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Balmer and the Hydrogen 
Spectrum

n 1885: Johann Balmer, a Swiss schoolteacher, 
empirically deduced a formula which predicted the 
wavelengths of emission for Hydrogen:

λ (in Å) = 3645.6  x  n2 for n = 3, 4, 5, 6

n2 -4

•Predicts the wavelengths of the 4 visible emission 
lines from Hydrogen  (which are called the Balmer Series)

•Implies that there is some underlying order in the 
atom that results in this deceptively simple equation.
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The Bohr Atom
n 1913: Niels Bohr uses quantum theory to explain the origin of the 

line spectrum of hydrogen
1. The electron in a hydrogen atom can exist only in discrete orbits

2. The orbits are circular paths about the nucleus at varying radii

3. Each orbit corresponds to a particular energy

4. Orbit energies increase with increasing radii

5. The lowest energy orbit is called the ground state

6. After absorbing energy, the e- jumps to a higher energy orbit (an 
excited state)

7. When the e- drops down to a lower energy orbit, the energy lost can 
be given off as a quantum of light

8. The energy of the photon emitted is equal to the difference in 
energies of the two orbits involved
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Mohr Bohr
n Mathematically, Bohr equated the two forces 

acting on the orbiting electron:

coulombic attraction = centrifugal accelleration
-(Z/4πεo)(e2/r2) = m(v2/r)

n Rearranging and making the wild assumption:

mvr = n(h/2π)
n e- angular momentum can only have certain quantified 

values in whole multiples of h/2π
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Hydrogen Energy Levels
n Based on this model, Bohr arrived at a simple 

equation to calculate the electron energy levels in 
hydrogen:

En = -RH(1/n2) for n = 1, 2, 3, 4,  .  .  .  .

Where:

RH = 2.179 x 10-18 Joules  (the Rydberg constant)

n is the Principal Quantum Number

Radii can be calculated, too:

rn = n2ao (ao = 0.529 Å)
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Transitions Between 
Energy Levels

n Now, the energy change associated with a 
transition between electron energy levels can be 
quantified:

∆E = Efinal - Einitial = hν

hν = -RH - -RH

n2
f n2

i
Collecting terms:

νν = (RH/h) (1/ni
2 - 1/nf

2)
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Bohr versus Balmer
n With some rearranging, the Balmer equation looks 

like this:

ν = 3.29 x 1015 s-1 (1/22 - 1/n2)

-This is the equation we just derived, but with nf
fixed at a value of 2

-So, the Bohr model also accurately predicts the 
frequencies of the Balmer Series emission lines

-BUT, it also predicts other emission lines (for nf = 
1, 3, 4, etc.)
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Hydrogen’s Energy Level 
Diagram

When nf = 2: Balmer Series

-visible emission

When nf = 3: Paschen Series

-infrared emission
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Sample Calculation
n Calculate the wavelength at which the least 

energetic emission spectral line of the Lyman 
Series (nf = 1) is observed.

Lowest energy transition will be 2→1:

∆E = (RH) (1/22 - 1/12)
∆E = (2.179 x 10-18 J)(1/4  - 1)
∆E   = - 1.63425 x 10-18 J (energy lost by atom)

Converting to wavelength:
λ = hc/∆E

= (6.626 x 10-34 J-s)(2.9979 x 108 m/s)/(1.63425 x 10-18 J)
= 1.215486 x 10-7 m = 121.549 nm  → 121.5 nm (vac UV)
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Wave Properties of Matter
n de Broglie: “If EMR waves can act like particles, 

why not treat matter like a wave?”

Based on his hypothesis:

λλ = h/mv
Momentum of 

object
Characteristic 
wavelength of 

the object

RESULT: -macroscopic things have wavelengths that are 
incredibly tiny (10-30 m or so)

-sub-atomic sized things have wavelengths that are 
of the same order as their physical size (Å for an e-)!
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The Uncertainty Principle
n German physicist Werner Heisenberg:

There are limits to which we can know
both the momentum and the location

of ANY object.

Quantitatively:  (∆p)(∆x) ≥ h/4π

-so, the better we know the position of an object, the worse
we know the velocity (p = mv) of the object

-not an issue in the macroscopic world, but the limitation is 
profound for objects like electrons!
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Quantum Mechanics
n 1926: Erwin Schrödinger describes 

electrons in an atom as having both wave 
and particle properties:

The Schrödinger Wave Equation!
Results:
n Solutions to the wave equation are 

called: wave functions (ψ)

n For hydrogen, get the same electron 
energies as Bohr did

n The square of the wave function (ψ2) 
gives a probability density for an 
electron in a specified energy state

n The probability densities define what 
are called orbitals

Lowest energy 
orbital for the 
hydrogen atom
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Orbitals and 
Quantum Numbers

n Each solution to the wave equation can be uniquely 
specified by three quantum numbers:

1. The Principal Quantum Number (n)
-can have integer values (1, 2, 3, 4, etc.)
-corresponds to the principal energy level
-same as the quantum number in Bohr’s model
-defines the electron shell

2. The Azimuthal Quantum Number (l)
-can have integer values from 0 to n-1 for each value of n
-defines the orbital shape
-value of l determines the letter used to specify the orbital 
shape (l= 0, 1, 2, 3 → s, p, d, f orbitals)
-defines the subshell
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More QN and Orbitals
3. The Magnetic Quantum Number (ml)

-can have integer values from l → -l
-describes the orientation of the orbital in space

So, some examples:
n=1: only one value of l possible (0) 1s orbital

only one value of ml possible (0)

n=2: l = 0, 1 (s and p orbitals)
For l = 1: ml = 1, 0, -1 (2px, 2py, 2pz orbitals)

n=3: l = 0, 1, 2 (s, p and d orbitals)
For l = 2: ml = 2, 1, 0, -1, -2 (five 3d orbitals)
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Ammonia Fountain Demo
n The reaction:

NH3(g) → NH3(aq)
-46.11 kJ/mol       -80.20 kJ/mol

∆H = (-80.20 kJ/mol) - (-46.11 kJ/mol) = -34.18 KJ

n = PV/RT = (1.0 atm)(2.0 L)/(0.08206)(298.15 K) = 8.17 x 10-2 mol

PV work = ∆nRT = 200 J
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More QN and Orbitals
3. The Magnetic Quantum Number (ml)

-can have integer values from l → -l
-describes the orientation of the orbital in space

So, some examples:
n=1: only one value of l possible (0) 1s orbital

only one value of ml possible (0)

n=2: l = 0, 1 (s and p orbitals)
For l = 1: ml = 1, 0, -1 (2px, 2py, 2pz orbitals)

n=3: l = 0, 1, 2 (s, p and d orbitals)
For l = 2: ml = 2, 1, 0, -1, -2 (five 3d orbitals)
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Orbital Energies
For Hydrogen:
-energies vary with n

-same result as with Bohr

En = -(e4me)Z2 = -RHZ2

(8εεoh2)n2 n2

-also applies to other one-
electron systems
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Orbital Shapes: s-orbitals
n All s-orbitals are 

spherical but have 
different radial 
probability 
distributions:

•S-orbitals have n-1
radial nodes

•As n increases, so 
does the orbital size
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Orbital Shapes: p-orbitals

n p-orbitals are “dumbell” shaped
n Subscripts indicate primary orientation axis
n Nodal plane at nucleus
n As n increases, the size of the p-orbitals increases
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Orbital Shapes: d-orbitals
Ø Three “4-leaf 

clover” shapes in 
three planes (xy, 
xz, yz) oriented 
between the axes

Ø One “4-leaf 
clover” shape in xy 
plane oriented 
along the axes

Ø One dumbell shape 
with a doughnut in 
xy plane

I’m not making this up . . . really!


