April 22, 2002

≻Exam #3

- √ Solution Key is now online
- ✓ Graded exams will be returned later this week

≻Kinetics

✓ Assigned problems now online

✓ Labs

ALL LABS DUE NO LATER THAN:

MIDNIGHT, MAY 1st

1

The Method of Initial Rates

- \triangleright One way to determine values for m and k
- > Example: Decomposition of acetaldehyde

 CH_3CHO (g) ® CH_4 (g) + CO (g)

Rate Law: Rate = $k[CH_3CHO]^m$

Method:

➤ Measure *initial rate* for reactions having different [CH₃CHO]

Data and Data Crunching

[CH ₃ CHO]	0.10	0.20	0.30	0.40	mol/L
Initial Rate	0.18	0.72	1.6	2.9	mol/L-s

Find Order (m)

For any two data points:

$$\frac{\text{Rate}_1}{\text{Rate}_2} = \frac{\text{k}[\text{CH}_3\text{CHO}]_1^{\text{m}}}{\text{k}[\text{CH}_3\text{CHO}]_2^{\text{m}}} = (\frac{\text{CH}_3\text{CHO}}_1)^{\text{m}} (\frac{\text{CH}_3\text{CHO}}_2)^{\text{m}}$$

$$\frac{0.18}{0.72} = (0.10/0.20)^{\text{m}} \Rightarrow 1/4 = (1/2)^{\text{m}} \boxed{\textit{m} = 2}$$
How does one solve for \textit{m} ?

What about *k*?

➤ Solve for *k*:

For any data point:

Rate =
$$k[CH_3CHO]^2$$

$$k = \frac{Rate}{[CH_3CHO]^2} = \frac{0.18 \text{ mol/L-s}}{(0.10 \text{ mol/L})^2} = \frac{18. \text{ L/mol-s}}{(0.10 \text{ mol/L})^2}$$

✓ Knowing m and k, Rate at any concentration can be predicted

How does Reactant Concentration vary with Time?

Depends on the reaction order:

Integrated Rate Laws

- Zero-th Order Reactions
 - Rate is *independent* of concentration:

Rate =
$$k[A]^0 = k$$

First-Order Reactions

For the reaction: $A \rightarrow products$

Rate =
$$k[A]^1$$

Using a bit of calculus:

$$Log[A]_t = -(k/2.303)t + Log[A]_0$$

1st-Order Reaction Example

> Decomposition of hydrogen peroxide:

$$2 \text{H}_2 \text{O}_2 \text{ (I)} \rightarrow 2 \text{H}_2 \text{O (I)} + \text{O}_2 \text{ (g)}$$

m=1 k=0.0410 min-1

If we start with 0.500 mol/L H_2O_2 , what will $[H_2O_2]$ be after 10.0 min?

Plug into 1st-order integrated rate equation:

 $Log[H_2O_2]_{10 \text{ min}} = -(0.0410 \text{ min}^{-1}/2.303)(10.0 \text{ min}) + Log(0.500 \text{ M})$

 $Log[H_2O_2]_{10 \text{ min}} = -0.479$

 $[H_2O_2]_{10 \text{ min}} = \underline{0.332 \text{ mol/L}}$

7

More 1st-Order

How long will it take for $[H_2O_2]$ to drop to 0.100 M?

Solve integrated rate law for ${m t}$:

 $t = (2.303/k)Log([A]_0/[A]_t)$

Substituting and solving:

 $t = (2.303/0.0410 \text{ min}^{-1}) \text{ Log } (0.500/0.100)$

t = 39.3 minutes

Special Case

How long will it take for half of the H₂O₂ to react?

$$t = (2.303/k) Log (2.00) = 16.9 min$$

For any 1st-order reaction:

2nd-Order Reactions

For the reaction: $A \rightarrow products$

Rate = $k[A]^2$

Again, with the help of a bit of calculus:

$$1/[A]_t = kt + 1/[A]_0$$

Determining *m* and *k*

➤ Finding *m*

Which plot is linear?

[A] vs. t?
$$\rightarrow$$
 m = 0
Log[A] vs. t? \rightarrow m = 1
1/[A] vs. t? \rightarrow m = 2

\triangleright Finding k

$$m = 0 \rightarrow k = -slope$$
 ([A] vs. t plot)
 $m = 1 \rightarrow k = -2.303$ x slope (Log[A] vs. t plot)
 $m = 2 \rightarrow k = slope$ (1/[A] vs. t plot)

11

How do reactions happen?

➤ Collision Theory

Reactions take place as a result of collisions between reactants

Example:

CO (g) + NO₂ (g)
$$\rightarrow$$
 CO₂ (g) + NO (g)
Rate = k[CO][NO₂]

✓ Doubling [CO] or [NO₂] will double reaction rate

√WHY?

Doubling number of reactant species will double collision frequency