Quantum The ory of the $\mathcal{H y d r o g e n} \mathfrak{A t o m}$

$$
\begin{gathered}
\text { Chemistry } 35 \\
\text { Fall } 2000
\end{gathered}
$$

Balmer and the $\mathcal{H y d r o g e n}$ Spectrum

- 1885: I ofann Balmer, a S wiss schoolte acher, empirically deduced a formula which predicted the wave lengths of emis sion for $\mathcal{H} y d r o g e n$:

$$
\lambda_{(\text {in } \mathfrak{A})}=3645.6 \quad \chi \frac{n^{2}}{n^{2}-4} \text { for } n=3,4,5,6
$$

- Predicts the wavelengths of the 4 visible emission lines from Hydrogen (which are called the Balmer Series)
- Implies that there is some underlying order in the atom that results in this deceptively simple equation.

The Bofr Atom

- 1913: \mathcal{N} (iels $\mathcal{B o f r}$ uses quantum theory to explain the origin of the line spectrum of fydrogen

1. The electron in a fydrogen atom canexist only in discrete orbits
2. The orbits are circular patfs about the nucleus at varying radii
3. Each orbit corresponds to a particular energy
4. Orbit energies increase with increasing radii
5. The lowest energy orbit is called the ground state
6. After absorbing energy, the e jumps to a figher energy orbit (an excited state)
7. When the e drops down to a lower energy orbit, the energy lost can be given off as a quantum of light
8. The energy of the photonemitted is equal to the difference in energies of the two orbits involved

Mofr Bofr

- Mathematically, Bofr equated the two forces acting on the orbiting electron:
coulombic attraction = centrifugal accelleration

$$
-\left(Z / 4 \pi \varepsilon_{o}\right)\left(e^{2} / r^{2}\right)=m\left(v^{2} / r\right)
$$

- Rearranging and making the wild assumption:

$$
m v r=n(\hbar / 2 \pi)
$$

- e angular momentum can only fave certain quantified values in whole multiples of $k / 2 \pi$

$\mathcal{H y d r o g e n}$ Energy Leve ls

- Based on this model, Bofir arrived at a simple equation to calculate the electron energy levels in fydrogen:

$$
\mathcal{E}_{n}=-\mathcal{R}_{\mathcal{H}}\left(1 / n^{2}\right) \mid \text { for } n=1,2,3,4, \ldots
$$

Where:

$$
\mathcal{R}_{\mathscr{A}}=2.179 \times 10^{-18} \mathrm{~g} \text { oules (the Rydberg constant) }
$$

n is the Principal Quantum \mathfrak{N} (umber
Radii can be calculated, too:

$$
r_{n}=n^{2} a_{0} \quad\left(a_{o}=0.529\right. \text { 凡) }
$$

Transitions $\mathcal{B e t w e}$ en
 Energy Levels

- Now, the energy change associated with a transition between electron energy levels can be quantified:

$$
\begin{aligned}
& \Delta \mathcal{E}=\mathcal{E}_{\text {final }}-\mathcal{E}_{\text {initial }}=\mathcal{K} \mathrm{V} \\
& \mathcal{K} V=\frac{-\mathcal{R}_{\mathscr{H}}}{n^{2}} \cdot \frac{-\mathcal{R}_{\mathscr{H}}}{n^{2}{ }_{i}}
\end{aligned}
$$

Collecting terms:

$$
v=\left(\mathcal{R}_{\mathscr{H}} / \hbar\right)\left(1 / n_{i}^{2}-1 / n_{f}^{2}\right)
$$

Bofr versus $\mathcal{B a l m e r}$

- With some rearranging, the Balmer equation looks like this:

$$
v=3.29 \times 10^{15} \mathrm{~s}^{-1}\left(1 / 2^{2}-1 / \mathrm{n}^{2}\right)
$$

-This is the equation we just derived, but with n_{f} fixed at a value of 2
-So, the Bohr model also accurately predicts the frequencies of the Balmer Series emission lines

- $\mathcal{B U L}$, it also predicts other emission lines (for $n_{f}=$ 1, 3, 4, etc.)

Hydrogen's Energy Level Diagram

When $n_{f}=2:$ Balmer Series -visible emission When $n_{f}=3:$ Paschen Series

Sample Calculation

- Calculate the wavelength at which the least energetic emission spectralline of the Lyman Series $\left(n_{f}=1\right)$ is observed.

Lowest energy transition will be $2 \rightarrow 1$:

$$
\begin{aligned}
& \Delta \mathcal{E}=\left(\mathcal{R}_{\mathscr{H}}\right)\left(1 / 2^{2}-1 / 1^{2}\right) \\
& \Delta \mathcal{E}=\left(2.179 \times 10^{-18} \mathrm{~g}\right)(1 / 4-1) \\
& \Delta \mathcal{E}=-1.63425 \times 10^{-18} \mathrm{~g} \quad \text { (energy lost by atom) }
\end{aligned}
$$

Converting to wave length:
$\lambda=h_{c} / \Delta \mathcal{E}$
$=\left(6.626 \times 10^{.34} \mathrm{~g}-\mathrm{s}\right)\left(2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) /\left(1.63425 \times 10^{-18} \mathrm{~g}\right)$
$=1.215486 \times 10^{-7} m=121.549 \mathrm{~nm} \rightarrow 121.5 \mathrm{~nm}($ vac UV)

Wave Properties of Matter

- de Broglie: "If EMR waves can act like particles, why not treat matter like a wave?"

Based on fis fypothesis:

RESULT: -macroscopic things have wavelengths that are incredibly tiny ($10^{-30} \mathrm{~m}$ or so)
-sub-atomic sized things have wavelengths that are of the same order as their physical size (\mathfrak{A} for ane e-)!

The Uncertainty Principle

- German physicist Werner He isenberg:

There are limits to which we can know both the momentum and the location of $\mathfrak{A N O}$ object.

Quantitatively: $\quad(\Delta p)(\Delta x) \geq k / 4 \pi$
-so, the better we know the position of an object, the worse we know the velocity $(p=m v)$ of the object
-not an issue in the macroscopic world, but the limitation is profound for objects like electrons!

Quantum Mectanics

- 1926: Erwin Scfrödinger describes electrons in an atom as having both wave and particle properties:

The Scfrödinger Wave Equation!
Results:

- Solutions to the wave equation are calle d: wave functions (ψ)
- For hydrogen, get the same electron energies as Bofr did
- The square of the wave function $\left(\psi^{2}\right)$ gives a probability density for an electron in a specified energy state

Lowest energy orbital for the hydrogen atom

- The probability densities define what are called orbitals

Orbitals and Quantum \mathcal{N} umbers

- Eack solution to the wave equation can be uniquely specified by three quantum numbers:

1. The Principal Quantum \mathfrak{N} (umber (n)

- can have integer values $(1,2,3,4$, etc.)
-corresponds to the principalenergy level
-same as the quantum number in Bofr's model -defines the electron shell

2. The Azimuthal Quantum Number (l)
-can have integer values from 0 to $n-1$ for each value of n - defines the orbital shape

- value of Cdetermines the letter used to specify the orbital shape $(f=0,1,2,3 \rightarrow s, p, d, f$ orbitals $)$ -defines the subshell

More $Q \mathcal{N}$ and Orbitals

3. The Magnetic Quantum Number (md

- can have integer values from $\underline{l \rightarrow-L}$
-describes the orientation of the orbital in space
So, some examples:
n=1: only one value of Cpossible (0) $\quad 1 s$ orbital
only one value of m_{1} possible (0)
n=2: $\quad l=0,1$ (s and porbitals)
For $\underline{l=1}: m_{l}=1,0,-1\left(2 p_{\chi}, 2 p_{y}, 2 p_{z}\right.$ orbitals $)$
n=3: $\quad l=0,1,2(s, p$ and d orbitals $)$
For $\underline{l=2}: m_{l}=2,1,0,-1,-2$ (five $3 d$ orbitals)

Ammonia Fountain $\mathcal{D e m o}$

- The reaction:

$$
\begin{array}{cl}
\mathcal{N} \mathcal{H}_{3}(\mathcal{g}) \rightarrow & \mathcal{N} \mathcal{H}_{3}(a q) \\
-46.11 \mathrm{~kg} / \mathrm{mol} \quad-80.20 \mathrm{~kg} / \mathrm{mol}
\end{array}
$$

$\Delta \mathcal{H}=(-80.20 \mathrm{~kJ} / \mathrm{mol}) \cdot(-46.11 \mathrm{~kJ} / \mathrm{mol})=-34.18 \mathrm{KJ}$
$n=P V / \mathcal{R I}=(1.0 \mathrm{~atm})(2.0 \mathrm{~L}) /(0.08206)(298.15 \mathrm{X})=\underline{8.17 \times 10^{-2} \mathrm{~mol}}$

$$
\text { PV work }=\Delta n R I=200 \mathrm{I}
$$

More $Q \mathcal{N}$ and Orbitals

3. The Magnetic Quantum Number (md

- can have integer values from $\underline{l \rightarrow-L}$
-describes the orientation of the orbital in space
So, some examples:
n=1: only one value of lpossible (0) $\quad 1 s$ orbital
only one value of m_{i} possible (0)
n=2: $\quad\{=0,1$ (s and p orbitals)
For $\underline{l=1}: m_{l}=1,0,-1\left(2 p_{\chi}, 2 p_{y}, 2 p_{z}\right.$ orbitals $)$
n=3: $\quad l=0,1,2(s, p$ and d orbitals $)$
For $\underline{l=2}: m_{l}=2,1,0,-1,-2$ (five $3 d$ orbitals)

Orbital Energies

For Hydrogen:

- energies vary witf n
-same result as witf Bofr
$\left.\mathcal{E}_{n}=-\underline{e}^{4} m_{\underline{e}}\right) Z^{2}=-\mathcal{R}_{\underline{e}} Z^{2}$
$\left(8 \varepsilon_{0} h^{2}\right) n^{2} \quad n^{2}$
-also applies to other one. electron systems

Orbital Shapes: s-orbitals

- All s-orbitals are spherical but have different radial probability distributions:

S-orbitals have n-1 radial nodes

- As nincreases, so does the orbital size

Orbital Shapes: p-orbitals

- p-orbitals are "dumbell" shaped
- Subscripts indicate primary orientation axis
- Nodal plane at nucleus
- As nincreases, the size of the p-orbitals increases

OrbitalShapes: d-orbitals

> Three "4-leaf clover" shapes in three planes (xy, $x z, y z)$ oriented between the axes
$>$ One"4-leaf

clover" shape in $x y$ plane oriented along the axes
>One dumbellshape with a dougfnut in xy plane

I'm not making this up . . really!

