Announcements - 9/27/00

- Chapter 10: Gases
 - -start on Friday
 - -assigned problems are now available
- Demos & Quiz: Friday

1

Oxidation #: examples

- **SrBr**₂: group II, group VII
 +2 -1
- **Zn(OH)₄²⁻:** OH⁻ is -1, -2 charge for cmpd +2 -2 +1

Formal Charges

- Another way of looking at charge distribution in compounds:
 - -whereas oxidation numbers assume complete transfer electrons between atoms (ionic model)
 - -formal charges assumes complete sharing of electrons between atoms (covalent model)

Formal Charge =

#valence e⁻ -(#bonds + #nonbonding e⁻)

Formal Charges: Example

■ What is the structure of HCN?

Two choices:

$$H-C=N$$
 OR $H-N=C$

1) **H**:
$$1-(1+0) = 0$$
 2) **H**: $1-(1+0) = 0$

$$C: 4-(4+0) = 0$$

C:
$$4-(3+2) = -1$$

N:
$$5-(3+2) = 0$$

N:
$$5-(4+0) = +1$$

Structure which minimizes formal charges is preferred

Back to Redox Reactions

■ Redox reactions *change* the oxidation states of the reactants:

$$\begin{array}{c} & & \\ & \text{Reduction} \end{array}$$

$$Zn + 2H^+ \rightarrow Zn^{2+} + H_2$$

$$\begin{array}{c} & \\ & \text{Oxidation} \end{array}$$

Zn: is *oxidized* (reducing agent)

H+: is reduced (oxidizing agent)

Reox movies

5

Redox Examples

■ Combustion

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(f)$$

 $\underline{\text{C:}}$ oxidized (-4 \rightarrow +4)

 $\underline{\textbf{O}:} \text{ reduced (0} \rightarrow \text{-2)}$

Acid oxidation of a metal

2Al (s) + 6HCl (aq)
$$\rightarrow$$
 2AlCl₃ (aq) + 3H₂ (g)

Oxidation

Reduction

Solubility

■ How do we know whether a compound is soluble in water?

-we will address this from a *structural* point of view in Chem 36

Nacl dissolution movie

-for now, we need to learn Solubility Rules:

7

Solubility Rules: Goldberg

- ALL are Soluble:
 - Nitrates (NO₃-)
 - Chlorates (CIO₃-)
 - Acetates (CH₃COO⁻)
 - Sulfates (SO₄²⁻)
 - Except: BaSO₄, SrSO₄, PbSO₄ <- *insoluble* CaSO₄, Ag₂SO₄, Hg₂SO₄ <- *slightly insoluble*
 - Chlorides, Bromides and Iodides
 - Except: Ag⁺ and Hg⁺ salts <- *insoluble* Pb²⁺ Salts <- *slightly insoluble*

Solubility Rules: Goldberg, Part II

- ALL are I NSoluble:
 - Hydroxides (OH-)
 - Except: Group I A, NH₄+ and Ba²⁺ salts <- soluble Sr²⁺ and Ca²⁺ salts <- slightly soluble
 - Carbonates (CO₃²-)
 - Except: Group I A and NH₄ * salts <- soluble
 - Phosphates (PO₄³⁻)
 - Except: Group I A and NH₄ salts <- soluble
 - Sulfides (S²⁻)
 - Except: Group IA, IIA and NH₄ * salts <- soluble

NEW RULE: All Group IA and NH₄+ salts are Soluble

9

Precipitation Reactions

■ When an *insoluble* compound is formed in a reaction:

Example: Silver Nitrate + Potassium Phosphate

$$3AgNO_3(aq) + K_3PO_4(aq) \rightarrow Ag_3PO_4(s) + 3KNO_3(aq)$$
ionic precipitate ionic

$$3\mathsf{Ag^{+}}(\mathit{aq}) + 3\mathsf{NO_{3}^{-}}(\mathit{aq}) + 3\mathsf{K^{+}}(\mathit{aq}) + \mathsf{PO_{4}^{3-}}(\mathit{aq}) \rightarrow \mathsf{Ag_{3}PO_{4}}(\mathit{s}) + 3\mathsf{K^{+}}(\mathit{aq}) + 3\mathsf{NO_{3}^{-}}(\mathit{aq})$$

$$3 \text{Ag+}(aq) + 3 \text{NO}_3\text{-}(aq) + 3 \text{K+}(aq) + \text{PO}_4\text{^3-}(aq) \rightarrow \text{Ag}_3\text{PO}_4(s) + 3 \text{K+}(aq) + 3 \text{NO}_3\text{-}(aq)$$
 spectator ions

Net I onic Eqn: $3Ag^{+}(aq) + PO_4^{3-}(aq) \rightarrow Ag_3PO_4(s)$

Acid/Base? Solubility? Both!

■ Calcium Carbonate + Nitric Acid

$$CaCO_3$$
 (s) + HNO_3 (aq) \rightarrow H_2CO_3 (aq) + $Ca(NO_3)_2$ (aq) base strong acid weak acid salt

Net Ionic:

$$CaCO_3$$
 (s) + $2H^+$ (aq) $\rightarrow Ca^{2+}$ (aq) + H_2CO_3 (aq)

But, also:

$$H_2CO_3$$
 (aq) $\rightarrow H_2O$ (I) + CO_2 (g)