1999 Exam #2 - Chem 36 Exam Questions w/Answers

1. The autoionization constant of water (K_w) is 1.139 x 10⁻¹⁵ at 0.00 °C and 9.614 x 10⁻¹⁴ at 60.00 °C.

$$2 H_2O (I) \leftrightarrows H_3O^+(aq) + OH^-(aq)$$

a. Calculate the enthalpy change (ΔH) for the autoionization of water.

$$DH = 55.95 \text{ kJ/mol}$$

b. $K_w = 1.0 \times 10^{-14}$ at 25. °C. Calculate the standard molar free energy change (ΔG^o) for the autoionization of water at 25. °C.

$$DG^{\circ} = 80. \text{ kJ/mol}$$

c. What is the pH of pure water at 0 $^{\circ}$ C and at 60 $^{\circ}$ C?

2. At T=1200 °C, the reaction

$$P_4(q) \leftrightarrows 2 P_2(q)$$

has an equilibrium constant K = 0.612.

a. Suppose the initial partial pressures of P_4 and P_2 are both 2.00 atm. Will the reaction proceed to the right or to the left as equilibrium is approached? (Note: you must show your work to receive full credit!)

Reaction will proceed to the left (making more P₄)

b. Calculate the partial pressure of P_2 at equilibrium.

$$P_{P2} = 1.21 atm$$

c. If the volume of the system is then increased, will the partial pressure of P_2 increase or decrease? Explain, briefly.

 P_{P2} will increase (shift to side with more moles of gas)

- 3. The strongest acid that can exist in a solvent is the conjugate acid formed from the autoionization of that solvent. So, for example, the strongest acid that can exist in water is the hydronium ion (H_3O^+) .
 - a. Write the acid dissociation equilibrium reaction for H_3O^+ , the equilibrium constant (K_a) expression, and calculate the numerical value of K_a .

$$H_3O^+$$
 (aq) + H_2O (l) \leftrightarrows H_3O^+ (aq) + H_2O (l)

$$K_a = [H_3O^+] = 1$$

 $[H_3O^+]$

b. The approximate K_a values for HCl and HNO_3 are given on the table attached to this exam. In water, which of these acids is stronger? Explain.

Both acids are leveled to the strength of H₃O⁺

c. What is the strongest acid that can exist in a solution of *liquid* ammonia?

 NH_4^+

d. What fraction of Acetic Acid will be undissociated in a *liquid* ammonia solution? (DO NOT do a calculation for this!)

Acetic Acid will be 100% dissociated in liquid ammonia

- 4. As you all recall from lab, Aspirin is a weak acid (acetylsalicylic acid). When a 0.150 M solution of this acid is prepared, it has a pH of 4.69.
 - a. Calculate the K_{a} for acetylsalicylic acid.

$$K_a = 2.8 \times 10^{-9}$$

b. Calculate K_b for the acetylsalicylate ion.

$$K_h = 3.6 \times 10^{-6}$$

c. Calculate the pH of a 0.150 M solution of sodium acetylsalicylate.

$$pH = 10.87$$

- 5. Predict the direction favored in each of the following acid-base reactions. That is, for each reaction, indicate the direction (forward or reverse) that the reaction will tend towards. You may wish to make use of the K_a and K_b values tabulated for you on the formula page handed out with this exam.
 - a. $NH_4^+ + OH^- \leftrightarrows H_2O + NH_3$

Forward

b. $HSO_4^- + NO_3^- \leftrightarrows HNO_3 + SO_4^{2-}$

Reverse

c. $H_2CO_3 + CO_3^{2-} \iff HCO_3^{-} + HCO_3^{-}$

Forward

- 6. Circle the member of each of the following pairs that is the stronger acid and briefly explain your choice (based on molecular structure/bonding considerations).
 - a. HF or HCI

HCI (Fluorine is so much smaller than CI, that H-F bond strength is greater than H-CI bond strength)

b. HClO₂ or HClO₄

HCIO₄ (more electron-withdrawing oxygens to weaken H-Cl bond)

c. $CICH_2CH_2COOH$ or $CH_3CHCICOOH$

CH₃CHCICOOH (electron-withdrawing CI is closer to H-O bond)

d. H_3PO_4 or H_2PO_4

 H_3PO_4 (harder for a negatively charged species to give up a positively charged species)

Extra Credit!!!

At 40 $^{\circ}$ C and 1.00 atm pressure, a gaseous monoprotic acid has a density of 1.05 g/L. After 1.85 g of this gas is dissolved in water and diluted to 450.0 mL, the pH is measured to be 5.01. Determine the K_a of this acid and use the provided table of K_a -values to identify it.

The mystery acid is: <u>HCN</u> (hydrocyanic acid)