĝY . We use this narrowed view
because the bias induced by non-cooperative outcome alone,



b̂R + ĝR, is related to the placement of NCPs only through ex-
posure to treatment. In particular, it is related to the treatment
assignments across r’s neighborhood. Reasoning over behav-
ior on nodes exposed to both treatments is beyond the scope of
this work. For detailed discussion of the relationship between
clustering, neighborhood exposure, and ATE estimation, see
Ugander et al. [68]. For our analysis, we assume that a node
and its neighbors receive the same treatment assignment.

Here we discuss the expected ATE bias induced by k non-
cooperative participants in the graph. We will give expressions
for both random and dominating NCP placement. Note how-
ever that due to our assumption that each node has the same
treatment assignment as each of its neighbors, the only term
affected by NCP placement in expectation over b̂Y + ĝY is wr.

5.4.1 Random Placement

Under the RNCP placement protocol, we would expect the
average case bias from non-cooperative participants. We use
w̄ to denote expected influence of a randomly placed node,
whose expression is given by:

w̄ = E[w] =
N

Â
i=1

P(wi)wi (21)

where P(wi) is the probability of observing node influence
wi, determined by the degree distribution in the graph.

So the expected value of bias in network treatment effect
from k non-cooperative participants placed uniformly at ran-
dom is:

E
h
b̂Y + ĝY

i
= kw̄


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2
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(22)

5.4.2 Greedy Coverage Placement

The expected value of ATE bias from NCPs placed under
the GNCP protocol follows a similar formulation except that
we maximize the total non-cooperative influence for a set
of k NCPs. Let w⇤

k
be the maximum total influence for a

dominating set of size k. Then the expected value of bias
in network treatment effect for non-cooperative participants
forming a dominating set over the graph is as follows:

E
h
b̂Y + ĝY

i
=w⇤

k
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N
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2
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+
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2
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(23)
Finding the dominating set that maximizes the total non-

cooperative influence for a set of k NCPs can be formulated as
a weighted maximum coverage problem, where the universe
U is the set of all nodes, each subset Si is a set containing the
node i and its neighbors, Si = {a 2 V (G) | a = i_9(a, i) 2
E(G)}, and each set’s weight w(i) = Âa2Si

1
da

= w0
a
, where

da is the degree of node a. The weighted maximum coverage

problem is NP-hard but can be approximated with a greedy
algorithm with an approximation ratio of 1 - 1

e , with e the
base of the natural logarithm. [49].

6 Simulation Study

To empirically demonstrate the effect of non-cooperative par-
ticipation on OSN effect estimation, we simulated outcomes
in a network and used the ATE estimation method of Gui et
al. [30] to estimate treatment effect in networks both with
and without non-cooperative interference. The experiments
consider outcome simulations over both synthetic and real-
world graph structures. We use simulations of outcomes over
a real-world graph structure as the closest analog to real-world
data available for this setting. Simulation studies like the one
presented in this work are not uncommon in the network sci-
ence or statistical relational literatures, where real-world data
measuring effect estimation is not available due to e.g., digital
privacy concerns, medical record privacy protections, etc. In
other cases, real-world data may be available, but the sample
size is small or otherwise inappropriate [24].

Where possible, we have substituted synthetic aspects of
the simulation study with publicly available empirical data
to improve the external validity of the study. This is in line
with best practice in evaluating causal effect estimation [28].
The real-world simulation experiments use real-world OSN
structure, published individual and peer effect estimates for
the same OSN platform, and the outcome simulation model
is drawn from prior work developed at a competing OSN.

6.1 Methodology

For a given graph, we generate a clustering of the graph and
assign clusters to treatment or control. We then generate a
dominating set of non-cooperative participants using a greedy
algorithm (GNCP). Recall that this procedure is guaranteed
to approximate the maximum total non-cooperative influence
within (1-e). A second NCP set of the same size is selected
uniformly at random from the graph (RNCP). Given this se-
lection procedure, the RNCP selected non-cooperative nodes
are not guaranteed to form a dominating set over the graph.

For specific settings of the individual treatment effect pa-
rameter l1 and peer effect parameter l2, we determine the
outcome function for compliant and non-cooperative nodes
under the outcome simulation model proposed in Eckles et
al. 2014 [23]. We then simulate outcomes iterating over the
set of NCP nodes—starting with an empty set and adding an
NCP to the previous set—ending with the entire dominating
set. For each NCP subset, we simulate outcomes Yi,t for each
node i up to t = 3. We use the linear estimator over generated
outcomes to estimate ATE for each subset of non-cooperative
participants. The estimated ATE for the experiment with no
non-cooperative interference is used as a baseline of compari-
son for ATE bias induced by NCPs.



6.2 Network Structure

Synthetic graphs are generated under algorithms designed
to match properties of real-world networks, and which re-
sult in some form of community structure. Several induce a
power-law distribution over node degrees in generated graphs,
consistent with standard practice in the network science lit-
erature. This power-law relationship has been consistently
reported in real-world networks [50].

In addition to the synthetic graph experiments, we also
include an experiment simulation with non-cooperative par-
ticipants using empirical data.

6.2.1 Synthetic Graph Generation

Synthetic network graphs are generated using the same pro-
cedure reported in Section 5.2.2. Our results are consistent
within graph type, so we report single parameter settings. We
consider forest-fire models with forward burning probability
pff = 0.37 and backward burning ratio r = 0.892, small-world
networks with rewiring parameter psw = 0.05, and SBMs with
community mixing parameter µ = 0.2. Interestingly, the size
of the dominating set relative to the graph decreases as the
size of the graph increases for graphs with the same parame-
ter values. However, graphs of different size also produce the
same pattern of bias increases within graph type, so we report
results for graphs with 1000 nodes.

6.2.2 Real-World Graph Structure

For the real-world graph structure, we use a public release
of the Facebook subgraph [43] available through the SNAP
library [44]. This subgraph was collected by choosing a 10-
clique set of users and taking the subgraph induced by this
set of users and their neighborhoods. 3 This network sample
has 4039 nodes and 88,234 edges.

6.3 Outcome Simulation Model

The simulation model defines a protocol for treatment as-
signment and uses a linear model of outcome incorporating
individual, peer, and neighborhood-level effects on unit re-
sponse.

Treatment assignment. The experiment simulations use
cluster-randomized assignment to minimize treatment expo-
sure between treatment groups. We use the Infomap algorithm
for community detection [59] to generate a set of clusters over
the network with c clusters. We assign clusters to treatments
according to a binomial distribution B(c, 0.5).

3As a result of this subgraph sampling procedure, the 10-clique set of ego
nodes forms a dominating set over all 4039 nodes in the network sample.

Participant outcome model. Observed outcome values
were generated using the following linear model introduced
by Eckles et al. [23] and further adapted from Gui et al. [30] :

Yi,t = l0 +l1zi +l2
AiYt�1

Di,i
+Ui,t (24)

where zi is the treatment assignment of unit i, AiYt�1
Di,i

is the
mean outcome units neighboring unit i, and Ui,t ⇠N (0,0.1) is
an individual-level noise parameter. At t = 0, we set Y0,i = 0
for all i.

Outcome parameter values. Following the parameter as-
signments of [30], we set t = 3, l0 =�1.5, and we set indi-
vidual treatment parameters l1 2 {0.25,0.5,0.75,1} and peer
effect parameters l2 2 {0,0.1,0.5,1.0}.

In the simulation study using empirical data, we
also consider parameter values drawn from pub-
lished treatment effect estimates from experiments on
Facebook [22]: for individual treatment effect we set
l1 2 {1.845e�4,1.929e�4,1.995e�4}, and for peer treat-
ment effect we set l2 2 {1.086e�3,1.111e�3,1.136e�3}.

Non-cooperative outcome. Under the non-cooperative be-
havioral model Minimum, non-cooperative participants re-
spond to minimize the estimated ATE (described in Section 4).
Non-cooperative outcome is determined by l0 and l1:

Yr =

(
l0 if zr = 1,
l0 +l1 if zr = 0.

6.4 Synthetic Network Results

The simulation results in Figure 5 demonstrate the effect of
NCPs on the estimated treatment effect. The bias induced
by NCPs increases as the number of non-cooperative nodes
increases. GNCP placement generally results in greater bias
than RNCP placement, especially for large peer effect, l2. As
individual treatment effect l1 increases, the slope of the bias
increase remains constant. Under RNCP, the increase in peer
effect l2 has little effect. The dramatic changes in bias occur
with increases to peer effect for NCPs selected under GNCP.
For l2=1, SBMs with GNCP selection nearly double the ATE
bias of NCP-sets selected under RNCP.

The importance of peer effect strength also depends on
network topology. SBMs and forest-fire models are particu-
larly susceptible to bias in ATE for networks with large peer
effects, especially under GNCP selection procedures. These
two graph generation algorithms are often cited as producing
graphs closely resembling real-world networks, and SBMs in
particular are recommended as random graphs most closely
replicating real world community structure [40, 42, 74]. It is
interesting that these structures are also the most vulnerable
to non-cooperative biasing, even for relatively small sets of
non-cooperative participants.



(a) forest-fire networks (N = 1000, pff=0.37,
r=0.892)

(b) small-world graphs (N = 1000, psw=0.05) (c) SBMs (N = 1000, µ=0.2)

Figure 5: Bias in estimated ATE for (a) forest-fire models, (b) small-world networks, and (c) SBMs under different assignments
of individual treatment and network treatment effects. Rows share individual treatment effect parameter settings, l1, and columns
share network treatment effect settings, l2. Note the difference in scales on the y-axis for adversary bias. Forest-fire networks and
SBMs exhibit significant bias with increases in the strength of peer effects, even for a small set of non-cooperative participants.

(a) 4039-node Facebook subgraph with published effect parameters (b) 4039-node Facebook subgraph with simulated effect parameters

Figure 6: Bias in estimated ATE on a subgraph from the Facebook graph using (a) published individual and peer effect
estimates [22], and (b) simulated individual and peer effect estimates [30]. Rows share individual treatment effect parameter
settings, l1, and columns share network treatment effect settings, l2. When effect size is small, RNCP placement results in
greater bias in ATE than GNCP placement. In general, there is greater variability in ATE bias under GNCP placement.

6.5 Real-World Network Results

Figure 6 shows the results of the Facebook graph simulation
under two sets of outcome simulation model parameters. In
general, there is greater variability in ATE bias under GNCP
placement. When the true individual and peer effect size are
small as in Figure 6a, RNCP results in greater bias in ATE

than under GNCP. This is consistent with the synthetic net-
work simulations with small peer effect. Results in Figure 6b
also show a similar pattern of bias increases as the synthetic
network experiments (Section 6.4), which use the same set-
tings for outcome parameters l1,l2.



7 Implications

In this section, we outline two hypothetical but realistic sce-
narios to emphasize the implications of our work in both the
propositional and relational settings.

Propositional non-cooperative effects. In 2020, Twitter
introduced labels on tweets that may contain questionable con-
tent [60]. Two such labels were “Get the facts about COVID-
19.” (Label A) and “Some or all of the content shared in this
Tweet conflicts with guidance from public health experts re-
garding COVID-19. Learn more.” (Label B); if these two
labels are randomly assigned, they would constitute an A/B
test, or simple experiment. The outcome of this experiment is
the rate of spread of misinformation.

End-users would be aware of the new feature and may even
suspect that they were in an experiment. Now consider an
agent that controls a large number of fake or compromised
Twitter accounts (a botherder [13], for instance). Suspecting
Twitter’s goals, the agent may choose to behave in a manner
that propagates misinformation (and disinformation) about
COVID-19 vaccines. Such an adversary might instruct the
bots to behave in a way that influences the outcome of the
A/B test (e.g., by flooding one label with clicks).

Relational non-cooperative effects. Now consider Face-
book’s election-cycle voter engagement campaigns, in which
users received messages with reminders about election events
and notices about friends that had checked-in as voters [12,36].
In this scenario, the treatment is a dedicated post in the exper-
imental subject’s news feed. Following the design of Jones
et al. [36], the posts prominently feature a general-audience
message, “It’s election day. Tell friends you’re voting in the
2012 Election and find out where to vote.” (propositional;

Condition P), or may list specific users if at least one friend
had checked-in as having voted, “Kaleigh and 7 other friends
are voters. Find out where to vote.” (relational; Condition R).

Suppose Facebook is interested in evaluating click-through
rates of posts over both conditions P and R.4 Click-through
rates of users exposed to R may depend on the accounts fea-
tured in the message. Users exposed to P may still influence
their neighbor’s voting outcomes by sharing their own voting
status or other voting messaging as a result of their exposure
under P. If some accounts skip the check-in to obfuscate their
true voting status, that may influence the probability of adop-
tion of users that may have otherwise adopted if exposed to
the factual outcome. This is especially a concern when the
treatment cluster assignments are correlated with existing

polarization in the network communities.

4This is known as a 2x2 experimental design and it allows for the calcula-
tion of the effects of P only, R only, both P and R together, with no treatment
as the control condition.

Summary. These two example scenarios are based on real-
world experiments performed by social networking compa-
nies; the non-cooperative behavior is hypothetical, but demon-
strates how A/B testing can be subverted, leading to poten-
tially damaging real-world consequences (i.e., the inadvertent
sub-optimal stemming of COVID-19 misinformation in the
propositional scenario and the effects non-cooperative peer-
engagement on voting in the relational scenario). In view of
this, it is important for A/B testing operations to account for
ATE bias as discussed in Section 5.

8 Ethics of Correction

It is important to note that non-cooperation does not auto-
matically imply malicious or adversarial action. A user can
act as an adversary of the OSN system without being mali-

cious. In general, non-cooperative action may just as likely be
non-malicious as not, and we should be careful about strictly
adversarial framing of non-cooperative behavior [5]. Non-
cooperative behavior may be a means of e.g. denying infor-
mation to an OSN platform, which may protect against an au-
tomated system using information about the user that leads to
biased application of services downstream. Non-cooperative
behavior need not be directly related to the experiment under-
way (users may not know they are in an experiment), but those
behavioral choices may still affect outcome estimates, includ-
ing and especially when the treatment is cluster-randomized
and the non-cooperative behavior is observed by peers.

As further ethical consideration for calculating non-
cooperative bias terms for ATE correction, we note that this is,
necessarily, removing the outcomes of nodes identified as non-
cooperative. If those nodes share some feature (are acting to
e.g., preserve their privacy), this induces a data-missingness
selection bias on the corrected ATE estimates which may
algorithmically perpetuate existing bias and injustice [11, 29].

9 Discussion

Our work is related to other studies of non-cooperative be-
havior in the network setting. Some of these investigate the
spread of infection [45] or misinformation [15] in a network.
Other work examines detection of adversaries [4, 16, 69] or
measuring and analyzing the success of adversary integra-
tion in the network [1, 3]. The most similar work to ours in
structure is Yildiz et al. [73], who model opinion networks
that have “stubborn agents” placed in various configurations.
A graphical representation of this work would overlay the
network connectivity of Figure 2a with edges representing the
flow of opinion; there is no notion of treatment and outcome
in their framework, which fundamentally changes the prob-
lem formulation. This paper is the first to explore the effect of
bots and other non-cooperative participants in network A/B
testing.



When handling non-cooperative units in experiments in net-
worked environments, there are three main problems or tasks:
non-cooperative detection, statistical bias correction, and poi-
soning prevention. This work focuses on correction, relying
on assumptions about our ability to identify non-cooperative
network members and know the model of their behavior.

Clearly there is a need for future work on the detection and
modeling of non-cooperative behavior in relational settings,
e.g., OSNs. A major challenge in such detection is differenti-
ating between strong opinion-holders and truly adversarial or
trollish behavior [18]. Classifying non-cooperative behavior is
a socio-technical issue and raises ethical concerns, especially
if it is done behind walled gardens.

That said, there is still a great deal to study about the in-
teraction of non-cooperative behavior and peer effects. As
future work, we are interested in the effects of additional
non-cooperative behavioral models. We have focused on
extreme-response models of non-cooperative behavior, but
non-cooperative participants may act under a wide range of
other behavioral models. NCPs may condition their outcome
behaviors according to not only their treatment assignment,
but the treatment assignment and behavior of their neighbors.
We might also consider less extreme non-cooperative behav-
ior models or mixtures of behavioral models. An interesting
approach to exploring this space might be to characterize the
trade-off between injecting ATE bias and avoiding detection.

This work also does not address the task of prevention.
While there are certainly sociological approaches to prevent
non-cooperative behavior, an alternative is to simply design
experiments that are robust to such behavior. Our work has
demonstrated that the ATE estimate using standard network
A/B testing protocols can be biased by non-cooperative behav-
ior. While there may be more robust estimators (e.g., median
treatment effect [41]), these estimators are not widely used.

10 Conclusion

This work presents an introductory analysis of the effect
of non-cooperative behavior on the average treatment effect
(ATE) estimate in networks. Non-cooperative behavior adds
a layer of complexity over peer effects in network experi-
ments and is a recognized issue in the literature not considered
in standard experimental analysis for the relational setting.
Our work demonstrates a vulnerability in cluster-randomized
network A/B testing to manipulation under non-cooperative
behavior, particularly for networks with long-tailed degree
distributions. We have shown that networks with strong peer
effects are susceptible to ATE bias from non-cooperative be-
havior and identified forest-fire models and SBMs as network
structures vulnerable to non-cooperative spillover effects. Our
experiments using a real-world network show results consis-
tent with our findings in synthetic networks.

————————-

Availability

Code to support graph generation, outcome simulation mod-
els, and empirical measurements of non-cooperative bias
used in the experiments and simulation studies presented in
this work is available at https://github.com/KDL-umass/
Non-cooperative-spillover.
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