Chapter 10

Macroscopic to Microscopic-Gases and Kinetic Theory

Exercises in Chapter 10 follow the two-part division of the white pages, establishing first
the macroscopic foundations of the gas laws and then seeking a microscopic explanation.
The resulting statistical theory, an inspired exploitation of ignorance, treats the gas as an
enormously large collection of point particles in random motion. This reconciliation of
chance and inevitability will be echoed Jater in Chapter /4, when we identify entropy as
the datistical driving force in all chemical processes.

The idealized nature of an ideal gas-its absence of interparticle interactions, its
eradication of all chemical distinctions, its restriction to low densities-is implicit here
throughout, acknowledged as a small price to pay for the universality of this simple

model. “Real " gases, in which particles clearly do interact and clearly do take up space,
appear in due course, in the very next chapter: And there, with the assumptions of the
ideal gas relaxed, the intermolecular interactions introduced earlier in Chapter 9 are
shown to engineer the gas-liquidphase transition. That change in state, in turn, gives us
a prototypical example of dynamic equilibrium, which leads us into a three-chapter
sequence on equilibrium and thermodynamics (Chapters 12 through 14).

The opening problems deal with the macroscopic variables of pressure and temperature,
emphasizing basic characteristics andprovidingpractice in dimensional analysis. Soon
after, beginning in Exercise /1, the focus turns to the gas laws themselves and eventually
to the microscopic justifications of the kinetic theory

1. Pressure is the force exerted per unit area. The greater the force and the smdler the
aea, the higher the pressure. See PoC, pages 353-355 and 370-374.

(@) Each object has the same mass (1 kg) and hence the same weight in a locd
gravitational field. Since the weight arises from the gravitationa force exerted on the
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mass, the body with the smaller area on its bottom side-the smaler “footprint”—
produces the greater pressure:

Object A:  Area=100cm x 100 cm=1 mx 1 m= 1 m’
Object B: Area= 1000 cm x 100 cm=10mx 1 m =10 m’

Object A digtributes its 1 kilogram over 1 square meter, whereas object B distributes the
same 1 kilogram over 10 square meters. The pressure generated by A is higher.

(b) Given the mass (m), area (A), and acceleration due to gravity (g), we obtain the
pressure  directly:

force mg

PareaA

The pressure from object A is 9.81 newtons per square meter (assuming three significant
figures):

| kg x 981 ms™
P, = gl 5 =98N m?=08!Pa
m

Acting over a tenfold greater area, object B imposes one-tenth the pressure of A:

_ 1kgx 98l ms™

= 0.98 2=
: T LN m™ =091 Pa

Recal from Chapter 1 (pages 18-20) that the S unit of force, the newton, is derived from
Newton's second law:

Force = mass x acceleration ~ kg ms™ = N

2. Determined only by mass and gravitationa acceleration, the force F developed in each
orientation is the same:

F=mg=1kgx9.81 ms?=98IN

The corresponding pressure, however, depends on area

x|
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Taking orientation (a), for instance, we find that the fixed force of 9.81 N is
distributed over an area of 10 m* to produce a pressure of 0.98 1 Pa

A=1000cm x 100 cm=10m x | m= 10 m’

F 9.81 N
P=—==——7 = 0981 Pa
A 10m’

Results for al three orientations are calculated below to three significant figures
(consistent with the stated value of Q):

DIMENSIONS OF BASE (Cm X cm)  AREA (mz) PrResSURE  (Pa)
(a) 1000 x 100 10 0.98!
(b) 1000 x 10 ! 9.81
(c) 100 x 10 0.1 98.1

3. Atmospheric pressure denotes the force imposed on the earth’s surface by a column of
ar, measured per unit area The column, filled with molecules in motion, extends from
the ground up to outer space.

To say that “amospheric pressure is 101,325 pascals™ is to say that the molecules
contained in this column exert a net force of 101,325 newtons on | square meter of
ground.

4. We are given the pressure exerted by a circular column of diameter 2r and area nr,

F ) .
P ok 101325 x 10° Pa = 10135 x 10° N m™

2r = 100 cm

2
- J = 7(5.00 x107 m)’

A=qnr-= n().500 cm X 100 om

from which we caculate the associated force
F=PA= (10135 x 10°N m (5004 107 n)* = 7.96 N

5. Firdt, determine that a mass of 1 .00 kilogran has a weight of 9.81 newtons:

F=mg=100kgx 9.8/ ms~ =98 kgms~>=09.8N
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From the information given in the problem,

MASS FORCE
1.00kg=2211b

we know aso that 9.81 N (the force arising from 1 kg) is equa to 2.21 Ib.
With that, we use the unit-factor method to convert newtons into pounds and

square meters into square inches:

) INm™2 2211b Im 254cm
1.01325 CPax——m— -
X10mPax = = X o IN * Yo0em X in

2
) =147 1b in~?

6. Outside the tire, the air exerts a pressure of 14.7 Ib in~2 pressing inward (see previous
exercise). Inside the tire, the compressed air must exert a balancing pressure of 14.7 Ib in™
plus a net pressure of 30.0 Ib in pressing outward. The total pressure inside the tire is
therefore 44.7 Ib in:

147 1bin2 +3001b in? = 447 Ib in™>

7. A column of mercury, confined to an inverted tube sealed on one end, adjusts its
height when an opposing column of ar presses down on the liquid outside. With a
vacuum space above it, the mercury reaches a level sufficient to balance the pressure

imposed by the air. At | am and 0°C, the increase in height is 760 millimeters.

The height thus attained is orders of magnitude less than the many miles of air
overhead, because liquid mercury (136 ¢ cm'3) is far more dense than the mixed gases
that make up the amosphere (~ 00013 g cm™ a STP). See the next exercise

8. Use the equation
P = pgh

derived in the problem, inserting the following numerica values to solve for the
density p:

P = 101325 x 10° Pa (pressure)

g =98l ms? (aceleration due to gravity)

h = 0760 m (change in height)
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The result is 136 g cm™:

P
=2

10135 x 10° kg m™' s
"~ @81m s 0760 m)

3
1000
2o ] X =2 = 136 g cm™

=13 x10* kg m~° x(
9 m X 100 em kg

Note that the newton and pascal are straightforwardly expressed in base Sl units of mass,
length, and time:

IN=1kgms™
l1Pa=1Nm7?= (l kg m s_z)(m_z) =lkgm's™
9. Use the equation

P = pgh

developed in the previous exercise to solve for h, the height of the barometric column:

h=e—
Pg

Expressing p, P, and g in base Sl units of mass (kg), length (m), and time (9),

100g ImL [Ii}Ocm)3 lkg _ ; B
p_-mL§ C-m3x xlooog-l.OOxlo kg m

m

101325x10° P a INm?2lkgms™

P =100 am x = 1.01325x 10°kg m™' s~
atm Pa

g=98l ms™
we have only to convert findly from meters into feet:

P 1.01325 x 10° kg m™' s 100 cm  lin 1 ft
- = x x x -
Pg (100X 10°kgm~f981ms?)" m ~ 254 cm12in

=39 fi
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10. The relevant conversion factors are between pascals and atmospheres and between
atmospheres and torr:

| 01325 x10° Pa= 1 am = 760 torr (definition)

760 torr

(a) 08 16 am x = 620. torr

(b) 712.3 torr x = 09372 am

at
760 torr

1931 lam 1.01325x10° Pa  1kPa
(o) T3t X e © am 1000 Pa

= 94.97 kPa

1.01325x10° Pa  1kPa
X
atm 1000 Pa

(d) 2432 am x = 2464 kPa

| atm
(e) 7659.1 Pa x =— = 0.075589 atm
1.01325 x 10° Pa

1 am 760 torr
(f) 7659.1 Pa x 5 = 57.448 torr
1.01325 x 10 Pa atm

The macroscopic formulation of Boyle's law is discussed on pages 355-362 of PoC and
illustrated in Examples 1 O-| and | O-2.

11. Boyle's law states that
P\V,= Psz (flxed n, T)

and hence

P
VZ:VI?
2

We are given the following data
Py=1atm V=1L

(@ The gas is compressed isothermaly into a smaler volume a higher pressure,
P> = 10 am. A 1 O-fold increase in pressure causes a 1 O-fold decrease in volume:
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P
V=V g =1Lx =01l

(b) Smilar, with P, = 100 atm. A 100-fold increase in pressure causes a 100-fold
decrease in  volume:

V. Vﬂ 1L latm
2= p, T 7100 atm

=001 L

(c) The gas expands into a larger volume when pressure is reduced to P, = 01 am.
The 1 O-fold decrease in pressure causes a 1 O-fold increase in volume:

e 1 atm
V2=Vl?;=1L%_l - =10L

(d) Smilar, with P, = 001 am. A 100-fold decrease in pressure causes a 100-fold
increase in  volume:

V—Vi—lb4
2= ]PZ_

=100L
001 am

12. Boyle's law applies, since temperature is constant (T = 273 K at STP) and the amount
of gas is constant (n = 1 mol):

P1V|:P2V2 (flxed n, T)

Given vaues of three variahles,

P, =1 am = 760 torr V=224 L
P, = 616 torr V=7

we solve for the fourth:

V—VP'—224L 760 torr
T

Note the subdtitution of 760 torr for 1 am (P)), necessary for dimensional consistency if
P, is stated in torr. Equally acceptable would be to use P, = 1 am while converting P,
into atmospheres as well:

= 0.8 11 atm

P, = 616 L dm
2" torr X760 torr
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13. Boyle's law is again applicable, since both the amount of gas and the temperature
remain unchanged:

P\V\= PVy  (fixed n, T)

Given the two volumes,

V) =4351 mL Vy =172.9 mL
we solve for the ratio of pressures:

=-L= = 2516
P "V, 1729mL

The pressure is increased by a factor of approximately 2.5, in inverse proportion to the
fractional change in volume. If we squeeze the gas, it occupies less space.

14. Ancther application of Boyle's law, similar to the preceding exercise. Given three of
the pressure-volume variables,

P, = 1.0 atm Vi=1.0L
P, = 54.6 atm V=7

we solve for the fourth:

PV,= PV, (fixedn,T)

1.0 atm
54.6 atm

P
VZ:Vl}izl.OLx = 0,018 L

See pages 362-365 and Example / O-3 in PoC for relevant material on the Kelvin scale
and Charles s law. Temperature conversions are also mentioned on page 32 and in
Table C-4 of Appendix C (page AG4).

15. Use the relationships

Ty = LIS—(IC}-F 273.15 K

1°C
_rc

te = T (T = 2B15 K)

to convert between temperature in kelvins (Tk) and temperature in degrees Celsius (fc).
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The two scales differ in thelr zero points, but the magnitude of a degree is the same in each.
The number of dedmd places is determined by the least significant digit:

(@) fc = 0.0°C: Tk = (0.0 + 27315 K = 2732 K
(b) Tx = 0 K: fe = (0 - 273.15)°C = -2713C
() 7k = 3 5B K: fc = (381575 - 273.15)°C = 42.60°C

(d) 1c = -123.6°C:  Ty= (-123.6 + 273.15) K = 1496 K

16. The Celsius and Fahrenheit scales differ both in their zero points and in their
definition of a degree:

9°F .
te = 50(;(’6)*32 F

Zero on the Celsius scale (the freezing point of water) corresponds to 32°F, and the
Celsius degree is larger than the Fahrenheit degree by a factor of %

9

(a) tc = 342.45°C: tp = [5(342.45) + 32} °F =648.41°F
5

(b) 1r = 98.6°F: e = 9 (986 — 32" C=37.0" C (body temperature)
9 [+] (o]

(€) fc = -10.6°C: te = [5(— 10.6) +32I F=12.9°F

(-40.0-32)°C=-400°C

O |

(d) s = —40.0°F: te =

The two scales coincide at -40 degrees.
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17. Chales's law is vahid at constant pressure and amount:

v,
—L=-2 (fixed n, P)

Given two temperatures and the initid volume,

Vi=100L  T,=(0+273.15)K=273K
Vy=? T, = (50 + 27315 K = 23K

we solve for the fina volume

T 223K
Vv, =V, T C 100 Lx === = 0817L

A fixed amount of gas shrinks in order to maintain a constant pressure as the temperature
fals.

Remember adways to use absolute temperature (K) when solving these gaslaw
problems, never Celsius or Fahrenheit temperatures. The conversion from °C to K is
shown explicitly above.

18. A fixed amount of gas (here, one mole) obeys Charles's law when its volume is
changed under constant pressure:

n .
— =—=(fixedn, P
77T ( n, P)

Told that the volume doubles,

and that the constant-pressure process begins at STP,
Pi=latm T,=273K

we solve for the final temperature. Ts:
Vs
T =TlvV—=273Kx2=546K
|

The volume scales in direct proportion to the absolute (Kelvin) temperature.
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19, The key words “fixed amount” and “constant pressure” tell us, once again, to
implement Charles's law:

1 2 H
—_—— = f ed ,P
=7 (fixed n, P)

Converting temperature from °C into K,

V=2 T, = (400 + 273.15) K = 673 K
V=238 L T,= (500 + 27315 K = 773 K

we determine the origind volume:

v=y o oagl «OBK
R R

=207L

The gas expands upon heating.

20. Use the same method as in the preceding exercise:

——ﬁ (fixed n, P)
=7 ,

T 400
V,=V,—-= 344 cm’x £ 459 cm’

2Ty 300 K

A fixed amount of gas shrinks in volume as the temperature decreases.

255

Avogadro 5 law, implicit in the next group of exercises, states that equal volumes of gases

contain equal numbers ofparticles at constant pressure and temperature (PoC, pages

365-366).

All of the individual gas laws-Boyle s law, Charles s law, Avogadro s law-come
together in the ideal gas equation of state, PV = »nR7 For discussion and sample
problems, see pages 366-369 and also Examples /0-4 through | O-7.
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21. The equation of state
PV=nRT

holds for any gas obeying the ided gas law, regardless of its particular chemical makeup,
Solving for the number of moles and particles in 224 L a STP,

PV (L00 atm)(224 L)
"% RT (008206 am L mol™ K~')273 K)

6.02 x 10 particles

= 100 ma x
mol

= 602 x 10 particles

we thereby confirm the computation done on page 367 of PoC: One mole of any idedl
gas occupies 224 L a STP.

() 22.4 L CO; = 6.02 x10% moleculesCO,
(b) 22.4 L N, = 6.02 x 10% molecules N,
(c) 22.4 L 0, = 6.02 x 10% molecules 0,

602 x 10® molecules (mostly N, and Q,, with smal amounts of Ar,
CO,, and other substances)

@ 24 L ar

22. We can aways use PV = nRT to solve for n, the number of moles:

P

n= =

RT

<

A number of shortcuts, however, can smplify or eiminate most of the explicit numerica
cdculations, as demonstrated below.

(@ Since one mole of any idead gas occupies 224 L a STP, we expect to find
602 x 10 aoms of helium under these same conditions. See page 367 of PoC and aso
Execse 2 1

(b) The pressure is doubled (from | .00 am to 2.00 arn), but the temperature remains the
same (273 K):
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PV (2.00 atm)(224L)
RT "~ (0.08206 atm L mol™ K™')(273 K)

n=

6,02 23 goms
=2.00 mol x x 10 - 120 x 10%* a@oms

mol

An aternative method is smply to use the result “1 .00 mol = 224 L a STP" and apply
correction factors for nonstandard temperature and pressure.

1. Nonstandard temperature: P = 1 am, V = 24 L, T # 273 K. With pressure
and volume fixed, the number of moles goes up and down in inverse
proportion to the temperature:

PV
nT = e constant  (fixed P, V)

At higher temperatures, the gas laws demand that fewer particles occupy the
same volume a the same pressure. At lower temperatures, more particles are
needed to maintain standard pressure and volume.

2. Nonstandard pressure: P =] am, V =224 L, T = 273 K. At fixed volume and
temperature, the number of moles scales in direct proportion to the pressure:

n .
P RT constant  (fixed V, 7))

If P is greater than 1 atm, then a larger quantity of matter (n > 1 mol) must be
compressed into the same 224 L at 273 K. If P is less than 1 am, then p is
less than 1 mol as well.

Thus at 273 K and 2.00 am-higher than standard pressure-we have only to correct the
gtandard amount (1 .00 mol) by a pressure ratio greater than 1:

f \

\

\
x'/ \\

value at STP and 224 L value at 2.00 atm and 273 K

correction for increased pressure

Either way, we arive a the same result-but with the shortcut we avoid explicit use of
the universal gas constant, R.
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(c) Similar. If 1 .00 mol occupies 224 L a STP (P =1.00 am, T =273 K), then only
0500 mol can occupy the same 224 L a haf the pressure (0.500 amy:

n = 0.500 mol =3.01x 10* atoms
Alternatively, we may solve the equation

PV
n=

RT

to get the same result. Substitute the values P = 0.500 am, V = 224 L, T = 273 K, and
R = 0.08206 atm L mol™' K™'.

(d) At temperatures higher than standard, the gas would normaly expand into a larger
volume. Prevented from doing so, the system must fill the fixed volume of 224 L with

less than one mole of substance:

273K 2
1.00 mol x = 0.500 mol = 3.01 x 10~ atoms

546 K

The correction factor has a value less than 1.

() The same method yields n = 2.00 mol when the temperature is cut to haf its standard
value. Now the correction factor is greater than 1.

273K
1.00 mol x = 2.00 mol = 1.20 x 10** atoms

1365 K

23. The same reasoning applies both here and in Exercise 22. Given vaues of P, V, and
T, we can solve the equation

PV=nRT
for the number of moles (n) and thence the number of particles (N):

PV _ o
n=or  (R=008206amL mol” K™

6.02 x 107 particles
mol

N =nN, =nx (No = Avogadro' s number)
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Or, if we choose, we may begin with the molar volume
241 =100md =60x1 0% paticles & STP (P =1.00dm, T=273K)

and apply correction factors to transform the standard state (P, ¥y, 7}, ni) into the actual
state (P, Vs, T2, m):

Py=100am Vi =24L T\= 273K n=1.00 mol

PZ VZ Tl
n2=an = X = X -
4 " T

Each of the correction factors is derived from the ided gas law, PV = nRT. conveniently
expressed in the following form:

B _ 5

mT, — nT

Consider three cases:

1. At constant volume and temperature, the amount of gas is directly proportiona
to pressure:

\%

T = constant  (fixed V, 7)

n

5=
For pressures P, greater than 1 .00 atm, the ratio P,/P, is greater than 1. For
pressures less than 1 .00 atm, the ratio is less than 1.

2. At constant pressure and temperature, the number of moles is directly
proportiona  to  volume:

n P
—= — = fi P, T)
7= RT constant  (fixed P,

For volumes J; greater than 224 L, the ratio V>/V) is greater than 1. For

volumes less than 224 L, the ratio is less than 1.

3. At constant pressure and volume, the amount of gas is inversely proportional to
temperature:

nt = % = constant (fixed P, V)

For temperatures 75 greater than 273 K, the ratio 7/75 is less than 1. For
temperatures less than 273 K, the ratio is greater than 1.
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Note that the calculations required in this exercise are smpler than in the generd case,
dnce we need only compare a nonstandard volume, V5, with the standard molar volume
of 224 L. Pressure and temperature remain fixed at thelr standard vaues of 1 .00 atm and
273 K, respectively. The key expresson then reduces to

2
n=nX *-
2

See d BExange 1 O4 in PoC (beginning on page R1038).

@ Knowingthet n =1 .00 md ad V=224 L & STP (P=1.00 am, T =273 K), we
have or aswve automdicdly. All ided gesss beéhave the same way:

1.00md =602 x 10* moeies CO

For confirmation, subditute P, V, ad T expliatly into the ided ges equetion and solve
for n, the numbe of modes

PV (100 atm)(22.4 D
" RT  (0.08206 atm L mol™ K~'}273 K)

= 1.00 mol

(b) A vdume of 448 L oontans exadly doudle the dandard amount & STP.

v, 44.8 L
= -=1 X
n, n]xVI 0Omd AT

= 2.00 mol

200 ma = 120 x 10** mdenues CO

© If avdume of 224 L contans 1 .00 md a STP, then avdume of 11.2 L contans
exadly hdf the number of maes under the same conditions

n, X 4. 1.00 mol e L 0500 mol
ny, = —c . X o, T, -
=Y 2 4L mo

0500 md = 301 x 10* mdeues CO

24. Fug in the numbas and olve

PV _ (L00atm)(224 L)

_- V- - -1 -l
T T Q00 mol)273 K ooetdm L mol T K

The result is accurate to three ggnificat figures
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25. A draghtforward application of the unit-factor method.

(@ Convert amospheres into torr:

0.0821 atm L 760 torr
R= X

= 62. 'K
mol K atm 624 torr L mol " K

(b) Convert atmospheres into pascals and liters into cubic meters:

_0.08206 atm L 1.01325 x 10° Pa 1000 cm’ ( I'm ]3
- mol K atm L \100cm
=8.31Pam’mol 'K™ (3 sg fig)

Note that we carry along a fourth digit in R before rounding off at the end.

(c) Since the pascal is defined as 1 newton per square meter,
1Pa=1Nm™

the factor of pressure x volume in (b) has equivalent units of joules:.
Pam’=Nm”?m’=Nm=]

The numerical value of R is identical to that calculated just above:

R=831J mol™ K!

26. Given P, T, and n, we use the ideal gas equation of state (PV= nRT) to solve for V:

y - "RT
P

(@) Make sure that the units of P, V, 7, and R are consistent. Here we need to convert

torr into atmospheres and degrees Celsius into kelvins:

P = 589.1 torr x = 0.7751 a@m

m
760 torr
T=(3 124+ 27315 K =586 K
n =328 ma

, _nRT _ (328 mol 0.08206 atm L mol ™ K~ }(5856 K) %
P 0.7751 atm )

3L

261



262 Complete  Solutions

(b) The pressure of any idea gas,

nRT,
N

remains the same if both temperature and volume are halved:

_ nR(T, [2) nRT,
ERA e

27. Use the relationship

P P
-2 (fixedn,V)
L o

while remembering to convert temperatures from degrees Fahrenheit into kelvins:

°F °C K

) ) )
P, = 1.00 atm T, = 400°F = 3 (400 — 32)°C = (204.44 + 273.15) K = 477.6 K
Py=? T = 800°F = 3 (800 - 32)°C = (42667 + 27315 K = 6998 K

With sufficient data in hand, we then solve for P;:

P Px 2= 100 dm xS = 147 am
R T

Pressure increases n direct proportion to the absolute temperature, not the Celsius
temperature and not the Fahrenheit temperature. Measured in degrees Fahrenheit, 75 is
twice the vaue of 7). Measured in kelvins, however-the only temperature scale that is
relevant to these problemsthe increase is only 47%.

28. Use the ided gas law, PV= nRT.
(@ Given the pressure, volume, and temperature,
P=29%4 am V= 125L T=2982K

we solve draightforwardly for n:
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PV (2.944 am)(12.56 L)
RT ~ (008206 @m L mol™ K™')(2982 K)

n= = 1511 mol
(b) The temperature of any idea gas,

PV,

'T R
is halved if the volume is halved at constant pressure:

L _POV) L YT,
27 pyR T 2nR 2

Exercises 29 through 32 deal with Dalton s law ofpartial pressures, described on
pages 368-369 of PoC. See also Example 1 O-7, beginning on page R/ 0. Il.

29. Before N, is added, we know that the vessel contains 1 .00 mol O,. The stated
volume of 224 L happens to be the molar volume of any ided gas a STP, as shown on
page 367 of PoC and demonstrated further in Exercises 21 through 24.

Subsequent addition of 1 .00 mol N, therefore gives us a total of 2.00 mol gas
paticles a a temperature of 405 K,

mot = 200 mol  T=405K V=2241L

and we have enough information to solve for the new pressure:

PV = nmRT
2.00 mol)(0.08206 atm L mol™ K~')(405 K
P= anRT ( mo)( 22m4 1 )( ) - 2.97 atm

30. For a review of limiting reactant, see pages 69-71 in PoC and dso Example 2-7
(beginning on page R2.15). Exercises 44 through 47 in Chapter 2 provide additional
practice in  determining  stoichiometric  limits.

(@ Firgt, caculate the molar amounts of CH and Oy:

160.g CH, x —19 CH._ _ 997 mol cH
8- X g 0a3 g CH, ’

480. g 0, x —mo

1 = 15.0 mol O,
31.998

O _—
§ 0,
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The avalable 150 moles of oxygen react completely with 7.50 moles of methane,

I mol CH,

150 mol 02 X m

= 7.50 mol CH,

producing 7.50 moles of carbon dioxide and 150 moles of water:

CH, + 20, — CO, + 2HO

T T T ?

7.50 mol 15.0 mol 7.50 mol 15.0 mol

A totd of 247 mol CHs remains unreacted, left over from the 9.97 mol present at the
start. All of the oxygen is consumed.

Oxygen, which reacts 2. 1 with methane, is therefore the limiting reactant.
Methane is present in excess.

(b) See above: 750 mol CO, and 150 mol H,O are produced in a stoichiometric reaction
between 750 mol CHs and 15.0 mol O,.

(c) Ddton's law of partial pressures alows us to treat the different molecules as generic
particles. Each mole of particles-regardless of chemical identity-contributes equally to
the total amount:

ntot = nCH4 + nCOz + nHzO

247 mol + 750 mol + 150 mol
24.97 mol

Given the volume and temperature,
v=1.00 L T= (125 + 27315 K = 38 K

we then determine the collective pressure of the gaseous mixture:

n RT (2497 mol)(0.08206 atm L mol™ K~')(398 K)

D
P= Vv 1.00 L

= 816 atm

Note that we carry aong one extra digit in ny, before rounding off finaly to three
sgnificant ~ figures.
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31. Don't be fooled by the equa gram amounts. Calculate, instead, the total number of
moles,

Nt = nCOZ + nHzO + Neyy,

200gco, x 1mlCO, +200gH,0x ImolH,O
44.010 g co, 18.0159 H,0

1 mol CH,

+200 g CH, X————
09 CH X 5023 g o,

0.28113 mol
and then use the ideal gas equation to establish the temperature:

P=120am v=100L n, = 028 113 mol (before round-off)

PV (100 atm)(1.00 L)
T=" - o= 438K
Mo R (028 113 mol){0.08206 @m L mol™ K™')

To avoid round-off error, we retain two nonsignificant digits in the intermediate
value p,y,.

32. Another application of Dalton's law of partia pressures. For additional practice with
mole fractions, see Exercises 25 through 28 in Chapter 9.

(@ From the known totd pressure of 117 am,

Py = PNZ + Py =117 am
we determine the partid pressure of He and the mole fractions of both N, and He:

Py - P,

tot

- PNz = 117 @m = 1.00 am = 0.17 am

P 1.00 atm
Xy, =—%= = 0.855 (0.8547 before round-off)
2 Pg 117 am

p
X = P’:}: =1- XNJ = 0145 (01453 before round-off)
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(b) With values of Pror, ¥, and T in hand,
P =117am V=1.00L T=285K

we first caculate the total number of moles, ny, by solving the ideal gas equation:
P,V =ny RT

_ RV _ (L17 atm)(100 L)
“ " RT  (0.08206 am L mol™ K™')(285K)

= 0.0500 mol

The amount of each component then follows directly from the definition of mole fraction:

My = Xpy Mg = 08547 x 00600 mol = 00427 mal N,
Nie = Xpelto, = 01453 X 00500 mol = 00073 mol He

The find results are significant through the fourth decima place.

Calculations involving molar density and molar mass are described on page 367 of PoC
and demonstrated numerically in Examples 1 O-5 and | O-6 (beginning on page R 0.10).

33. Given the pressure and temperature,
P = 2.50 atm T = (100 + 27315 K = 2632 K
we solve for the molar density (p = n/P):

PV = nRT

n P 2.50 atm 0.116 mol L
=== = . mo
V" RT ~ (0.08206 atm L mol ™K™' 2632 K)

3. Let myy denote the total mass of Cl; gas (in grams), and let 7% denote its molar mass
(70.906 g mol™):

M _PV

m  RT

Solving for myy, we have our answer:

| atm

70.906 g Cl, mol™')[ 976 torr x—————B.00 L
( J mo )( 760 torr )

mo = = = 103 C|,
“ RT (008206 @m L mol™ K")(48.6 + 21315 K ’
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35. We write the number of moles as

Mo PV
m  RT

n=

where my,; represents the total mass of the sample (in grams) and 7% is the molar mass (in
grams per mole). We then rearrange the equation to isolate 7s:

?n_mmRT_Q14Q®0wmsmmme”K*Xm3K)

_ - =320g mol™!
PV (L00 atm)(150 L) :
The diatomic gas, X, is oxygen: O,, with a standard molar mass of 32.00 g mol™".

36. Use the same method as in the previous exercise to compute the molar mass:

mo RT _ (34.84 g)(0.08206 atm L mol 'K~ {273 K)
2% (L00 atm)(17.7 L)

=441gmol™

Next, determine the empirical formula from the elemental compostion by mass.
Assume 100 grams:

8l.79gC Lmol € mol © = 6.80 mol C

0 X12.011gc_ 0 mo
183 g H 1m—0|H‘182m0|H 18.16 bef d-off
39 X1.00794gH_ . (18.16 before round-off)

Reduced to smallest integers, the molar ratio
Cos0His 16 = CjoH267 = C3Hg

yields an empiricd formula of C;Hg and a formula weight of 441 g. The molecular
formula is therefore C;Hg, consistent with the molar mass calculated above,

We turn now to the kinetic theory of the ideal gas, covered in Section | O-3 of PoC. See
Examples 1 O-8 through 1 0-// for sample problems.

37. The totd trandational kinetic energy of an ideal gas (excluding vibrational, rotationa,
or any other degrees of freedom) is proportiona only to temperature and amount:

a

&zéwr
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The value per mole is the same for each gas a a given temperature:

3 3
E,(150K) = ZnRT = 5(1.00 mol)(83 145 x 107 kJ mol™ K™')(150 K) = 187 kJ

3 3
E, (300 K) = TnRT = 5(1.00 mol)(83 145 x 1 07 kJ mol™ K™")}(300 K) = 374 kJ

2

3
E(450K)=>nRT=>

(100 mol (83145107 kI mol ™ K }(450 K) = 5.61kJ

So long as we maintain that our gas is “ideal,” we treat it as a collection of point particles
with no digtinctive chemical identity:

TOTAL TRANSLATIONAL KINETIC ENERGY (kJ mol"l)

150K 300 K 450 K
(a) H, 1.87 3.74 5.61
(b) He 1.87 3.74 5.61
(¢) Ne 1.87 3.74 5.61
(d) Ar 1.87 3.74 5.61

See pages 369-376 in PoC and aso Examples 10-8 and 10-9 (starting on page R1 0.12).

38. Use the same method as in the previous exercise, this time explicitly calculating the
number of moles (n) corresponding to each mass in grams.

Ek = nRT

N | W

Teke, for example, a sample containing 1.008 g H,:

3 1 mol
E, (150K) = %(1.008 gH, x i, j(8.3145 x 107 kJ mol ™ K")(lso K)
2

2016 g H

= $0.5000 mol)(8.3145 x 10~ kJ mol ™' K™')(150 K)

=0.935 kJ
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Vaues below are reported to three significant figures:

ToTAL TRANSLATIONAL KINETIC ENERGY (kJ)
n (mol) 150K 300 K 450 K

(@) 05000 0935 1.87 2.81
(b) 1000 1.87 3.74 5.61
(¢)  2.000 3.74 7.48 11.2
(d)  3.000 5.61 11.2 16.8
(e 4.000 7.48 15.0 22.4

39. Take a system of N particles, and express the number of moles as a fraction of
Avogadro’s  number, Np:

The trandationa kinetic energy for n moles
3
2

then becomes

L3
Ak_2

[N]RT 3\’(£]T Ewcfr
No) & T2 \N,) 2B

by which we define the Boltzmann constant, kg:

8.314510 J mol™' K

~—— = 1.380658 x 107> J K™
60221367 x 10% mol

R
kﬂzﬂz

The average kinetic energy per particle

E, 3 NkgT 3
YT S AL T
T AT

is therefore an intensive property, independent of the size of the sample (see PoC,
pages 7-8 and 468-469). Its vaue depends only on the temperature, not the number
of particles:.
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(84(150 K)) = $1.38066~ 107 J K')(150 K) = 311 x 107'J
3
(£4(300 K)) = (138066 x 107 3 K')(300 K) = 621 x 101 J

(e, (450 K)) = $1.38066 x 1072 J K')(450 K) = 9.32 x 1072 J

These energies per paticle, 3487, are dl the same a a given temperature, regardless of
the gram amounts involved:

AVERAGE TRANSLATIONAL KINETIC ENERGY PER PARTICLE (J)

n (mol) 150K 300 K 450 K
a . 11X 21X 10” 32X 10°
(@ 05000 3.11x 107 6.21 2l 0.32 21
(b) 1 .00 3.11x107 6.21 x 1072 9.32x 1072

. 3.11x10 21x10° 9.32x 10°
(¢)  2.000 02! 6.21x1072 21
d 3000 311 x 1072 621 x 1072 9.32x 107%
(®  4.000 311 x 107 6.21 x 1072 9.32x 1072

A dmilar derivation is provided on pages 379-380 of PoC.

40. See pages 374-378 and Example 10- 10 in PoC for a treatment of root-mean-square
Speed. Additiond commentary is provided in the solution to Exercise 43.

(@ To compute Vs for H,, substitute the molar mass
2 = 2.016 g mol™ = 0.002016 kg mol™
into the defining equation:

3RT
Vs =\ 2

Vdues a the three requested temperatures are caculated on the opposite page:



I0.  Macroscopic to Microscopic—Gases and Kinetic Theory 271

[
|

3(83145kg m2 s™2 mol™ K™ 150K
v, (150 K) :J ( - Jis0K)

— =136x10° m s
0.002016 kg mol

=193x10° p g™

v, (300 K) =

3(83145 kg m? s mol™ K™' 300 K)
0.002016 kg mol™

3(8.3145 kg m? s72 mol™' K™' 450K
b (450 K) = i = & X )=2.36x10 ms
e 0.002016 kg mol

(b) The root-mean-square speed is proportional to T 2 the square root of the absolute
temperature. It does not vary linearly with T.

41. Use the same general method as in Exercise 37, taking care to convert grams into
moles. As an example, consider the caculation for 19.97 g Ar (one-hdf mole) a 150 K:

3
E = —nRT

(3]

1 mol Ar

m}(&n% x 107> kJ mol™' K")(lso K,)

E, (150K) = %(19.97 g Ar x
= 0.935 kJ

A full set of values is tabulated below. Note that the origind mass in (c) should be 79.90 g:

TOTAL TRANSLATIONAL KINETIC ENERGY (kJ)

n (md) 150K 300 K 450 K

(@  0.500 0.935 1.87 2.81
(b) 1 .000 1.87 3.74 5.61
(©)  2.000 3.74 7.48 11.2
(d)  3.000 5.61 11.2 16.8
() 4.000 7.48 15.0 22.4

The numbers are the same as for H, (Exercise 38), as they would be for the trandational
energy of any ideal gas in the same amount. Molecular mass does not enter into the
expression that determines the kinetic energy:

E = énRT

Redize, though, that the total energy of Hz-inclusive of rotationa and vibrationa
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degrees of fresdom &bst in monatomic systemsis indeed different from the tota
energy of argon, but the trandaiond contribution is identical for both gases.

42. The average trandational kinetic energy per particle depends only on temperature:

Use the same procedure as in Exercise 39 to obtain the results in the following table:

AVERAGE TRANSLATIONAL KINETIC ENERGY PER PARTICLE (J)

n (mol) 150K 300 K 450 K
(@) 0500 311 x 1072 6.21 x 107%! 9.32 x 107%!
(b) 1 .000 311 x 1072 621 x 107 9.32 x 1072
(¢)  2.000 311 x 107%! 6.21 x 1072 9.32 x 107!
(d)  3.000 311 x 1072 6.21 x 1072 9.32x 107!
() 4.000 311 x 1072 621 x 1072 9.32 x 1072

The values, independent of molecular mass, are the same as for H,. See dso Exercise 41

43. The formula for root-mean-square speed is

where 77 is the molar mass (in kg mol™"), R is the universal gas constant (in J mol™" K™,

and T is the absolute temperature (in K).
Recadlling that a joule is a unit of work (force x distance),

1J=1Nm=1kgm®s™

we quickly verify that v has the expected units of m s™":

'FE? !(J ITI'E)l_1 K_}] K kg m2 3_2 o

v ol — ~ " ~ [ =2 -1

" \{7% \/ kg mol ™! V kg NS it
Be careful to express the molar mass 7. in kilograms, thereby matching the base Sl unit
implicit in R.

See pages 374-378 in PoC, as wel as Example 10- 10 (beginning on page R1 0.13).
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(a) To calculate vms for Ar, substitute the molar mass

n = 30948 g mol™' = 003998 kg mol™

into the defining equation:

Vdues at the three requested temperatures are caculated below:

Vi (150 K) = ﬁs.s 145 kg m? s mol™ K™')(150 K )

— =306 x10° ms”
0.039948 kg mol

3(83 145 kg m* s % mol™' K™')(300 K)

300 K) = =433x 10°m 5™
Vs (300 K) = 0039948 kg mol '

1

3(8.3145 kg m’ s mol ' K')(450K) g9 .,
- =57 " x10°m s
0.039948 kg mol

(450 K) =

vrms

(b) Argon atoms, more massive than hydrogen molecules, move Slower at a given
temperature-although the average kinetic energy is identical for both. The
root-mean-square speeds differ in inverse proportion to the square roots of the
molecular masses:

V.. (Ar) |'! Ty, 12016

ms

Vs (Hy) ~ \ 7, V39948

Endowed with the same average energy a each temperature,

the two particles therefore develop different speeds. The one with a lower mass 1s able to
trandate more of its energy into velocity.

44, Trandationa kinetic energy is partitioned as 37RT or, equivalently, 3NVksT in each of
the three dimensions. Thus we expect the following relationship to govern a
two-dimensional system:

Ei :0=2 x 3nRT =nRT = NkgT
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(@ Two-dimensional trandational energy is equa to RT per mole (n = 1)

Ei 2p(150 K) = (L00mol)(8.3 145x 107> kJ mol™ K™)( 150 K) = 1.25 kJ

Ei 20(300 K) = (1.00 mol)(8.3 145x 107 kJ mol™ K™')(300 K) = 249 kJ

Ex 20(450 K) = (1.00 mol)(8.3 45 x 107 kJ mol™ K™')(450 K) = 374 kJ
(b) Two-dimensional trandational energy is equal to kg7 per atom (N = 1)

<8k, ,5 (150 K)) = (1.38066 x 1072 J K™)(150 K) = 2.07 x 1072 J
(£4,20(300 K)) = (138066 x 107 J K™)(300 K) = 414 x 10 )

(€4, 20(450 K)) = (138066 x 107 J K™)(450 K) = 6.2L x 102'J

(c) With only two degrees of trandationa freedom, we have a different kinetic energy
and consequently a different equation for root-mean-square speed:

L
Evp =RT= 57n<v20> (per mole)

fZRT
Vims, 2D = \}("220) "V on

The two-dimensiona values are smadler relaive to the three-dimensiona values by a
factor of (2/3)"*:

T(K) Vmsap(ms™)

150 2.50 x 102
300 3.53 x 10?
450 4.33 x10?

See Exercise 43.

(d) All values differ to the extent that the total trandational energy per mole is RT,
not 3RT.
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45. Use the expression for root-mean-square speed,

3RT

to evaluate each set of conditions. Note that v depends only on the temperature and
molar mass.

(@) Both systems have the same vaue of vems, SNce the same molecule is moving a the
same temperature. The system at higher pressure contains more molecules in the same
volume, but the average speed per particle is unaffected.

(b) Same reasoning as in (). A change in volume has no effect on vms, provided that the
two temperatures are the same.

(c) Argon, less massive than xenon, has the higher root-mean-square speed at any given
temperature.

(d) Krypton at 1000 K has a higher vems than carbon dioxide at 500 K, but only dightly:

| 1000 K
Vmg(Kr) | 8380 § mol™ 345
Vms(CO,) = 500K =337=1%
\/ 4401 g mol™

The difference is approximately 2%.

As temperature goes up, the extra therma energy alows the heavier Kr aom to
move faster. Krypton at 952 K has the same root-mean-square speed as CO, a 500 K;
krypton a 1000 K has a modest advantage, despite its higher mass.

46. Graham's law (PoC, page 379) assarts that the effusion rate varies inversely with the
square root of molecular mass:

Rate, Ing
=
Rateg N

(@ H,, with haf the mass of He, effuses approximately 40% faster:

Ratey,, [ \E s
Ratey, \7my, V2
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(b) CO» (44010 g mol™) and C3Hg (44097 g mol™") have nearly the same masses. Their
rates of effuson differ only negligibly, by less than 0.1%.

(c) N, has a mass of ¥ 28. CoHs has a mass of ~ 30. Ny effuses approximately 3.5%

faster:
Rate m 30
x By fin: . 390 \/:z 1035
Ratec, my, 28

(d) N, (28013 g mol™") has virtudly the same mass as CO (28010 g mol™"). Effusion
rates for the two molecules are effectively identical, the difference amounting to little
more than 1 pat in 20,000.

(e) Slightly less massive than molecular nitrogen, HCN effuses a a rate approximately

18% higher:
Rat ™
When _ [ TN z‘/-2-8~~1.0i8
Ratey, |7y V27

47. See the discussion of thermal energy on pages 379-384 of PoC.

(@ Particles moving in three dimensions acquire trandationa therma energy equal to
3RT per mole. Equating this quantity with the dissociation energy of H,, we obtain a
temperature of approximately 35,000 K:

1000 J: 436 x 10° J mol™

3
5 RT = 436 kJ mol '«

~2(436x 10° I mol ™)

F= ———v = 350 x 10° K
3(83145 J mol 'K ')

Another acceptable estimate is to take RT as a rough measure of molar therma energy, in
recognition of its appearance in the Boltzmann factor, exp(-Ey/RT)| Doing so, we obtain
a corresponding temperature of over 50,000 K:

436 x 10° J mol ™' .
T= —— =524 x10* K
83145 mol™ K

Hot, either way.

(b) H, is highly unlikely to dissociate thermally at 273 K, where 3RT (equa to
340 kJ mol™") is over two orders of magnitude less than the bond energy.



10. Macroscopic to Microscopic-Gases and Kinetic Theory 277

48. The Maxwell-Boltzmann distribution for a particle with mass m,

m )" mv?
F(v)=4 2 -
) n(thT] ’ e"p[ szT}

or, equivdently, for a paticle with molar mass 7x,

312 2
n nmv”

F(v) =4 ( J . (-
V) =4n SRt ¥ N~ 2r7

is discussed on pages 3 84-39 [ and R10.5 of PoC, as well as in Example [0- 11. Each
value F(v) Av gives the probability that a particle will have a speed between v and v + Av,
where Av is infinitesmaly small.

The peak of the distribution-the most probable speed, vup—occurs at

2kgT  [2RT

el il ey

whereas the root-mean-square speed occurs 22.5% higher:

m \ m

\Fkar [3RT

Root-mean-square speeds for He (7= = 4.0026 ¢ mol™") are determined in the same way as
in Exercise 43:

/ 3(83145 kg m” s mol™ K™')(50K)

50K) = = 58x10°ms
msGOR) = 0.0040026 kg mol :
-1 -1\~
Vo (300 K) 383145 kg m? 52 mol”' K™')(300 K) 137 10° m &
0.0040026 kg mol ™
13(8.3145 kg m? s mol™ K™')(600 K .
Vems (600 K) = [ — =193x10" ms

\ 0.0040026 kg mol ™!

See Figure 10.1 for plots of the distribution a these three temperatures.
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(a)
10-3
2 1 L T T
Ol :
- I
( g ! 1 1 1 1 1 L :
0 500 loo0 1500 2000 2500 3000 3500 4000
v (m/s)
(b)
’ x10-3
>
Y
n 1 1 1
-0 500 1000 1500 2000 2500 3000 3500 4000
v (m/s)
(©)
? x10-3 . .
>
¥ I
0 L 1 1 11 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
v (m/s)
FIGURE 10.1 Normalized Maxwell-Boltzmann distribution for helium at three temperatures. The

root-mean-square speed is indicated by a dashed vertical line in each panel.

() 600 K.

(@) 50 K. (b) 300 K.
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49. Use the formula

to caculate the root-mean-square speed at the stated temperature, as worked out explicitly
in Exercise 48. Then study Figure 10.1 to determine where the given values of F(v) lie
relative to the reference value, F(Vems):

(@ The root-mean-square speed for helium is approximatey 560 m st a 50 K

3RT |3(83145J mol™ K™'S0K)

Vv =, | — = 3( — 25581'[15-[
ms m 4.0026 x 10~ kg mol ™

near the pesk of the Maxwell-Boltzmann distribution, and therefore 500 m s~ is a more

A speed of 500 m s~ is roughly 10% less than vims. The corresponding value of F fals I
probable speed than 50 m s”'—which lies close to the origin. See Figure 10.1(a).

(b) Both the distribution and root-mean-square speed are the 1same as in pat (a). A speed
of 1000 m s~ falls far to the right of Vrms (equad to 560 m s), making the lower value

(v = 500 ms™") more probable. The curve decreases monotonically for speeds greater
than vems.

(c) Directly proportiona to JT, the root-mean-square speed increases from
approximately 560 m s to 1370 m s~ when the temperature goes from 50 K to 300 K.
A speed of 1500 m s”! about 10% greater than vy, is more likely than a speed of

5 m s (which fals far to the left of the peak in Figure lo-b).

(d) The root-mean-square speed is the same as in part (c), and the reasoning is the same

as in pat (b): A speed of 1500 m s is only 10% greater than v,s and hence more
probable than a speed of 2000 m s™.

(6) With vems increasing to 1930 m s~ & 600 K, a speed of 2000 m s~ is closer to the
root-mean-square value (and consequently more likely to occur) than a speed of
1000 m s™'. See Figure 101 (c).

(f) Smilar to (b) and (d): The lower speed, 2000 m s, is closer t0 vems and thus more
probable than a speed of 4000 m s
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50. Start with the Maxwell-Boltzmann distribution,

2
F(v) = Kv? exp[— 2”: Tj
B

where K is a proportionality constant and m is the mass of a single particle. The ratio
of F(v) at two speeds is therefore

2
F(vy) (v - Mo _ 2
W,) -—[’Vlj exPl:ZkBT (2 vl):|

Its value is independent of K.
Next, noting that m/kg is the same ratio as 7/R, we equivaently write

2
F(Vz)_("_z] ’-_7”_ 2 2]
F(v) \v )P _2RT b3 =)
and express the given speeds in terms of v,s and a scaing factor x:

VI = Vms

V2 = XVms

Insertion of these general forms into the equation for F(v,)/F(v) yields

V : .
£ (2 of i)

F(v)) v
By definition, however, we know that

ms

and hence

F) 5 [ 3,
Fov) =X exp{—z(x —l)}

This is the expresson we now evaluate by substituting the dimensionless variable x:
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(@) Forx =0.1:
F(v,) i [ 3 ] 44,100
=01 -2(012 -1)|= 00441 x ——
Fon exp 2(01 1)_ 00441~ -0
(b) For x = 09
F(v,) { 3, ] 1,077,000
=09%exp| - =(09% —1)|= 1077 » ——
F(v,) e 2( )|=10 1,000,000
(© For x = 2
F(v;) ., [ 3/, ] 44,400
), ~=(22-1)|=00444 » ——
Fovy) -~ P72 (2*-1) 1,000,000
(d) Forx=3
F(vy) ., [ 3.2 ] . 55
22 =3 -2(32 -1)|= 0000055 ~ ————
Fv ~> &® 5 67-1) >~ 1,000,000

Note that the ratios are independent of 7. and T.
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