Chapter 5

Quantum Theory of the Hydrogen Atom

The hydrogen atom, a problem we can solve exactly, is the theoretical seed from which
our picture of molecules and complex atoms will soon sprout. The exercises in this
chapter offer a thorough workout in the basics of quantum numbers, orbital patterns, and
one-electron  energies.

Pressing the analogy first made in Chapter 4, the set opens with a review of standing
waves. See pages 130-133, R4.4, and 148-149 of PoC.

1. Only one quantum number is needed to describe a standing wave in one dimenson. A
positive integer (n=1,2, . . ., €0), this sngle vaue specifies the number of haf-wavelengths
confined between the two endpoints. There are n = 1 nodes present in a particular mode of
vibration.

2. Since an integra number of haf-wavdengths mug fit into the interva L,
n—=1 (n=1,2,...,oo)
we have the following restriction on the wavelength A:
2L

7\,=—"" (n=l,2,...,w)
n

When L = 0.72 m, as specified, the firgt five modes range in wavelength from 1.44 m
(lowest frequency, n = 1) to 0.288 m (highest frequency, n = 5):
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n An = —2n£ NODES (n=1)

! 144 0
2 0.72 !
3 0.48 2
4 0.36 3
5 0.288 4

For adrawing of these fird five Sanding waves, see Figure 51 on page 149 of PoC (ad
subdtitute the vdues L = 0.72 m and A, = 1.44/n).

3. Standing waves in one dimenson are characterized by a sngle quantum number:
n=1,2,3,....o

Each pattern of vibration contains n haf-wavdengths and n - 1 nodes.

(@ Inprinaple agring can suppart an infinite number of harmonics: # ranges from 1 to .

(b) See Fgure 51 on page 149 of PoC and take note One additiond hdf-cyde of

ogdillaion is fitted into the same space for each increment of n by one unit. The second

harmonic, for example, varies in space twice as fad as the firgd harmonic. The third
harmonic varies three times as fad as the fird. The fourth, four times And S0 on:

n FREQUENCY
| v
2 2V
3 3v
4 4v
n nv

The spatid frequency of the nth harmonicis nv.

4. A danding wave deveops when two waves traveing in opposte directions—-one
didurbance moving a vdodty # and the other a vdodty —u -intefere condructivedy to
produce a daionary patern. Confined dong a digance L are n hdf-wavdengths,

A
7=1

with the wavdength of each mode directly proportiond to L:




5 Quantum Theory of the Hydrogen Atom 121

is thus inversdy proportiond to the wavdength:
AnVn = u

Each frequency, moreover, is a multiple of some fundamenta frequency v, which itdf is
inversdy proportiond to the dring length:

u
VEV1=‘2f (n=1)

(@ We have just edablished thet the fundamenta frequency is inversdy proportiond to
the length of the dring:

u

A longer gring will vibrate a a lower fundamentd frequency. Its fundamentd
wavdength (2L) will be longer.

(b) If 2 100-cm dring has a fundamentda frequency of 440 Hz, then a 50-cm gring (half
the length) will vibrate a 830 Hz-twice as fadt.

(©) By the same reasoning, a sring of double the length (200 am) will vibrate a hdf the
fundamenta frequency, or 220 Hz.

5. Write the frequency of the nth harmonic as
Vy, = hv
and caculate the fractional change between v, + 1 and v,

Vast =V, (NH)v-nv

v, nv

_1L
-n

Then, to obtain the percentage change, multiply by 100%;

1
'n- X 100(%)
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A sample cdculation for, say, n = 4 yidds the vaue 25%:

S5v—-4v
4v

1
X1OO%:ZX1(D%:25%

The full st is digolayed below:

n % X 100%
(a) 4 25
(b) 5 20
(c) 7 14
(d) 100 1
(® 1,000,000 0.000 !

At high frequencies, the change from one standing wave to the next is relatively smal.
See Figure 5.1 for a visud comparison.

n=2 n=3

L 4

-~
L 4
F'S

FiGure 51 Sanding waves. Top: Successve modes are eesly digsinguished a low  quantum
numbers, where reldively few haf-wavelengths span the interval. The difference between n = 2 and
n = 3 for example, is clear. Wavelength decreases from L to 4L, and frequency increases accordingly.
Crests and troughs are well separated. Bottom: Going from one abitrarily high mode (n = 50) to the
next (n = 5 1), the crests and troughs lie close together and the incremental changes in frequency and
wavelength are less pronounced. For the sake of claity, the high-frequency oscillations are sampled

twice per cycle and represented here as square waves.
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From gstanding waves on a dring to the quantized solutions of Schriidinger 5 equation.
Relevant material is found in Sections 4-5, 4-6, 5-2, and 5-3 of PoC.

6. Presumably the proportiond gpacing between aomic energy levels should decrease as
the prindpd quantum number increeses. At suffidently high vaues too, we expect the
levels to blend together into a continuum—a regime where the energies are gpaced 0
closdy as to gopear unquantized.

In a hydrogen atom, for example, orbital energies are proportiond to »~ and thus
become quad-continuous a quantum numbers lower then those for dring vibraions

7. Quantum numbers of the one-dectron aom are discussed on pages 148-152 and
R5.2-R5.3 of PoC.

(@ Three quantum numbers correspond to the three goatid dimensons of a one-dectron
aom: aradid quantum number (n) and two angular quantum numbers (¢ and m,).

(b) The principd quantum number, n, fixes the energy and radius of an dectronic orbitd.
The anguar momentum (or aamuthd) guantum number, ¢, determines the shape of the
orbitd and fixes the megnitude of the dectronic angular momentum.  The megnetic
quantum numiber, m,, edablishes the orientetion of the orbital and fixes its direction in a
megnetic fidd.

(©) The prindpd guantum number n of a one-dectron orbitd is modt like the sngle
quentum number N used to destribe a danding wave. The total number of nodes in both

gydemsisequd ton ~ 1.

8. According to the uncertainty principle (Section 4-6), exact knowledge of an dectron’s
pogtion (Ax = 0) predudes any definite knowledge of its momentum (Ap = o):

ApAx>=h

If we know precisdy where the dectron is & some indant, then we have no idea where it
IS going or when it will gat there

9. A one-dectron orbitd () is a solution to the Sdhiidinger equation for a Sngle
dectron moving in the Coulomb potentid of a Ingle nudeus It represents one of the
dlowed guantum dates carying with it a catain enegy and angular momentum.

Evauated & some point in spece (X, Y, 2), the wave function y(x, y, 2) provides a
probability amplitude for finding the dectron a thet particular location. Its square,
v2(x, Y, 2), is proportiond to the probability itsdf, just as the intensity of an ordinary
wave is proportiond to its own paticular amplitude. The wave function v, d<o like a
wave, combines with other such functions and undergoes interference.
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Quantum numbers and orbitals. See pages 7148—1 52 and R5.2-R5.3 of PoC, together
with Examples 3-1 through 5-4.

10. The genera designetion is nf, where £ is assgned the code letters s (for £ = 0), p (for
¢=1),d (for £=2), F (for £=3), g (for £=4), and so forth.

SUBSHELL n /¢

@ 3 3 1
(b) 25 2 0
() 4P 4 1
d Is 1 0
G 2p 2 1

11. More of the same:

SUBSHELL n ¢
(a) 3d 3 2
(b)  4d 4 2
(c) 3s 3 0
(d) 4s 4 0
e 4 4 3

12. Similar to the two preceding exercises. Azimuthd quantum numbers ¢ =0, 1,2, 3,
4,5 ... correspond to the letters s, p, d, £, g, h . . . .

n I4 SUBSHELL
(@ 3 2 3d
b 2 1 2P
(c) 4 3 4f
(d) ] 0 1s
13. Same idea
n I SUBSHELL
(a) 2 0 28
(b) 6 5 6h
1 3P
(6) 3 0 3s




5. Quantum

Theory of the Hydrogen Atom

14. For a given value of n, the quantum number £ ranges from 0 to n = 1:

£=0,1,2,..., n-I

Each shel n therefore supports n subshdls

n / LETTER CODE
1 0 s

2 0, 1 S, P

3 0,1,2 s,p,d

4 0,1,2,3 s,p,d,f

5 0,1,2,3,4 s,p,d. /g

See pages 152-1 53 (and particularly Figure 5-3) of PoC.

15. For a given vaue of £, the quantum number m, rangesfrom -/ to +{ in steps of 1:

m,= 0, il,i2, .. 4

Each subshell supports 2/ + 1 magnetic sublevels:

SUBSHELL n

(a) Ls 1

(b) 25 2

(©) 2p 2

(d) 3s 3

(e) 3p 3
16. Smilar:

SUBSHELL n

(a) 3d 3

4s 4

(c) 4p 4

(d) 4d 4

(e af 4

—_0 = O O Y

W R~ O N

my

-101

-101

m,

-2 -1012
0
-101
-2 -1012
-3-2-10123
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17. The subsdls are digributed as follows

ls
2s 2p
3s 3p 3d

Shericdly symmetric, the angular wave function represanting an s orbitd is everywhere
positive (and condant, too). See Figure 5-9 on page 162 of PoC for a sketch.

Thep orbitals come in groups of three (m, = -1, 0, 1) , and the corresponding
angular wave functions can be combined to produce both red and complex functions-all
equivaeat in a free @aom. Chemids typicaly represent the three p orbitals as dumbbdls
dong three perpendicular axes, with each dumbbll bisected by a nodd plane. See
Fagure 5- 11 on page 166 (in which the p, and p, functions are linear combinations of
daeshaving m, = +1 and m, = -1).

The d orbitds come five to a s&. In common practice they are generdly portrayed
as four doverled patens and one “dumbbdl in a doughnut,” with nodd planes ad
phases as shown in Figure 5-12 of PoC (page 167).

18. Here we take a doser look a the three megnetic sublevels of the 3p subshell (m, =
~1,0,1). Our condusions petan equdly wel, however, to any other sat ofp orbitds in
aone-dectron aom (Wheren=2, 3, . .., ©) and indeed to any subshell £ within any sl
n(wherem,=0,£1,42,.... £f).

(@ In the absence of a magnetic fidd, the ates m, = -1, m, = 0, and m, = 1 dl have the
same enagy. Thep subshell is thresfold degenerate in the free aom.

Further, in a one-dectron atom this sngle vaue of energy is equd to tha of the 3s
and 3d subshdlls. Energy depends only on n, not £ or m, (PoC, page 155).

(b) The dectron, a charged patide, generates angular momentum and thus its own
megnetic fidd while moving about the nudeus Impogtion of an external magnetic fidd
then destroys the equivalence of the 3p, 3p,, ad 3p, orbitas The sdf-generated fidd of
an dectron interacts with the externd fidd, leading to a different energy for each of the
three quantized orientetions (m, = -1, 0, 1). The degeneracy of the p subshell is broken,
and the 3s orbitd lies lower in energy than the 3p.

(©) An orbitd sdlits further into two spin dates which devdop from an intrindc
dectronic angular momentum-and assodiated magnetic fidd-unrdaed to any overt
bodily rotation. Interacting with an externd magnetic fidd, the spin-endowed dectron

hesan “up’ date (M, = 3) and a“down” date (m, = —%). Each produces a different energy.
There ag, in dl, Sx digindt 3p enagies in a magndtic fidd:

goace (3) X spin (2) = 6 Sates
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19. Electron spin. See pages 173-176, R5.4-R5.5, and A171 of PoC.

(@ The dectron is thought to be a point partide lacking any discarnible structure and
therefore unadble to soin like a top. Quantum mechanicd “pin” produces an anomaous
megneic moment inconddent with a dasscd rotetion.

(b) The quantum number m, messures the component of pin angular momentum aong
an axis edablished by an externd magnetic fidd.

(© Bledron soin aises from an angular momentum inherant in the patide itsdf, not
dtributable to any obvious ratationd mation. The fourth quantum number gopears
naturdly in DiracC's rddividic theory of the one-dectron atom.

(d) Spin angular momentum s described by two gquantum numbers-s and m;—just as
orbitd angular momentum is described by the two andogous guantum numbers ¢ and m,.
The same rues goply: (1) The magnitude of an orbitd angular momentum (in units of
hi2m) is,J#(£ +1). The megnitude of a pin angua momentum is y/s(s+1). (2 The
component of orbitad angular momentum dong an extend fidd messures m, in units of
h2m. Smilarly, the corresponding component of goin angular momentum is m,. (3) The
dlowed vaues of m, runfrom ¢ to +¢ in sepsof 1. The dlowed vaues of mg run from
—s to +s, A0 in deps of 1.

For dectrons, where s is dways equa to 3, the component m is restricted
accordingly to the two vaues —3 and +3.

20. The quantum number £ (= 0,1, 2. ... n~ 1) mud be a pogtive integer less then n:

SUBSHELL n ¢ COMMENT
(@ 1 1 2 forbidden (¢ > n)
(b) 5d 5 2 allowed
() 5f 5 3 allowed
(d) 5h 5 5 forbidden (£ = n)
(e 6h 6 5 allowed
® 8d 8 2 allowed

21. See Exerdses 10 through 13. Subshdls are defined by n and ¢ done, nat m,:

n {  SUBSHELL

(a)
(b)

(d)
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22. Smila:
n ¢  SUBSHELL

(@) 2 0 2s

(b) 6 5 6h

© 3 1 3p

@ 3 0 3s

23. The rules are as follows
n=123,..®
£=0,1,2,..., n-l

my=0,21,%2,...,£¢

(ST

m, =%

Violaions are ated in the table bdow:

n 14 m, my COMMENT
@ 4 2 ! 0 forbidden (my # +3)
b) 2 1 2 3 forbidden (| m, | > £)
© 5 5 -2 -3 forbidden (£ = n)
@ 1 0 -1 3 forbidden (| m, | > £)
24. Smilar:
n £ m, my COMMENT
(@ 3 2 2 1 forbidden (m, # £3)
b) 6 -1 5 3 forbidden (£ < O; m; # 3)
() 3 0 4 forbidden (| m, | > £)
@ 3 3 0 - forbidden (£#0,1,2,...,n-1)

25. The totd number of nodesis n - 1, and the number of angular nodes is £:

RADIAL + ANGULAR = TorAL
n-e-1 { n-1

See Examples 5-3 and 5-4 in PoC. Nodd patterns for the fourth shell are as follows
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SUBSHELL n 14 RADIAL NODES + ANGULARNODES = TOTAL
4s 4 0 3 0 3
4P 4 1 2 1 3
4d 4 2 ! 2 3
4f 4 3 0 3 3

26. The radius of an orbitd increases as n increeses, enhancing the probahlity that the
dectron will be found father from the nudeus. A hydrogen aom therefore expands
when the dectron moves out of the ground state (n = 1). Its redid wave function perdsts
over a gregter digance from the nudeus

Energy calculations. See pages 153-1 56 and Examples 5-5 through 5-7.

27. The orbitd energies of a one-dectron a@om are quantized according to the formula
introduced on pages 153 56 of PoC:

Here the symbal n denotes the principad quantum number, and the symbal Z denotes the
atomic number (the pogtive nudear charge). The Rydberg condant, R,, corresponds to
the ionization energy of a hydrogen aom: the difference in energy between the levds
n=landn=cowhenZ=1,

For an ahitrary trangtion from an initid levd »; to afind levd ny, the difference
in energy is thus

11
AE=E;-E, = -R«,zz(—;——;)
ng n

for any one-dectron aom with aomic number Z. See Example 5-7in PoC (page R5.9).
Note in pasing, thet the full vdue of the Rydberg condart is given as

Ro= 21798741 x 107 J

inTableC-5of PoC (page A65). Like mogt of the physica condarts, it is a number
known to very high precison. Our cusomary practice, however, will be to use only three

or four digits for L-except in cases, as in this exerdse, where round-off eror proves to
be an isue

(@ Subdtitute the vaues n; = 1, ne=2, and Z = 1 to obtain AE between the ground Sate
and fird exdted orbitd of a hydrogen aom:
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. 41x 1078
_3Re 3 (21798741 x107% 3 _ 16349056 x 1018 J

=y 4

Rounded to three digits, the energy (3R.) is1.63x 107" J.

(b) To compute the wavelength associated with a photon having E = R, rearange the
Fandk-Eingen  formula

hc
E=hv= N
to isolete A:
_ke
T E
4he 466260755107 J5)(2.99792458 x 108 ms™')
T3R, 3(21798741x 107% )

=1.2150227 x 107" m=~ 122 nm

Visble light, which fals roughly in the range 400-700 nm (equivaently, 4000-7000 A),
is therefore insufficiently energetic to bring about the trangtion. The requisite energy
mus be provided by ultravidlet light-radiation with a shorter wavdength.

For additiond examples of this kind of cdculaion, see Exerdses 14 through 24 in
Chepter 4. Rdated materid is found in Section 4-4 and Example 4-5.

(©) Use the equation
Ey =—my

to cdaulae the kingtic enargy of a hdium aom. If the mass mis in kilograms and the
velocity;/ is in meters per second, then the energy  Ex gppears in joules (equivaent to
kg m* s7%):
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_ 40026 g 1000g x 6022% 105 ters = 6.647 X107 kg (per etom)

mol

v=1000ms™

E, =-—mv? = =(6.647 x 10 kg)( 1000 m s~ 'V =3323x107'

21
2

SR

This enargy is dso less—Dby afactor of 500—than the difference between the firgt and
second shdlls of hydrogen. A hdlium atom moving a 1000 m's™ does not have enough
enagy to exdte a hydrogen a&om in the ground date.

For assorted cdculations involving kingtic energy, see Exerdises 15, 16, 17, 20,
21, and 24 in Chapter 1, aswell as Exercises 23, 25, 28, 29, 33, 34, and 35 in Chapter 4.
The subject is covered on pages 30-3 1, 3940, and R1.4-R1.5 of PoC, dong with
Examples |-, 1-2, 1-64-5, and 5-6.

28. Refer back to Exerdise 27 for a brief review of energy quantization in a one-dectron
aom:

We cdculate AE, - 5 for H and then compare it with the equivdent vaue for Het.

Hydrogen (Z = 1, nj = 4, ng = 5):

AE = -R Zz(i-i)
- o0 2 2

ng n
1 1
=R, (1)’ x(gz—;;z—)
= 0.0225R, =4.90x107%J

Hdiumion (Z = 2, nj= 4, n¢ = 5):

AE =-R 22(L ——1—)
- © 2 2
ne B

- R (5]

= 4x00225R,=196x107°J
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The levels in Het+ are more widdly spaced, by afactor of 4:

29. Given the frequency of the transition,
v=6.169x 10"s™

we cdculate the corresponding photon energy:
E=hv=(6.626 10 J$6.169x10"s") = 4088x 107 J

We then insart this vaue into the energy equation for hydrogen (implicitly, Z = 1),

- 1 1
AE=E,-E,=-R,|—5 -~
f i (n? nlz)

and thereby establish a rdaionship between »; and n;:

1 1| |AE| 4088x1077]
5 -3 —l |= 55 = 01875
ng n;| Re 21799x107°J

Trid and error yidds two solutions, one for absorption (n¢ > n;) and one for emisson
(ne <m).

Absorption (n; = 2, n¢ = 4)

1 1?7
-7 =0.1875
f i :

1 1
42 2% |16 4l | =0
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Emisson (n; = 4, ne = 2)

1 1)?
“2-——2—=0.1875
£

=7~ 1¢| = 101875 = 0.1875

1_‘11

QuesTioN: A correct result, but how do we arive & it?

Aansver:  We nead take only two fase steps. (1) Absorption or emisson between
the firg and second shdls (1 2 2) yidds a magnitude 0.7500 for the difference in
1/n*: larger than 0.1875, and hence too energetic. Moreover, any other transition
invaving n = 1 will produce an even larger number. We must go on to the next s,
n =2. (2) Thetrangtion 2 2 3 yidds an abolute value of 0.1389: too smdl, but a gep
in the right direction. Our veary next choice (2 2 4) yidds 0.1875: jud right.

30. The energy of any orbitd in a one-dectron aom depends only on the quantum
number n, not £ or m,.

Thus for the 1s — 2p trangtion in hydrogen (Z= 1), we Smply cdculate AE
between ;= 1 and ns = 2:

3R, _ 3(21798741x 107 )

4 4

= 1.6349056 x 107'8 J

The assodaed wavdength follows directly from the Planck-Eingein rdaionship:
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|AE|=hv=%
A=
|AE)

_4he_ 4(66260755 x 10 J5)(2.99792458 x 10 m s”!)

3R, 3(21798741x 107 )

=12150227x 10" m ~ 122 nm

See Exadse 27 and Example 5-7 for additiond detalls Results (rounded to three digits)
ae ummaized in the table bdow:

TRANSITION n; ny  AE (Ry) AE (J) A (m) COMMENT

(a) 1Is>2p | 2 07500  163x107'®  122x107  aosorption
(b) Sf— 4d 5 4 -00225 -490x107%°  405x10% emision
(¢) 3d—> 3 o 011 242x10® 820x107  absorption
d o> 1s o | -1oo0o0 -218x10"%  911x10% emisson

Absorptive trangtions occur when the find date, n;, lies higher then the initid
date, ni. The a@om takes up energy from the dectromagnetic fidd, and AE (for the atom)
IS podtive

Emissve trangtions arise when ny < »i. Fdling from a higher date to a lower
date the aom gives up enargy to the dectromagnetic fidd. The aomic AE is negdive

Note thet our convention is to date the wavdength as apositive quartity, even if

AE happens to be negaive:

A=C

AE]

31 For cdeulaions involving Het, we use Z = 2 in the one-dectron energy formula

2 2

AE = E;-E; = -sz{i - —1—)

Compared with hydrogen (Z = 1), the energy of each trangtion is therefore four times the
vaue cdoulaed in the preceding exerdise (22 = 4):
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3 1 1
H: AE =-R ()" x| 7 -—F
ng A

2 2

Het: AE=-R_(2)*x (—1— - —I—J
ny n

The wavelengths are reduced by the same factor:

he
H: A=——
AEy|
+ he he
He™: A= =
'AE + 4|AEH|
He

Reaults are given in the following table:

TRANSITION nj ny  AE(Ry) AE (J) A (m) COMMENT

(a) Is=»>2p 1 2 30000 654x10™"® 304x10°  absorption
(b) 5f— 4d 5 4 -0.0900 -1.96x10"  101x10°® emisson
(¢) 3d—w 3 o 04444 969x107®  205x107  absorption
M o> 1s o 1 -40000 -872x10"® 228x10® emisson

32. Smilar to Examples 4-5 and 5-6. Fir, cdculate the ionization energy of hydrogen
in its ground date:

AE| o ==R,(1)" x 2

:Roo

=218x1071%J

Next, caculate the energy of an ionizing photon with a wavelength of 827 A (equd to
8.27 x 107 m):

E=hv="
=hv= N

(6.626 x 107 35)(2998 x 10 ms™")
B 827x 10 m

=240x1071% )




136 Complete  Solutions

(@ The kindic energy of the gected dectron is the difference between the photon energy
(hv) and the ground-date ionization energy of the a@om (AE| - «):

Ek = hv- AEI-)uo
=(240 -~ 2.18)x 10713 J
=0.22x107%]

=22x107""J (2 gg fig)

(b) Use the defining eguation

E, =5 mv

to obtain the veodity:

2E, [2(22x10"kgm?s?) 7 . m
9.109x 107" kg

The mass of an dectron, 9.1093897 x 10" kg, is avalable in Table C-5 of PoC (peage
A65). Note that 1 Jis equal to 1 kg m? s2.

33. Assume, contrary to fadt, that the dectron is initidly a ret-with zero vedodty and
hence zero kindic energy. We then cdculate the energy it gives up while fdling from
infinty (E = 0) “down” to the nth shdl of a hydrogen aom:

1 1 R,
M =R o 5= 5)= e

These vdues, determined soldy by the prindipd quantum number n, are independent of
the angular momentum quantum number £. 1t makes no difference whether the trangtion
taeminatesinan s, p, or d subshdl:

R,
ABas) = =7 = -218x 1083 (ls)

R
AE, ;= ~7F = -545x 1073 (25 2p)

Ao ax1011 (353539,

AEW—)3 =- 330
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Next we compute the initid kingtic energy,

E,

) — Nll--‘

(9109 10" kg)(100 x 10° ms™)* = 455 x 107 kg m? 5

=455 x 1077 J

and subtract it from AE, -, , t0 obtain the totd energy released:

(3) To 3d: AEw3 — Ex = (-2.42 -4555)~ 107 J=-6.98 x 107 J
(b) To 3p: AFw_y3 — B = (<242 -4.555)x 107°J=-6.98 x 107 ]
(€) To 35! AEwn_3 — Ex=(=2.42 -4.555)x 107 J=~-6.98 x 107°J
(d) To 2p: AE,_3 — E¢ = (=545 -4.555)x 107 J=-1.00 x 107'*J
(€) To 25: AEw_y2 — B = (=545 -4.555)X 107 J=-1.00 x 107
(f) To 1s: AEwos) — By = (-2.18 - 0456) x 1078 = -2.64 x 107*
See ds0 Example 5-6.

34. Trandgition energies for the Li?* ion (Z = 3),

7% 9R,

are nine times greater than those for the H atom:

H: AE,,, =-R, Li**: AE,,, =-9R,=-19%6x10"""J
1 9 -18
Afasy =7 Re Afasy = - Ry =490 X107 ]
— -18
A, = % AE, 5 =-Re= -218x10718 J

The kinetic energy of the free dectron, cdculated in the previous exercise, is 4555 x 107" J.
See the tabulation & the top of the next page:
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(a) To3d: AEwpy3—Ec=-218x10"J-4555%x10""J=-264%x 1078 ]
(b) TO3p: AEwy3 ~ Ex = -2.18 X108 J- 4555 x 107° J=-264 x 10718 J
(© To3s: AEwy3 ~ Ex=-2.18x 10787~ 4.555 x 107 J=-2.64x 107"* J
(d) TO2p: AEuyyy = B = -4.90 X108 J = 4555x 107" J=-536x 107" J
© To 25 AEwyy - B =-490x 10718 J-4555x 107" J=-536x 1078 J

() To 1s: AEwi= B =-196x 10717 J= 4555% 107 J=-201x 10717 J

35. Once again, we use the equetion

AE = E; - E, =—szz(~12—-i2)
ng n;

to determine the difference in energy between two detes of a hydrogen a@om (Z = 1), this
timetaking ne= 3and ni = 4, 5, 6, 7. Then, with energy in hand, we go on to cdculae the
wavdength of the emitted photon:

hc
lAE' =hv = T
hc
A=
|AE]

One sample cdculdion (n; = 4 = n = 3) should suffice.

Enagy:
11
AE =-R,Z? (—2— - —2)
he B
=—(218x 107" 7)x (1) L 19
=-{218x x(1)° x 3—2—4—2 =-106x10"" J
Wavdength:
he  (6626x10™ Js)2998x108ms™)
A= — = =187x10°m (187 pm)

|AE] 1.06x10719J
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The transitions, dl with micron wavdengths (1 pm = 107 m), fall into the infrared
portion of the dectromagnetic pectrum:

" AE(@)  A(um)

4 -106 x107® 187
5 -155x107® 128
6 -1.82x107° 109
7 -198x107° 100

36. Snce dl emissons in the Paschen saries terminate & ny = 3, the mogt energetic
trangtion isfrom »; = 0 to ns = 3:

1 1 1 1 Z?
AE = —szz(—z——zj = —szz(?_—y) =R,

ng n ©

The wavdength, in turn, is inversdy proportiond to the energy:

IAE| = hy =€
=hv= A
.
" |aE]|
For Het (Z = 2):
AE =— 41; =-969x 107 J
h 9hc
=|—ZEC—| i —=205x10"m (206nm)
ForH(Z=1):
R
AE = — —; =-242x 107" ]
he  9hc -
x:ﬁE_l:_:szoxlo’ m (820nm)

Energies in the hdium ion are four times gregter than those in the hydrogen aom.

139
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37. The least energetic trandtion in the Paschen sries (Exardse 35) isfrom n;= 4 to

ng=3
11
AE=—R°°ZZ[—————j (11
e

hc

A=—
|AE]

For Het (Z = 2):

i 11 i
AE =(218x 107 J)x (2)? x(?_-ﬁ) =4.24x 107 J

e (6.626x10'34Js)(2.998x108ms”')_469 ,
T T2 1073 =469x107 m (469 nm)

ForHZ= 1)

1
AE = —(218x107"® J)x (1)* (3;-4%) =-106x10"J

e (6626x107 Js)(2.998 x 108 ms™')

|AE] 1.06x1071°J =1.87X 10'6 m (1.87 pm)

A =

Energies in the hdium ion are four times greater than those in the hydrogen atom:
2
(ﬂl_] _ (2)2 »
zy ) \1)

38. The mogt energdtic trangtion is from n; = <o to the lowest el in the series (ng, to be
determined):

1 1 72
2
AE . = —R,Z (E—’—?)= -R, 7%‘

o0

[Trraarway
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We equate the magnitude of AEnmax to the energy carried away by the emitted photon,

R.A
hc

nf-——Z

Given awavdength of 2279 x 10™° m (or 2279 pm) when Z = 1, we determine firelly
thet the trandtion terminaes in the fifth ddl, ne= 5:

) \/ (218x 107 J)(2279 x 107 m)
=

= — v = /250 = 500
(6626 x 107 Js)(2.998 x10° ms

39. The Pfund emissons (see Exerdse 38) correspond to trandtionsfrom =6, 7, 8, . . .
to ng="5:

1 1
AE= -R_Z* ('5'2_';{]

Sugiituting Z = 4 for the nudear charge of Be**, we can compute energy and wavelength
for emisson from ay initid dae n; > 5. The sample cdculation bdow is for n; = 6:

1 1

AE = -R_(4)> X (37 _6—2) =-0.1956x (2.18x 1078 ) =-4.26x 107%J

he  (6626x107% Js)(2.998 x10°ms™)

IAZ] 426 107 J =466x107"m

A=
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Vdues for the fird four trangtions are presanted in the following table

n;

© 0 N ®

AE (J)

426 x 1077
-6.83x 107"
-850x 1071
-9.65x 107"

A (nm)

466
201
234
206

COMMENT
vighle
ultraviolet

ultraviolet
ultraviolet

40. Use the same generd method as in the preceding exerdises, here with ne = 4:

Het 2

LiZ* 3

co N O W oo N o O1

o N o O1

AE(J)

490 x 1072
757 x 107%
-9.18x 1072
-1.02x 1079

-1.96 x 107"
-303x 107"
367 x 107"
409 x 107"

441 x 107"
-6.81 x 107"
826 x 107"
920 107"

A (m)

405 x 107
262 x 10"
2.16 x 107
194 % 107

101 x 10°¢
6.56 X 107
541 x 1077
486 x 1077

450 x 1077
292 x 1077
241 x 1077
2.16 x 1077

COMMENT

infrared (4.05 pm)
infrared (2.62 pm)
infrared (2.16 pm)
infrared (194 pm)

infrared (1.0 1 pm)
vishle (656 nm)
vighle (541 nm)
vighle (486 nm)

visble (450 nm)

utravidet (292 nm)
utraviolet (241 nm)
ultraviolet (216 nm)

Snce Zz = 4 for Het, each enargy is quadrupled and each wavdength is cut by one-fourth
relative to hydrogen. The scdling factor 22 for Li?t is 9.

41. lonization drips the aom of its dectron. Accordingly, we caculae the energy ad
wavdength corresponding to an absorption from »; = 1 (the ground Sat€) to ne= oo, just &

in Example 55:

AE = —szz(

1
ng

1
n;

1

=—R 22(____
o 002 1

R Z?
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The three ionization energies scdle according to the value of  Z2, wheress the wavdengths
go as1/Z%

Z AER.)  AE() A (m) A (nm)
H ! ! 218 x10°% 911 x 107 911
Her 2 4 872 x107"® 228 x 10 228
Li¥* 3 9 196 x10°7 101 x 10 101

42. Consarvation of energy. Frd, we cdculate the energy needed to promote the
dectron from the ground date of hydrogen (n;= 1; Z = 1) tothelevd ny = 3:

, (1 1 8R.,
AE|,; =-R,(1)" x 5'2‘—-17 =79

Second, we subtract AE, -3 from the initid kinetic energy of the xenon aom (given as
E. =228x 107 ). Doing 20, we obtain the kingtic energy E; of Xe after the collision:

Ey = Ex-AE,,,

Third, we 0lve for the soeed V' conggent with this find kingtic energy:

1
Ey = '2""("')2 =E, —AE, 5

VvV =
m m

, \/Z(Ek —AE1—>3) 2(Ek ‘%Rw)

Subdtituting the mass of a xenon aom,

13129 gXe lkg
m= x 1080 g x &G%Ieﬁﬁ—aaqﬂs: 2.180x 1072 kg (per aom)

we have our answer:

o 12(228 -8 x218) x 10" kgm? s~
J ( S ) gm =18x10°ms™

V= 5
2180x 102 kg

Note that the subtraction in the numerator limits v' to two Sgnificant figures

Numerator: 2.28 - $x2.18=228-1938=0.34 (2 gg fig)
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43. lonization corresponds to a trangtion from »; = 1 (the ground gae) to ne = « (zero
potertid  energy):

1 1 11
AE =-R,Z* (-—2 - —7) = —szz(—z -—2-) =R, Z*=1
ng n o 1

Expressng the Rydberg condant in kilojoules per mole,

21798741 x107® J 6.0221367 x10* goms  1kJ
—X:

= 13127 } !
g e X 10003 3127500 x 107 kJ mol

we solve for the nudear charge (from R.Z? = |) and determine that Z = 5:

{1 328 x 10* kJ mol™
7z = -k—=\/ X o =‘\/250=5.00

131x 10 kJ mol ™

The nudeus of the formerly unknown monatomic ion, B*, contains five protons

44. The emisson sies termindes in hdl ny = n, as yet undetermined:

n; ne  Vv(s'=Hz)

n+1 n  393x10"
n+2 n  663x10"
n+3 n  856x10"

Our task isto edtablish » from just these few frequencies.
(@ We bagin with symbalic expressons for the fird two emisson enagies
1 1

ABp131n = Wyt 5 n =_RwZ2|:n_2—m:| (ni =n+l, n; =h)

1 1
AEn+2-—>n :hvn+2—)n =_Roozzl:n_2_(n+2)2:| (ni =n+2: ng =n)

and use them to obtain the ratio of frequendes

Vorion n? "(n+1)—2
\Y

n+2 > n - n _(n+2)—2
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Then, comparing the possble theoreticd ratios (calculated for n = 1,2, 3, . . ) with the
expaimentaly determined ratio of 0.593,

Vn+l—)n 3.93)( 1014 S—]

=0.593
Vaiz o p = 663x10M 7!

we eventudly arive a n by trid and eror:

Vn+l ->n

V2 5n

! 0.844

2 0.741

3 0.684

4 0.648

5 0.624

6 0.606
=17 0593 «

The emissons taminae in the seventh dl, n = 7.

(b) The trandtion in quedionfourth in the siesis from n; = 11 to ny = 7. We know
further, from Exadse 43, that Z = 5. All that remans is to subditute the numbers

Energy:
1 1
AE= —szz(—T - —2)
ng m
1 1
=—{218x107"% J)x (5) (———)
“( X )x() S CTARTE
=-662x107"J
Frequency:
IAE] 662 %107 ] 4 -1
V=0 T esaex10 5 a0 10T
Wavdength:

he  (6626x 107 Js)(2.998x 10 ms™)

7
|AE] 662x10"° J =300x10"m

A=




146 Complete Solutions

45. We know, from Example 5-5 in PoC, that the ionization energy for a one-dectron
aom depends soldy on a postive integer, the nudear charge Z:

1= RoZ?  (Z=1,2,3,..)
Vélues of | are thus limited to R., (When Z = 1), 4R.. (When Z = 2), 9R,, (When Z = 3), ad
90 forth.
Accordingly, we must determine whether
1= 3.28 x 10° kJ mol™
can medt this requirement for some integrd veue of Z;

7 ) 328x10°kImol™ ?
2= =250=1
R,  131x10°kJ mol™ 4216,

Our answer is no: Z2 = 2,50 does not beong to the seriest, 4, 9, 16, . .., ad

Z=+250=158

proves nat to be an integer. The a@om contains more than one dectron.
Note thet this cdculaion is vdid only if 7 and R, ae expressed in the same units
See Exercise 43 for the converson of R, from joules per atom into kilgjoules per mole




