Announcements - 11/6/00

- <u>Lab</u>: 1st week of a 2-week sequence
- Quiz #6: review
- Exam #3: Wed. Nov. 15th
 -see Exam Info page on website

I onization Energies (again)

■ Ionization Energy (IE)

-Recall: I E quantifies the tendency of an electron to leave an atom in the gas phase:

$$X (g) X^{+} (g) + e^{-} \Delta E = I E_{1}$$

$$X^{+}(g) = X^{2+}(g) + e^{-} \Delta E = I E_{2}$$

IE₂ > IE₁ (due to greater nuclear charge/e⁻)

More I onization Energies

TABLE 7.2 Successive Values of Ionization Energies, I, for the Elements Sodium Through Argon (kl/mol)

Element	I_1	I_2	I_3	I_4	I ₅	I_6	I ₇
Na	496	4560					
Mg	738	1450	7730		(Inner-shell electrons)		
Al	578	1820	2750	11,600			
Si .	786	1580	3230	4360	16,100		
P	1012	1900	2910	4960	6270	22,200	
S	1000	2250	3360	4560	7010	8500	27,100
CI	1251	2300	3820	5160	6540	9460	11,000
Ar	1521	2670	3930	5770	7240	8780	12,000

 $\underline{\text{Note:}}\ \mathsf{IE}\ \mathsf{is}\ \mathsf{always}\ \mathsf{a}\ \mathit{positive}\ \mathsf{value}\ (\mathsf{endothermic}\ \mathsf{process})$

3

I onization Energy: Periodic Trends

Generally:

- -as size decr across a period, the ionization energy *increases*
- -as **size increases** down a group, the **ionization energy** <u>decreases</u>

Electron Affinities: Periodic Trends

Recall: quantifies ability of an atom to attract an e- in the gas phase:

$$X(g) + e^{-} \rightarrow X^{-}(g)$$

$$\Delta E = -EA$$

Increasing EA

Magnetic Properties

■ Electrons are "natural magnets" due to their spin properties:

Na: $1s^22s^22p^63s^1$ unpaired e^- will be **attracted** by

an external magnetic field (PARAMAGNETIC)

Mg: $1s^22s^22p^63s^2$ paired e- will

paired e- will be **repelled** by an external magnetic field (**DIAMAGNETIC**)

7

From Atoms to Molecules: The Covalent Bond

■ So, what happens to e⁻ in *atomic orbitals* when two atoms approach and form a *covalent bond?*

Mathematically:

-let's look at the formation of a hydrogen molecule:

-we start with: 1 e-/each in 1s atomic orbitals

-we'll end up with: 2 e- in molecular obital(s)

HOW? Make linear combinations of the 1s orbital wavefunctions:

 $\psi_{mol} = \psi_{1s}(A) \pm \psi_{1s}(B)$

Then, solve via the SWE!

