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ABSTRACT

We compute the canonical ring of some stacks. We first give a detailed account of
what this problem means including several proofs of a famous historical example.
The main body of work of this thesis expands on our article [Fra23] in describing the
geometry of Drinfeld modular forms as sections of a specified line bundle on a certain
stacky modular curve. As a consequence of that geometry, we provide a program:
one can compute the (log) canonical ring of a stacky curve to determine generators
and relations for an algebra of Drinfeld modular forms, answering a problem posed
by Gekeler in 1986.



Fifth grade, smarter than my parents
Grandma couldn’t help with algebra
Grandma like,“What the fuck is algebra?"
She like, “That’s a goddamn shame

them people gon’ keep makin’ up shit
tryna keep you in the same grade."

They tryna hide shit in the book

From “American Tterroristt” - RXKNephew

i

Et si tu crois que je m’en fous
Que 'amour nous a mis a bout
J’ai encore des larmes de réserves
J’ai encore des drames

que j’préserve

Et si tu crois que je m’en fous
Que 'amour nous a mis a bout
J’ai pas vu passer nos amours
J’ai pas vu passer le jour

“Le Jour” - Al'Tarba, Mounika
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CHAPTER 1

OVERVIEW

1.1 HISTORY

The theory of modular forms in the classical number-field case has existed since the
1800’s. It is well-understood that modular forms are sections of a particular line
bundle on some stacky modular curve. In this set up the geometry of the stacks, with
tools such as the Riemann-Roch theorem for stacky curves for example, can be used
to compute section rings which describe algebras of modular forms. The program
of [VZB22] for computing the canonical ring of log stacky curves in all genera even
gives minimal presentations for many such section rings, that is: explicit generators
and relations, which correspond to generators and relations for algebras of modular

forms.

Drinfeld introduced the study of what he called “elliptic modules,” which we now
call “Drinfeld modules” in 1974 with [Dri74] in order to address problems in the Lang-

lands program over function fields. Many objects from classical number theory such



as modular curves and modular forms have analogs over function fields, and we refer

to the function-field side of this analogy as the “Drinfeld setting.”

In his 1986 monograph [Gek86, Page XIII] asks for a description of algebras of
Drinfeld modular forms in terms of generators and relations. The main results of
this thesis describe the geometry of those modular forms, which allows one to employ
techniques such as those in [VZB22] to find the desired generators and relations by
considering the geometry of the corresponding Drinfeld modular curve. That is, we

provide a means to address Gekeler’s problem via geometric invariants.

There is a collection of results which is similar to our work in comparing mod-
ular forms for various congruence subgroups to each other as in our second main
result Theorem 7.2.1. Pink finds isomorphisms between algebras of Drinfeld modular

—_—

forms for open compact subgroups K < GL,.(F,[T]), where the hat symbol denotes

e —_—

the pro-finite completion F,[T] = [] (F,[T])y, and normal subgroups K’ < K in

P
e.g. [Pinl12, Proposition 5.5]. Pink also describes Drinfeld modular forms as sections
of an invertible sheaf in [Pin12, Section 5] which is similar to Theorem 7.1.1. However,
Pink needs the dual of the relative Lie algebra over a line bundle, rather than the

bundle itself, to describe Drinfeld modular forms, which is a major difference with

our work.

There are some existing results which approach Gekeler’s problem, such as Cor-
nelissen’s papers [Cor97al and [Cor97b] which handle linear level in [Cor97b, Theorem
(3.3)], i.e. the algebra of modular forms for I'(aT" + 3), where a € F) and 8 € F,,



and include some results for quadratic level in [Cor97b, Proposition (3.4)]. Another
example, [DK23, Theorem (4.4)], computes the algebra of Drinfeld modular forms for
['o(T). The best known result for general level N is from e.g. [Arm08, Proposition
4.16] which demonstrates that for any level the double cusp forms of weight 2 and
type 1, which form the vector space M3, (T'o(NN)), are (analytic) holomorphic differ-
entials on a (rigid analytic) Drinfeld modular curve To(N)\(Q2 U PY(F,(T))), where

is the Drinfeld “upper half-plane” defined in Section 4.1.

Several ideas in [Brel6] are central to our argument, as well as being an expo-
sition on aspects of Gekeler’s problem in general. In particular, [Brel6] introduces
the subgroup I's of a given congruence subgroup I' < GLy(F,[7']) and gives a moduli

interpretation of the corresponding Drinfeld modular curve.

Even by the date of these most recent papers, the generalization to the algebra of
modular forms for I'o(N) for any level N, all examples of modular forms for I'y(V),
and higher level (i.e. deg(N) = 2) examples for I'(N) seem to be wide open. Simi-
larly, other than some preliminary results such as formulae for geometric invariants
in [GvdP80] it is also an open problem to compute generators and relations for alge-

bras of Drinfeld modular forms for congruence subgroups of SLy(F,[T7]).

Our work differs considerably from the papers of Armana, Breuer, Cornelissen,
Dalal-Kumar, and Gerritzen-van der Put cited above in that we work with Drinfeld
moduli stacks as opposed to schemes. As early as [Gek86] and [Lau96] it was known

that moduli of Drinfeld modules of fixed rank are Deligne-Mumford stacks, but it



is the more recent results of [VZB22] for computing log canonical rings of stacky
curves, and [PY16] which provides a crucial principle of rigid analytic GAGA (short
for “géométrie algébrique et géométrie analytique”) for stacks, that makes our work

possible.

There is some historical reason to work with rigid analytic spaces as opposed to
the more general adic or Berkovich spaces, namely the original analytic theory of the
Drinfeld setting was developed in that language in e.g. Goss’s paper [Gos80]. Though
there is for example a more general or modern theory of adic stacks (see e.g. [Warl7])
we will find it more convenient to phrase things in terms of rigid analytic spaces, and

there is no loss in doing so.

1.2 ORGANIZATION OF THIS WORK

In Chapter 2 we define the canonical ring of a scheme. This discussion is an elemen-
tary introduction to our theory in general in the sense that we make several arguments
from first principles, carefully define many fundamental objects, and repeat some fa-

mous historical calculations.

Appendix A motivates the calculation of canonical rings. After introducing some
terminology and a brief interlude about the infinitesimal lifing property, we discuss
the construction of Proj of a graded ring and define morphisms of schemes. The point
of this material is to be able to prove that with some standard simplifying assump-

tions, as a scheme a curve is isomorphic to its image under the canonical embedding,



and this embedded curve is Proj of the canonical ring.

Appendix B gives yet another proof of Petri’s Theorem distinct from the two we
discuss in Chapter 2. The idea with this version is to discuss Green and Lazarsfeld’s
“simple proof” of Petri [GL85] which is purely cohomological. We comment on why
such a technique is interesting in the introduction to this Appendix, and then give a

highly detailed account of Green and Lazarsfeld’s proof.

We define stacks in Chapter 3, which for experts is our true starting place. The
first part of this discussion is a development of the notion that stacks are a 2-
categorical version of a sheaf. We hope this introduces stacks by analogy with sheaves
which are more familiar, but in later Chapters we use a more practical working defini-
tion of a stack that we state after the analogy. We also define the specific invariants of
a stacky curve that we use to compute (log) canonical rings, and comment on existing

results in this direction.

Chapter 4 introduces the Drinfeld, or function-field setting. We focus on describing
the analogy between function fields and number fields, the latter being the so-called
classical setting for arithmetic geometry. We also describe Drinfeld modules, which
are a version of abelian varieties in this setting. Rather than work in the greatest
generality possible over the function field of any smooth, projective, connected curve
over some field of positive characteristic, we content ourselves with working with the
the function field of the curve P'. This makes the polynomial ring F,[T], for ¢ a power

of an odd prime and T an indeterminant, our “integers” so that we can simplify the



discussion somewhat.

Our work begins in earnest in Chapter 5. We need not only a version of the clas-
sic GAGA theory for rigid analytic spaces, but also one for rigid analytic stacks. As
such, we recall the theory of rigid analytic spaces and rigid GAGA, then define rigid

analytic stacks, and finally we state the main GAGA results we use.

Chapter 6 is an introduction to Drinfeld modular curves and Drinfeld modular
forms. These are the main objects of study for this work. We discuss a (Satake)
compactification of Drinfeld moduli and some local (rigid) analysis near the points
added in this compactification. We also give moduli interpretations for some stacky

Drinfeld modular curves.

Our main results about the geometry of Drinfeld modular forms are in Chapter 7.
We find a Drinfeld modular curve and a specific line bundle on that curve whose sec-
tions are Drinfeld modular forms for congruence subgroups I' containing the diagonal
matrices in GLy(F,[T']) and such that det(v) € (F)* for every v € I in Theorem 7.1.1.
This gives us a way to answer Gekeler’s problem for modular forms for I' so long as
I' satisfies our hypotheses. Then we show how the algebra of Drinfeld modular forms
for some congruence subgroup I can be expressed in terms of a direct sum of com-
ponents of the algebra of Drinfeld modular forms for another congruence subgroup
I’ which contains I'". This comparison of algebras means we can compute generators
and relations for algebras of modular forms for congruence subgroups which may not

contain only square-determinant matrices. We illustrate this theory with a special



case: Theorem 7.2.1. We generalize Theorem 7.2.1 with Theorem 7.3.1 which com-
pares algebras of modular forms for I' and some of its subgroups I, generalizing the

special case [V = I'y from Theorem 7.2.1.

Finally, in Chapter 8 we give an algorithm which solves Gekeler’s problem for
certain congruence subgroups, up to the user’s being able to compute the log canon-
ical ring of a given stacky curve. We give some examples of our application of this
technique to repeat known results. We conclude with some comments on several cases

which should be tractable and very interesting to consider in future work.

1.3 MAIN RESULTS

Let I' be a congruence subgroup of GLy(F,[T]). Suppose that I' contains the scalar
matrices of GLy(F[T]) and det(y) € (Fy)? for every v € T'. First, we show that
the Drinfeld modular forms for such I' are sections of a log canonical bundle on the
associated stacky Drinfeld modular curve 2. Note that this solves Gekeler’s problem
for groups satisfying our hypotheses, assuming we can compute the generators and

relations of the log canonical ring of the stacky curve.

Theorem 1.3.1 (Theorem 7.1.1 in the text). Let ¢ be an odd prime and let T' <
GLy(F,[T]) be a congruence subgroup containing the scalar matrices of GLo(IF,[T])
and such that det(y) € (Fy)? for every v € T. Let A be the divisor supported at

the cusps of the modular curve Zr with rigid analytic coarse space X" = T'\(Q U



PYF,(T))). There is an isomorphism of graded rings

where Q}% is the sheaf of differentials on Zr. The isomorphism of algebras is given
by the isomorphisms of components My, (I') — H(Zr, QY. (2A)®%2) given by f —
F(dz)B4.

To handle the more general case of congruence subgroup I' which contains the
diagonal matrices of GLy(IF,[T]) but which may not contain only square-determinant
matrices, we consider the normal subgroup I's = {y € ' : det(y) € (F})*} of I.
We compare the algebras of Drinfeld modular forms for I' and I'; and arrive at the
following result. Note that this reduces giving an answer to Gekeler for the congruence

subgroups I' to computing log canonical rings of stacky Drinfeld modular curves.

Theorem 1.3.2 (Theorem 7.2.1 in the text). Let ¢ be a power of an odd prime.

Let I' < GLo(F,[T]) be a congruence subgroup containing the diagonal matrices in

GLy(Fy[T]). Let Iy = {y € ' : det(y) € (Fy)?}. Then as rings M(T') = M(I';), with
My i(To) = Miy, (T') @ My, ()

on each graded piece, where ly,ls are the two solutions to k =2l (mod q — 1).

Finally, we generalize the previous comparison theorem to a larger class of sub-
groups IV < I', where I' is some chosen or distinguished congruence subgroup as
above. This idea was proposed in correspondence by Gebhard Bockle, as was the

proof technique which we execute. This result is similar to classical results about



nebentypes of modular forms.

Theorem 1.3.3 (Theorem 7.3.1 in the text). Let ¢ be a power of an odd prime. Let
I' < GLy(F,[T]) be a congruence subgroup. Let I'y = {y € I' : det(y) = 1}. Suppose

that I is such that T’y < IV < I'. Then as algebras

M(T) = M(T),

and each component My (I") is some direct sum of components My (L) for some

nontrivial I.



CHAPTER 2

WHAT ARE CANONICAL RINGS?

To introduce the theory of canonical rings we consider the following version of Petri’s
theorem. Let X be a genus g > 4 canonical (non-hyperelliptic), smooth, irreducible,
projective, complex algebraic curve and let wx denote the canonical bundle on X. The
assumption that we work over the complex numbers is purely for convenience as we
discuss in Remark 2.0.1. As we will see, wx defines a closed immersion ¢ : X — P91,
Let R = R(X,wx) = ®a=0H"(X,w$") denote the canonical ring of X in P9~!. Then
Petri’s theorem says R =~ C[xy,--- ,z,4]/I, where R is generated in degree 1, the ideal
I is generated in degree 2 (by ‘quadrics’) and when g = 5 in particular, dim¢ I = 3.

That is, informally, genus 5 curves are the complete intersection of 3 quadrics in P4.

The full statement of Petri’s theorem relates the geometry of a curve with genus
g = 4 to the structure of its canonical ring Rc = R(C,w¢) and concludes that R is
generated in degree 1 with relations in degree 2 unless C' is hyperelliptic, trigonal or
a plane quintic (see e.g. [ACGHS5, Section 3.3]). We often focus on the case of genus

g = 5 where we obtain a particularly nice description of the canonical ring, and can

10



illustrate many calculations explicitly while keeping the notation somewhat readable.

In this chapter we will discuss both a genus formula for complete intersections and
directly consider the ideal of relations for a genus g > 4 curve which is canonically
embedded into P97, Along the way we define many fundamental objects such as
curves and their canonical bundles, so that while the document is not entirely self-

contained, it at least proceeds from a reasonably elementary point.

Remark 2.0.1. Throughout this chapter we work over an algebraically closed field
F = F with char(F) = 0, typically C. As in [LRZ18b, Remark 2.1.1], the assumption
of algebraic closure is not essential at all, but merely for convenience. The graded
pieces of the canonical ring are preserved under base change from F to F since flat
base-change commutes with cohomology. Indeed, even though over an inseparable
extension of the base field, the base change of the canonical bundle may not agree
with the canonical bundle of the base change, the structure of a canonical ring does
not change when base changing from T to its algebraic closure F. That is, generators
and relations for a canonical ring are preserved under base field extension, as are

their minimal degrees.

2.1 NOTATION AND PRELIMINARIES

In this section, we will define a topology which we use throughout this chapter, and
state one computational Theorem. These facts are found in standard treatments such

as [Har77].

11



For expert readers, we begin by specifying a Grothendieck topology for our schemes,

and for the non-expert, we define a topology that we will use on our schemes.

Definition 2.1.1 ( [Har77, pages 9 — 10]). Let S be a graded ring, let f € S be
a homogeneous polynomial, and denote by S, the mazimal ideal S; = Py=0S4. We

define
Vi(f) = {p<S:pis a homogeneous prime ideal, p # Sy, and f =0 (mod p)},
and if a < S is any homogeneous ideal, we define the zero set of a:
Z(a) = Z(T)={peS: f(p) =0 for all f € {homogeneous elements of a}},

where T is the set of all homogeneous elements of a. Finally, we say that a subset
Y < P% is an algebraic set if there exists a set T' of homogeneous elements such
that Y = Z(T) and define the Zariski topology on P by taking open sets to be the

complements of algebraic sets.

Example 2.1.2. The Zariski topology on PY has a basis of the open sets of the form

D (f), the nonvanishing locus of the function f € Clxg,--- ,xn] as f varies.

By means of defining as little as possible to get as much done as we can, we state

only a few things which appear in the detailed anatomy of a sheaf on a scheme.

Definition 2.1.3. Let X be a scheme over C and let F be a sheaf on X. Then for an
open U < X, the elements s € F(U) are called the sections of F, and in particular

are called global sections when U = X. Write H*(X, F) for the C-vector space of

12



global sections of F, and let
KX, F) Y dime HO(X, F).

We need a notion of functions on our scheme for the theory which follows. In

scheme-theoretic terminology, this means defining a sheaf of rings (of functions).

Definition 2.1.4 ( [Har77, page 110]). Let A be a ring, let p < A be a prime ideal
and denote the localization of A at p by A,. Suppose X is scheme over Spec A. The
structure sheaf Ox on X is the sheaf of rings defined on each open U < X to be
the ring of functions s : U — |_|peU A, such that for each p € U, s(p) € A, and for
each p' € U there is some open neighborhood V of p' contained in U and elements

a, f € A such that for each qe 'V, f ¢ q and s(q) = a/f in A,.

Finally, turning to the sheaves of modules which appear later in the document,

we introduce one last purely sheaf-theoretic idea.

Definition 2.1.5. Let X be a scheme over C. For E a locally free sheaf of rank r
on X, the determinant of E is det(FE) = N E, where /\" denotes the rth exterior

product, i.e. the rth graded component of the exterior algebra.

Later we will want to compute the determinant of a vector bundle, i.e. a sheaf

such as E in Definition 2.1.5, which we can do via the following theorem:

Theorem 2.1.6. Let X be a scheme over C and let E, F, G be locally free sheaves on
X. If0 > FE—F — G — 0 is exact then

det(F) ® det(G) = det(F).

13



Proof. This is [Har77, Exercise 11.6.11]. O

2.2 (CURVES AND COMPLETE INTERSECTIONS

The true starting point for the theory which we cover in this thesis is the definition
of a curve. We specify what kind of curve we consider by in particular the notions of
a “projective” scheme, an assumption we make about curves, and “complete intersec-
tions” which we discuss in great detail. These choices mean we do not have to make a
choice about some kind of ambient space in which our curve could live, but rather let
us inherit the geometry of a well-known space in our consideration of some subspace,

and that we use the theory of intersections in algebraic geometry, respectively.

Definition 2.2.1. A curve is an integral, smooth, projective, Noetherian, separated,
one-dimensional scheme of finite type over Spec(F) for F some (algebraically closed)

field.

In particular, by projective, we mean X is an irreducible algebraic set in PV
with the induced subset topology. With this notion, we can begin to introduce ring-

theoretic objects associated to a curve.

Definition 2.2.2 ( [Har77, page 10]). Suppose X is any subset of PY where F is an
algebraically closed field. The homogeneous ideal of X, denoted I(X), is the ideal

generated by
{f € Flxg, - ,xn] : f is homogeneous and f(P) =0 for all P € X}.

Next, by using the ideal above, we begin a special case of intersection theory.

14



Definition 2.2.3 ( [Har77, Exercise 1.2.17]). A variety X < PV of dimension n is a
(strict) complete intersection if [(X) can be generated by N —n elements. We say
X is a set-theoretic complete intersection if X can be written as the intersection

of N —n hypersurfaces.

The next result allows us to compute the degree of a complete intersection of

hypersurfaces of known degrees.

Theorem 2.2.4 ( [EH16, Corollary 1.24]). If ¢ hypersurfaces Zy,- -+ , Z. = PY meet

in a scheme X of codimension ¢ with irreducible components Cy,--- ,Cy then

> deg[C] = [ | deg[Zi].

Corollary 2.2.5. The degree of a complete intersection of hypersurfaces Dy, Dy and

D3 < PN of degrees dy,dy and ds respectively, which intersect in a curve, is didsds.

Proof. Since a curve is 1-dimensional, it has codimension N in P¥. Since a smooth
curve is irreducible, i.e. has a unique component, the degree of the complete intersec-

tion of hypersurfaces which meet in a smooth curve is the product of their degrees. [J

2.3 BUNDLES

In this section we consider certain sheaves of free modules on a scheme, which we
call vector bundles. This discussion is separated into a discussion of features of, com-
putational tools for, constructions of, and then examples of different bundles. These
topics meet in the discussion of the canonical bundle, and the canonical ring in par-

ticular, for a curve. While there are probably treatments of each of the facts in this

15



section in [Har77], we cite a variey of sources instead, both for readability as well as
proximity to the overarching problem of the genus formula for complete intersections

that we aim to state.

Formally, we consider the following kinds of sheaves of modules throughout the

rest of these notes.

Definition 2.3.1. Let X be a curve over F. Then a vector bundle of rank n on
X is a locally free sheaf of rank n Ox-modules. A line bundle on X is a vector

bundle of rank 1.

To make the abstract notion of a sheaf such as a line bundle more convenient
for computation, we will often use the following notion of divisors in place of line
bundles. Indeed in many situations, such as the case of a smooth curve, there is a
correspondence between line bundles and divisors. When working with line bundles
on a curve which is not smooth, only certain special divisors called Cartier divisors

correspond to line bundles. First we introduce the notion of divisors.

Definition 2.3.2. Let X be a scheme of dimension n over an algebraically closed

field F. Then a divisor on X is a formal sum of codimension 1 subschemes of X.

We have a certain uniqueness condition for divisors from the following notion of

linear equivalence between them.

Definition 2.3.3. Let X be a scheme of dimension n over an algebraically closed field
F with function field k(X). We say that two divisors D and E on X are linearly

equivalent if there is some f € k(X) such that div(f) = Z(f)—P(f) = D—E, where
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Z(f) and P(f) respectively denote the zeros and poles of f, counting multiplicities.

Write Div(X) for the free abelian group of divisors up to linear equivalence on X.

Example 2.3.4. When X < PV is a curve, a divisor on X is a formal sum of points

on X.

Remark 2.3.5. Since in these notes we consider the particular case when X is a
smooth curve, we will conflate line bundles and divisors on X. When the hypothesis
of smoothness is relevant, we will denote the missing assumption that the correspond-

ing divisors in question are Cartier with parenthesis.

We can naively spell out the correspondence between line bundles and divisors quite
neatly. Given L a line bundle on an integral scheme X and s a rational section of L,

the associated divisor is

div(s) = Z(s) — P(s) € Div(X).

Conversely, given D = > n;P; a (Cartier) divisor on X, the sheaf Ox(D) is a line

bundle on X, where

Ox(D) ={f e k(X) : f has a poles at worst D},

and k(X) is the function field of X.

2.3.1 FACTS ABOUT BUNDLES
Line bundles can define rational maps to projective space.
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Definition 2.3.6. Let X be a scheme over an algebraically closed field F and let L
be a line bundle on X. Suppose so, ..., s, is a basis for H°(X, L). Then there exists a
rational map

o X —{sp=--=8=0} > P"

giwen by P — (s;(P))i_,.

Remark 2.3.7. This is a rational map in the sense that it is defined only on a dense
open subset of X rather than the full space. In particular if L is a basepoint-free line

bundle, i.e. {sg=---= s, =0} =, then o, may define a map to P" on all of X.

We use the following terminology to describe whether the induced maps from line

bundles somehow preserve the geometry of the scheme they are defined on.

Definition 2.3.8 ( [Stal8a]). Say a line bundle L is very ample if the map ¢. :
X — P" by global sections of L is a closed immersion as in [Sta18b, Tag 01QN]. Say
the line bundle L is ample if there is some nonnegative r € 7 such that L& is very

ample.

Next, we do an apriori ring-theoretic construction on sheaves of modules over
Proj of a graded ring. This is an extended example of a line bundle which not only
lies on the ambient projective scheme which our (embedded) curves live in, but also
deals explicitly with hypersurfaces, which we will see cut out our curves as complete

intersections.

We start our construction with a fact about graded rings.

Definition 2.3.9. Let S = ®.>0S5. be a graded ring. The dth Serre twist of S is
the S-module S(d) given by S(d). S,
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Now we introduce a sheaf on Proj of a graded ring.

Definition 2.3.10. Let S be a graded ring and let M be a graded S-module. Then
there is a sheaf of modules M on Proj(S) defined by (the sheafification of)

(D, (f)) = M [H

where M[%]O is the Oth graded component of M[%]
Finally, we relate this sheaf of modules to the structure sheaf.

Definition 2.3.11. Let S be a graded ring and write PY for Proj S|zo,-- ,xn] for

—_———

x; indeterminates. The Serre twisting sheaf Opy on PY, is Opy (d) et Spy (d).

The following Theorem is instrumental computing the Picard group of PV as well
as making tensor products of line bundles on P¥ into a problem about elementary

addition of degrees.

Theorem 2.3.12. Let F be a field. For any d € Z=g
OIPIJFV (d) = OIP’]%V (dH)7

for H = PY any hyperplane.
Proof. Let S = F[xg,--- ,zx] and fix d a non-negative integer. Recall that S(d) wf
Sera by Definition 2.3.9 so S(d) = @e=oF[z0, -, TN]era- Let S be the sheaf of S-

modules on Proj S =~ PY given by (sheafifying)

S () = 5 H - F |, NH



where the nontrivial isomorphism of localized rings is from Example 2 on page 708

in [DF04]. Fix an affine open cover
N N
Py = JUi = D+ (w),
i=0 i=0

and for each affine open U; where 0 < i < N consider a map ¢; : S(d)(U;) —

Opy (dH)(U;) given by

f flm(zo, i1, Tig1, -, xN))

for f € Flzg, - ,2i_1,%iv1, - ,ZN]q, where m € Sy_1 is a permutation of indices
of coordinates. Note that we might equivalently define our map by a composi-
tion of f with a linear change of basis for homogeneous degree d polynomials in
o, ,Ti_1,Tir1, - ,Tn- In other words, each ¢; is a composition of the identity map
onlF[zg, - ,xi_1,Zis1, -, Tn]q with an automorphism of F|zg, - -+, ;—1, Tis1, -+, Tn]o,
and therefore is a well-defined ring homomorphism. There is a well-defined injective
inverse map by composing f~! with the inverse permutation-of-coordinates or respec-
tively the inverse of the change-of-basis automorphism, i.e. 77! o f~1, and therefore

on each affine open we have an isomorphism. This way we have isomorphisms

def _
Pij = Pilu,; = PjlU;

where Uj; “U A U;. By part 3 of the proof of Theorem [/.3.3 in [Har77] these

morphisms glue. [l

By Theorem 2.3.12, we see line bundles on Op~ are unique up to degrees. So, it
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follows that as groups

Pic(PY) =~ Z.

2.3.2 EXAMPLES OF BUNDLES

To develop a theory of a canonical bundle on a curve, and to compute it, we will need
four standard kinds of vector bundles which exist on many kinds of schemes. These

are the tangent and cotangent sheaves, the normal bundle, and finally the canonical

bundle itself.

The Sheaf of Differentials

As usual in this section, we begin with some facts about graded rings.

Definition 2.3.13 ( [Har77, page 172]). Let A be a commutative ring with 1, let B
be an A-algebra and let M be a B-module. An A-derivation of B into M is a map
d: B — M such that

1. d(b+ ) = d(b) + d(¥') for all b,V € B,
2. d(bb) = bd(¥) + V'd(b) for all bt € B, and
3. d(a) =0 for all a € A.

Now we may formally define a module of differentials in the “right” way to extend

the definition to schemes.

Definition 2.3.14 ( [Har77, page 172]). Let A be a commutative ring with 1 and let
B be an A-algebra. Define the module of relative differential forms of B over A

to be the B-module Qg 4 equipped with the A-derivation d : B — Qg4 which satisfies
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the universal property that for any B-module M and any A-derivation d' : B — M,

there exists a unique B-module homomorphism f : Qg/a — M such that d' = f od.

Example 2.3.15 ( [Har77, Example I11.8.2.1]). Let X be a scheme of dimension n over
C, and let B def Clzo, -+ ,xn_1]. Then Qp/c is the free B-module of rank n generated
by dxg, - - ,dx,_1, and we denote by Q2x the sheaf of differential 1-forms on X,

with associated module Qp/c.

Any actual treatment of duals of sheaves is besides the point in this discussion, so
we state a definition of a tangent sheaf so that we can connect differentials and the

normal bundle, which we turn to next.

Definition 2.3.16. Let X be a scheme over an algebraically closed field F. The tan-

gent bundle Tx to X is the bundle Tx et Q5.

Normal Bundle

At first glance, the normal bundle appears to be simply yet another sheaf of modules
on a scheme with a particularly unfriendly looking quotient definition. However, we
have carefully picked an exceptionally friendly kind of scheme: a complete intersec-

tion, to compute the normal bundle for.

Formally, we define the vector bundle of normal vectors to a subscheme as follows.

Definition 2.3.17 ( [EH16, page 50]). Suppose X < Y is an inclusion of schemes
over a field F. Then there is an inclusion of bundles Tx < Ty|X and the quotient
bundle

Ny Ty |y /Ty
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1s the normal bundle to X inY.

The connection between determinants of bundles, complete intersections of hy-

persurfaces, and curves all hinges on the following theorem.

Theorem 2.3.18. Suppose X < PV is a curve which is the complete intersection of

hypersurfaces Dy, --- , D, < PN. Then
NX - O]pN(Dl) (—B e (‘B O]P?N(Dr).

The Canonical Bundle

I decline to comment on why the canonical bundle is so named.
Our definition of a canonical bundle has two forms: the explicit catch-phrase
“top exterior power of the sheaf of differentials” definition for computations, and for

experts, the derived functor definition.

Definition 2.3.19 ( [Har77, page 180]). Let X = PV be a quasi-projective variety of

dimension n. We define the canonical bundle w = wx, a line bundle on X, by

w ™ /\ 0%
where N = dim H*(X,wx) — 1 and QY% is the sheaf of reqular differential one-forms
on X from Definition 2.3.1/.

Definition 2.3.20 ( [Reil9, Lecture 10]). Let X = PN be some projective connected

variety of dimension n. The canonical bundle wy is

wWx = Eth];Nn(Ox, CUPN>,
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where Ext is the derived functor of sheaf Homo_ (-, wpn ).

If the variety X from Definition 2.3.20 is also non-singular, then wy =~ %. This

line bundle is so special that the associated divisor has a distinguished name.

Definition 2.3.21. Let X < PV be a quasi-projective variety of dimension n. The

canonical divisor Kx on X is the (Cartier) divisor associated to wy.

We make one final restriction on the kind of curves which we consider from this

point forward.

Definition 2.3.22. Let X < PV be a curve and suppose that wx is very ample. Then

we call X a canonical curve.

A feature of projective curves X is that we can compute the coordinate ring of
X by means of the coordinate ring of PY = ProjF[zo, -+ ,zx]. In particular, we can

map to this ring by means of the map associated to wx given in Definition 2.3.6.

A central object in the study of curves is the following ring associated to the

canonical bundle.

Definition 2.3.23 ( [VZB22, page 1]). Let X be a scheme over an algebraically closed

field F. The canonical ring of X is the ring

R = R(X,wx) = P H(X,w?").

n=0

Remark 2.3.24. [t is a Fields-medal winning result that the canonical ring is finitely
generated, and the proof in full generality is too involved for these notes, which are

concerned with the more classical theorem mentioned below.
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Remark 2.3.25. For L any very ample line bundle on a scheme X over an alge-
braically closed field k we can define a section ring of L analogously to the canonical
ring defined above. One particularly relevant example for these notes is the Arbarello-

Sernesi module of X and L a line bundle on X which is the graded module

@HO(Xan ®£®q),

qeZ

which can be used, as in [GL85] with L = wx, to prove the theorem of Enriques,
Babbage and Petri, known as Petri’s theorem. Some other examples of explicit com-
putations of section rings are [0’D15] for divisors with Q-coefficients on P!, [CFO2/]
which generalizes [O’D15] to elliptic curves, and [LRZ16] which computes (log) spin
canonical Tings of curves in all genera. A comprehensive summary of canonical and

log canonical rings of curves in all genera is found in [VZB22, Chapter 2].

Now that we have a basic sense of what a canonical bundle is we turn the discussion

to computing it in the case of curves which are complete intersections of hypersurfaces.

Lemma 2.3.26 ( [Shal3, Shafarevich’s Lemmal). Let X be a purely n-dimensional,
non-singular, smooth, projective, algebraic variety over C. Locally, the canonical bun-
dle on X has form w = f(dxy A -+ A dxy,), where xy,- -+, x, are some local parame-

ters and f is some reqular function.
We first compute the canonical bundle on the scheme PY = ProjC[xg, - - ,n].
Theorem 2.3.27 ( [Vak02al). wpy = Opv(—N —1).

Proof. For readability this proof is restricted to the case when N = 2.
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Let P? = Proj C[xg, z1, 72| and consider some charts

(51 dif z
Up = {xg# 0} coordinates (ug,us), 0
U = %
def o,
U1 = {SCl = O} —— (Uo,'UQ), (o ;f %
def o,
U2 = {ZEQ # 0} - (wo,wl), w; if %

By Shafarevich’s Lemma 2.3.26, sections of wpz over Uy have form f(uy, us)duy A dusg
for some f € Op2, so consider the section du; A dug in particular. Away from Uy, there
is one location in P? where we want to make sense of our section du; A dus, namely
the divisor xy = 0. In the coordinates of the chart U;, which contains the divisor

xo = 0, we observe with some elementary calculus that

duy A dug = <;21du0) A (UOdUQ - u2du0) |

2
0 Up

. de
and since e; A e; ef 0 for any vector e;, we conclude

du1 AN dUQ = —3du0 VAN dUQ.
Ug

Since ;—31 has a pole of order 3 on uy = 0 as desired we are done. O
0

We will use a version of the adjunction formula to compute the canonical bundle

of our complete intersections.

Theorem 2.3.28 (Adjunction Formula). If X < PV is a smooth subscheme with
normal bundle Nx then

Wx = WIPN|X ®det(NX).
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2.4 A GENUS FORMULA FOR COMPLETE IN-

TERSECTIONS OF SURFACES

Now we have the tools to state and prove a genus formula for complete intersections
of hypersurfaces in a projective space. We restrict ourselves to hypersurfaces in P*

for this section to make the notation concrete and as accessible as possble.

Theorem 2.4.1. Let X € P* be the complete intersection of smooth degree dy, ds, ds

hypersurfaces Dy, Dy and D3 < P*. Then X is a curve of genus

(dl +dy + d3 — 5)d1d2d3 -2
5 .

g:

Proof. Recall that by Exercise 1.2.17.b in [Har77], X is a set-theoretic complete in-
tersection and therefore a curve since it is the intersection of 3 hypersurfaces in P4,
i.e. a variety of dimension 1 per Definition 2.2.3. By the Adjunction formula 2.3.28,

we compute

wx = UJ]p4|X ®det(Nx)

Using Theorem 2.3.18 and Theorem 2.3.27 we see

wx = O[P’4(_5)|X ® det [OHM (Dl)‘X @ OP4(D2)|X @ OIF’4 <D3)|X] .

We can compute the determinant with Theorem 2.1.6, and since the Ops(D;)| x are line

bundles for 1 <4 < 3, Definition 2.1.5 becomes det(Ops(D;)|x) = A’ Ops(D;)|x =
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Ops(D;)|x for each i, so we get

wx = Ops(—5)|x ® Ops(D1)|x ® Ops(D2)|x ® Ops(D3)|x

by Theorem 2.1.6. Since Pic(P") =~ Z so line bundles are unique up to degrees, using
Serre twist notation 2.3.12 and the fact that restrictions commute with tensors since

restriction is a right adjoint functor, we rewrite

wx = O]p4(—5) ® Opl(dl) ® O]}DAL(dQ) ® O[[M (dg)’X

Finally, making use of the convenient notation choice above and the Picard group
again,

wx = O]pzl(dl +dy + d3 — 5)‘){ = Ox(dl +dy + d3 — 5)

By Theorem 2.3.12 we have an isomorphism

O[M(dl +d2 +d3 — 5)’)( = OP4((d1 +d2 +d3 — 5)[‘[)’)(

for H any hyperplane divisor. Being a hyperplane divisor, H will intersect X, which

has degree dydsds by Corollary 2.2.5, exactly deg(X) = dydsd3 times, so that

deg(OX(dl + d2 + d3 — 5)) = (dl + d2 + dg — 5>d1d2d3
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By Riemann-Roch and Corollary 2.2.5 we compute

deg(Kx) = deg(Opa(dy +dy+ds—5)|x) =2g—2
(dl +dy + d3 — 5)d1d2d3 =29 — 2,
SO

(dl +dy + d3 — 5)d1d2d3 -2
5 .

g= (2.4.1)

O

Corollary 2.4.2. The complete intersection of 3 distinct smooth quadrics in P* is a

curve of genus 5.

Proof. For each i, we have d; = 2 and so by our formula 2.4.1 we compute g = 5. [

2.5 EXPLICIT SYZYGIES OF HOMOGENEOUS

IDEALS

We also want to show that if X is a genus g > 4 curve (over C in order to simplify,
any algebraically closed field of characteristic 0 works as well), then the canonical
ring of X has form R =~ Clxy,---,x,]/I, where I is generated by (exactly 3 when
g = 5) quadrics. This is the other direction of Petri’s theorem’s “if and only if”-type

statement.

As an R-ideal, I naturally has the structure of an R-module, and in fact is finitely
generated. However, more information is needed than simply the generators, say some

fi,--+, fu, for I. In particular there are nontrivial relations among those generators,
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which form a set called the (first) syzygies, denoted Syz(fi,- -, f,) following the
notation from [CLOO05, chapter 6]. It turns out that Syz(fi,---, f,) is itself an R-
module, say with generators g1, - - - , g, and there is an R-module of relations among
the g;, denoted Syz(gi,- - , gm), which is the module of (second) syzygies for I.
Proceeding in this way one defines a sequence of successive syzygy modules for [
which is called a resolution. Our goal will be to explicitly write down the first syzy-
gies corresponding to the quadrics whose complete intersection is (the image under

the canonical embedding in P9~! of) X.

Let ¢ : X — P91 be the map obtained from global sections of the canonical

bundle

p=[s1(p) -5 54(p)]

and let x;,---,2, € X be some closed points in general position. Then consider
a basis 1, ,p, of H(X,wx) such that ¢;(z;) # 0 if and only if i = j. By the

uniform position theorem in [ACG11, Section 3] and the geometric Riemann-Roch

dim H*(X, K(—x1 — -+ — 2y — -+ — 1)) = 1,

where Z; means that point is excluded, ¢; is taken to be the generator for each ¢ and

K = Ky is a canonical divisor on X. As a section of K

so the ; form a basis for H°(X, K). The assumption that the points z; are in general
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position also means the divisors (¢;) are supported at 2g — 2 distinct points with

pairwise disjoint support. Note that for any relation

Z Aipi = 0,

evaluating at z; gives \; = 0. It is also worth noting that this choice of basis is not

arbitrarily restrictive in the sense of the following Lemma.

Lemma 2.5.1. Let X be a genus g = 4 canonical, non-hyperelliptic, smooth, irre-
ducible, complex algebraic curve. Let ¢ : X — P91 be the map obtained from global

sections of the canonical bundle

and let x1,--- ,x4 € X be some closed points in general position. Suppose o1,--- ,@q
form a basis for HY(X,wx) such that v;(x;) # 0 if and only if i = j. Then given any

basis n1, -+ ,n, for H(X,wx), there exist some a; j € C such that ¢; = Y9 _, a; kM-

Proof. Let n,- -+ ,m, be a basis for H*(X,wy). Since the data of H°(X,wy) is some
cover by affine opens (U; — X);ca with sections s; € wx(U;) compatible over inter-

sections, for any z € X, the n’s globally generate H(X,wx) in the sense that

WX,z = Span{<n1)x7 T (ng)x}'

One of the rational sections (), is a generator for the localization wy , at x. Suppose

for each of z1,---,z, € X some closed points in general position, that ay,---, a4
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generate Wx g, ,Wxz, respectively. Then

(M)ar = 1100 (M)ay = T2 -+ (N)a, = Ty
(772)901 = S101 (7]2)x2 = Satvg - (772)3;9 = 5404
for some 11,81, ;11 € Ox oy, 72,82, ,t2 € Ox ey, Ty, 8¢, , 14 € Oxq, and so on.

Recall that each of the local rings Ox,, is a discrete valuation ring with a unique

maximal ideal the uniformizer at x;. Since wy 4, is generated by «; for each i,
(riy iy i) = Oxa,
so one of r;,8;, -+ ,t; € O)X(xl Suppose for some a; 1, ,a;4 € C not all 0 that
(aigm + aiane + -+ + a;gng)(z;) = 0
for some j # i. At the stalk
(@iam + aione + - 4 Qighg)a, = [ai1(rj(7;)) + aia(sj(;)) + - + aig(t;(2;))]
so without loss of generality if r; is the unit, since a; 17; + --- + a1 4t; = 0,
aig = 15 (1)) [aizsi(x;) + -+ aigti(z;)].

In particular the solution lies in C. Indeed 7;,s;,--- ,t; € Ox 4, so the evaluations
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ri(x;), -, 55(2)) € Oxe, /M = k(X), where M is the uniformizer at x5 and x(X) =
k(x;) is the residue field of the curve at the stalk. So since s;,---,t; vanish to
nonnegative order at x; as localizations of a global section to an affine open, and r;

by assumption of being a unit is nonvanishing at x;,

rj € Ox a0, = 75(5) € (Ox0;/ M) = C”

and each of s;(x;),- - - ,t;(z;) lie in a finite extension of C. Therefore, each is a complex

number since C is algebraically closed, so there are no such nontrivial extensions of

C. ]

Next we consider the relations in our chosen basis {(;} for H°(X,wy). Ultimately
we will give bases for each graded component of the canonical ideal I of X in P9~! as

in [Mum99, page 237]. Consider the maps

Uyt HO(PY™' Ope1(n)) — HY (X, W)

given by restriction and let Xy, ---, X, be a basis for H*(P9~!, Ops-1(1)) defined by

Xi = Q/)l_l(gpl)a

so that the X; act like homogeneous coordinates.

Example 2.5.2 ([ACG11, page 125]). Given P = P(Xy,---,X,) € H*(P9™!, Opy-1(n))
say that P = 1, (P). Changing coordinates in this manner when n = 3 we have for
example:

X?X5 = pips.
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Let D = 234 --- + x4, € Div(X). The general position of the z; means

dim H°(X,wx(—D)) = 2,

where the vector space has a basis ¢; and ¢y. Since the support of the (y;) are
pairwise disjoint, the pencil |wx(—D)| is base-point free. Each vector space in the

filtration

HY(X,w%) o H'(X,w%(=D)) o - o H'(X,w%((—n + 1)D))

has codimension g — 2 in the previous, where n — 1 > s > 1 since by Riemann-Roch,

for each s we have

W (X, wk(=sD)) = (2n —1)(g — 1) — s(g — 2).

To actually write Petri’s equations for each s there must be m-canonical forms in
H°(X,w%(—sD)) which are linearly independent modulo H%(X,w%((—s — 1)D)) as

this allows us to form a basis for the canonical ring.

Lemma 2.5.3 ( [ACG11, Base-point free pencil trick]). Let C' be a smooth curve, let
L be an invertible sheaf on C and let F be a free Oc-module. Suppose s1 and sy are
linearly independent sections of L and denote the subspace of H°(C,L) which they

generate V. Then the map

$oo: VRHC,F) - H(C,F®L)
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given by

51 ®ty — Sy ® 11 — S1la — Sty

has kernel

ker ¢ o = H(C, F ® L™ (B)),
where B is the base locus of the pencil spanned by s1 and ss.

The application the Base-point free pencil trick 2.5.3 relevant to the Petri equa-

tions is our computation of

ker ¢, s = HY(C, w(’}_Q((*s +2)D))

in the case when C' is our smooth genus g > 4 curve and ¢,, s forn —1 > s > 1 is the

cup-product map

b+ H(C, ™ (=5 + 1)D)) ® HO(C,we(—D)) — H(C,wip(=sD))

from [ACGHS5, 3.3].

We start with an inductive desciption of bases for the vector spaces H°(X,w%)

for each n as follows. The map

a1+ H(X,wx) ® H(X,wx(=D)) — H'(X,wk(=D))
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is surjective by Lemma 2.5.3 so

2, 0102, s, L1Pi, V2P,

where 3 < i < g, form a basis for H°(X,w% (—D)). At the top of the tower
H()(Xawg() - HO<X7("}§((_D))7

the ¢3,--- , > are differentials in H°(X,w%) which are linearly independent modulo
H°(X,w%(—D)) and since codim(H°(X,w%(—D)) in H(X,w%)) = g — 2 the basis
for HO(X,w%) is

80%79019027% | |
0104 | | basis of H(X,w%(—D))

P2; | |
Gogt | basis of H(X.u})

Writing down all of the differentials in each homogeneous order n, some nontrivial
relations begin to arise between them. For example, for all 3 <,k < g where @ # k,
vior € HY(X,w%(—D)) and in particular vanishes at x; and z5. In [Mum99, page

240] Mumford concisely describes these relations

g
Yip; = Z ik (91, P2) Pk + VP12,
k=3
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and in H°(X,w%) in particular
g
M=M= D, Qa(P1, 02) 0k + Vil + V0195,

k=3

where the « are linear, o/ are quadratic and v’s are scalars repectively. In particular

the homogeneous degree 2 equations

g
fij = T;Tj — Z aijk(xla 1’2)% — Vi T1%2,
k=3

and the degree 3 equations
g9
_ 2 2 ! ’r 2 N 2
9ij = (pir1 — Niwa); — (1 — A\jwa) s — Z (1, T)Tp — V27T — V1125,
k=3

where the 3 < i,5 < g, and i # j are generators of the ideal of X in P9~!. In other
words the f;; all vanish on X in P! and are exactly the subvariety-defining equations

guaranteed by Petri’s theorem. To be rigorous, these

(g —2)(g—3)
2

linearly independent elements of I, match the dimension of I, which we expect from

Max Noether’s theorem, so indeed the f;; form a basis.

Example 2.5.4. The full list of these equations when g =5 is

f347 f357 f437 f457 f53; f54

934, 935, 943, 045, UG53, 54
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but there are some relations among them.
We describe relations among our generators in the next Lemma.

Lemma 2.5.5 ( [Mum99, page 240]). Let X be a genus g = 4 canonical, non-

hyperelliptic, smooth, irreducible, complex algebraic curve. There are syzygies
L fij = fii
2. Gij + ik = Gik-
g9 g
3. wpfij —xjfie + 20 jif — 25 Qi fit = PijeGik,
=3 =3

l#k [
where 3 < 4,5,k < g, 1,7,k are distinct, and the p;j are scalars symmetric in

1,7 and k,

which generate the components of the homogeneous ideal of X in its canonical embed-

ding Ixpe—1 5 and Ixpe—1 3 respectively.

Proof. This is a proof of only the second syzygy. The first is trivial and the third

requires more discussion.

- e — )\, 2 _ ). 2 _\Y / o 2 2
9ij + gjr = (w1 — Nwa)wi — (pen — Njwo) i — 2oy o (1, w2)wp — vj;xi00 — 152125
_|_( 1 — s )2_( Y )2_29 ! ( ) o 2 2
M1 jL2) T e ET2)X}, k=3 Qi (L1, T2)Tp — VXL — V5 T1T5
= ) — X\ 2 _ _ 2 _\NvY / o2 o 2
= (w1 — Nimo)wy — (s — Aea)wy — Doy _g gy (1, Ta) T — Vi 12 — V173

= ik

A / "o n "
where v, = v;; + vy, and vy = v + Vg ]

In order to spare writing longer lists and make the notation more readable, we

suppose g(X) = 5 as this suffices to illustrate the point. The first two kinds of syzygy
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in Lemma 2.5.5 reduces the number of relations per the following table when g = 5:

type (1) type (2)

faa = fa3 G3a + gas = G35

J3s = f53 G35 + G54 = G3a
Jis = fsa  Gas + 53 = a3
943 + 935 = 45
953 T 34 = g54

gs54 + 943 = Gs3

which leaves only the following generators for the ideal

f34, f35, fas, 934, 935, Gus

subject to the relations

P354934 = Taf35 — T5f34 + Z a5t far —
!

=3
144

P315935 = T5 f34 — Taf35 + Z a3y f51 —
1=3

15

and

Pazsgas = Ts fa3 — X3 fa5 + Z ozt f1 —
=3

145

Z CY34lf5l,
l

=3
1#4

Za35zf4l,
=3

145

204451f3l-
=3

145

Now that we have illustrated explicit relations, we return to the consideration of

general genus g > 4 curves. There are several cases with different minimal sets of

relations. Either p;jr = o, = 0 whenever 1, j, k are distinct, in which case our curve
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X is either trigonal or in the genus 6 case may be a nonsingular plane quintic; or
{3,--- .9} = I U I, where for all j € I} and k € I, there exists an ¢ with p;;; # 0
and ayj, # 0 and such that the ideal of X is generated by the f;; alone. Finally, we
can state and prove our version of Petri’s result about the canonical ideal of a genus

5 curve.

Theorem 2.5.6. Let X be a genus 5 canonical, non-hyperelliptic, smooth, irreducible,
complex algebraic curve. The syzygies fsa, f35 and fi5 generate the canonical ideal of

X its canonical embedding in P*.

Proof. Consider any partition of {3,4, 5} which includes at least one nonempty subset
and the set-theoretic complement of that the first component. If at least some p; 5, # 0

then g;;, is determined by the f;;. If every g were to be 0 the result also follows. [
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CHAPTER 3

STACKS AND How WE COMPUTE THEIR

CANONICAL RINGS

In this chapter we consider the problem of doing a calculation of the canonical ring
in the spirit of Petri’s theorem but for a stack rather than a scheme. As we will see,
in the case of tamely ramified Deligne-Mumford stacky curves that we are interested
in, our stacks behave just like schemes with some finite number of fractional points.
This makes the combinatorics of the canonical ring slightly more complicated than in
Petri’s theorem, but is a quite well understood question with lots of existing theory.
We first describe carefully what a stack is and then provide some references to existing

techniques and results for computing canonical rings stacky curves.

3.1 WHY DO WE USE STACKS?

We preview our working theory of stacks with some motivation for this addition level

of technicality. In doing so, we will mention several facts that we return to in later
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Sections and Chapters, and some that are not explicitly covered elsewhere in this
document. Without further ado, the reason that we use stacks is because of how

uniquely suited they are for describing the geometry of modular forms.

Modular forms as in [DS05, Definition 1.2.3] and Definition 6.1.5 can always
be made (in the non-Drinfeld and Drinfeld case respectively) as global sections of
line bundles. However, the dimension formulas (see e.g. [DS05, Chapter 3|) do not
agree with the dimensions of the global sections of these line bundles, i.e. we do
not get M ([') = H°(X(T), L®*). Modular forms (including Drinfeld ones) can al-
ways be treated as sections of line bundles without referring to the stacky structure

of the modular curves where the modular form lives. However, it is not true that

HY(X, L*) = M; where

(X = moduli space, L = appropriate line bundle, M = vector space of modular forms)

without either modifying L, taking a subspace of HY or replacing X with a stack

whose coarse space is X.

This problem is more than just the dimension counts, it is the full graded ring.

Modular forms *are* sections of line bundles, the point is that just computing
the graded ring of sections of powers of a single line bundle does not give the correct
ring of modular forms, at least without modification. On the other hand, treating
this canonical ring as a stacky canonical ring - meaning computing global sections

of powers of a line bundle *on a stack™ - does recover the correct graded ring structure.
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The difference between H°(X, L) and H°(2", %) for a scheme and a stack respec-
tively is subtle, but we can phrase things in terms of divisors. If . = O(D) for a
divisor on 2" (see Section 3.3), then H°(2", D) = H°(X,|D]), where | D| denotes
the floor of D. Explicitly, D is a sum of irreducible divisors, some of which may be
stacky. For such an irreducible divisor Z, |Z| = |1/#G|Z, where G is the automor-

phism group along Z.

There are floors in the formulas for (dimensions of algebras of) modular forms,
so it looks like something jumpy and discontinuous is happening. We know modular
forms are functions on the j-line (see [DS05, page 7] or [Gek86, Example V.3.6]),
so what is going on? Certain isomorphism classes (of say elliptic curves or Drinfeld
modules of rank 2 respectively) are “fatter” than the rest. For example, elliptic curves
with j = 0 (respectively j = 1728) have 6 automorphisms (respectively 4) instead of
just the usual hyperelliptic involution. Here is our “jumpiness.” Counting properly,

i.e. treating those j values as 1/3 and 1/2 we get a continuous looking formula.

3.2 WHAT IS A STACK

Thanks to Yoneda’s lemma we may introduce stacks in terms of a familiar language
to a geometer. A stack is a category fibered over some other category all of whose
morphisms are isomorphisms (a groupoid), and which satisfies a descent condition,
an analog of the ordinary sheaf condition. A useful practical reference for doing work

with stacks is [Alp23], where Alper uses this perspective to introduce stacks via a
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“pre-stack” much like a presheaf. We first state this analogy between sheaves and

stacks as a means to organize this chapter, and then we will make it precise.

1-category 2-category
functor /pre-sheaf fibered category
separated pre-sheaf pre-stack
sheaf stack
algebraic space / scheme algebraic stack
variety algebraic stack of finite type over a field

We take the functor of points perspective when working with stacks as this allows
us to make very explicit calculations and deal with the coming category theory in a

way which resembles how we learn about sheaves.

3.2.1 FUNCTOR OF POINTS, YONEDA, SITES, GROUPOIDS

Let € be a category, and let € et Fun(%€°P, Set) denote the category of functors
whose objects are functors and whose morphisms are natural transformations. Then
we say the functor h : ¢ — € sending an object X € € to the functor hx € % defined

by hx(Y) et Homg (Y, X)) and mapping morphisms as in the following diagram:

Y’ Hom(Y, X) o f
N ]
Yy — X Hom(Y’, X) > fog,
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is the functor of points on . We say a functor F' € % is representable if
there is some X € ¢ and an isomorphism hyx — F, i.e. for each Y € € there is an
isomorphism hx(Y) > F(Y) compatible with compositions. A map F/ — F € € is
(relatively) representable if for each X € € we have F” gy rhx = hx for

some X' e ¥.

Lemma 3.2.1. Let F € €. The diagonal A : F — F x F is representable if and

only if each f: X — F is representable.

Proof. Tf A is representable, then for any Z € ¥ we have an isomorphism of functors
AN R XA hy = hy for some Z' € €. So, if f: X — F then X’ e xp Z' has

X Xp hy = hx, ie. the following commutes

T

X'
|
X

Conversely, if each f : X — F is representable, then for any Y € % there is
an isomorphism of functors F’ © X « r hy = hy: for some Y’ € €. Then for any

Z — F x F since F' xa hy = hy, i.e. the following commutes

Y —— Y VA
RN
X — F —— FxF
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we see that A is representable. O

Theorem 3.2.2. (Yoneda’s Lemma/The Fundamental Theorem of Category Theory)
The functor of points € — % is fully faithful, i.e. it induces isomorphisms of sets as
follows. For each X, Y € € there is a natural Homg (X,Y) = Hom(hx, hy ), such that

given T % X LY there is hx 5> hy where hx(T) — hy(T) is given by g — fog.

Thanks to this fact we are able to phrase much of our discussion of stacks explic-
itly and in particular we may discuss a fundamental phenomenon: descent, in familiar
language. We conclude this section by stating a few definitions for our coming discus-
sion of fibered categories and the analog of the sheaf condition for 2-categories. We
say that a given category % is a groupoid if all of the maps in € are isomorphisms.
Let € be a category. A Grothendieck topology on % is specified by the following
data. For each X € ¥ there is a collection Cov(X), the coverings of X (containing

{X; — X}) such that
1. if V — X is an isomorphism then {V — X} € Cov(X),
2. for each {X; > X} € Cov(X) and forall Y - X € ¥,

(a) the fiber-product X; x x Y exists, and

(b) {X; xx Y — Y} e Cov(Y),
3. if {Xz — X} € COV(X) and {V;j d Xz} € COV(XZ) then {‘/zg — X} € COV(X)

We say that the pair (¢, 7) for € a category and 7 some Grothendieck topology
on % is a site. However, for our reference later on while discussing rigid analytic

geometry, we offer a more formal definition of a site.
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Definition 3.2.3 ( [Stal8¢c|). A site is a pair of € a category and a set Cov(€) of
families of morphisms with fized target {U; — U}icr called coverings of € satisfying

the arioms
1. If V. — U is an isomorphism, then {V — U} € Cov(%).
2. If {U; — U}lier € Cov(€) and for each i {V;j — U,;}jes € Cov(€), then {V;; —
Utier jes € Cov(%).

3. If {U; > U}ic; € Cov(¥) and V — U is a morphism in €, then U; xy V ezists
for all i and {U; xg V — V}ier € Cov(%).

3.2.2 DESCENT AND FIBERED CATEGORIES

Let € 5 2 be a functor. An arrow X — Y € € is Cartesian if for all Z € € and all
morphisms 7(Z) — m(X) and Z — Y, there exists a unique morphism Z — X such

that the following commutes

3

A
\\\\ !
I

v
V1 X —Y

m(Z) —2 ng) — w(lY)

We call X a pullback of YV along 7(X) — 7(Y). We say € 5> Z is a fibered

category if for all T” LT e @andall Y € € such that Y — T there is some

X €% and X %Y € € such that g is Cartesian (i.e. 7(g) = f). In other words, the
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following commutes

13X —2 5 VY e¥

l I

VW' ——TeD

and in this case we have

¢ 3€(T) > €(T)

25T - T

any choice of
where €(T) — € (T") is defined by Y — X =

Cartesian arrow

Now we have a notion of the kind of categories (2-categories) from the first part of
our informal definition of stacks as “fibered categories.” We turn to the 2-categorical

descent condition, the analog of the sheaf condition for 1-categories.

Suppose that X’ % X is an étale cover in some site. That is, if X = U X; is some

el
open cover of X then X' = |_| X;. Let
el
S S def sheaves of sets on X
X = Xga = /(isomorphism of sheaves).

in the Zariski topology
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Let X" = X' xx X' = | | Xjjandlet X" = X' xx X' xx X" = | | Xiji. Then there
i,j€1 i,4,kel
is an equivalence of categories between the such fibered covers and sheaves:

\—JXijk >~ X"

I b

UX; > X" S
lp{m Py ﬁ L%l
LX; = X! X"
| 1
X X

Keeping our notation from above, we define the category of descent data

—_——

X" % X via the following data. The objects are pairs (#' € X', i) where i : p;L.#" >

py " F' are canonical isomorphisms such that given .Z € X, if we write .%; “ 7 X,

the following commutes

Figure 3.1: The 2-categorical cocycle condition

(ﬂ% XL])|X7,]k %”) (ﬂj XU)|XUk
(]:Z Xik) Xijk ("7:]|X]k) Xijk
Pik < - Pik
(gzkb(m) Xijk (i— (yk‘X]k> Xijk

i.e. ikl x, ©Pijlx,; = @iklije- The morphisms in the category of descent data are

maps (F',i) — (¢',v) with F’ Y @' such that the following commutes
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-1
pflgl Py Y pflg/

pglgl Py ¥ pglg/

Now we can state formally the 2-categorical “sheaf” condition.

Theorem 3.2.4. (Strong form of Descent)

The functor X >X5X defined by F — (p~ .F,i) with i a canonical system of
isomorphisms as above in Figure 3.1 and p a cover of X in some site, is an equivalence

of categories.

3.2.3 DEFINING A STACK

Finally we are able to move on to formal definitions of a stack and some special kinds

of stacks which we will work with later in the document.

Definition 3.2.5. Let (¢, 1) be a site. A stack over € is a category Z — € fibered

in groupoids satisfying descent, i.e. for each T' 5 T e Cov(T) there are morphisms

2(T) -2 2(T') === 2(T") == 2(T")
Pt of

and descent implies there is an equivalence of categories & (T') — Desc(T" — T)

where

Desc(T” — T) < 1im <5&”(T’) = 21" 3 %(T”’))

«—
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is the 2-limit which contains pairs (v € Z (T"),0) with o : pi(x) = pi(x) satisfying

the 2-cocycle condition 3.1.
In particular we consider the following kinds of stacks exclusively.
Definition 3.2.6. A stack 2" on a site (¢, 7) is algebraic or an Artin stack if
1. there exists some X € € and a smooth cover X — 2", and
2. the diagonal X 8 ¥ x X is representable.

Another relevant hypothesis for computing canonical rings especially is the fol-

lowing.

Definition 3.2.7. An algebraic stack X~ over a category € is a Deligne- Mumford
stack if

1. there is some X € € and an étale cover X — Z°, and
2. the diagonal Z 8 X x X is representable, quasi-compact and separated.

In practice however, when working with stacks rather than proving a given moduli
sapce is a stack for example, the following definition of a stack from [LRZ16] suffices

for our work in this document.

Definition 3.2.8 ( [LRZ16, Definition 2.1]). A stacky curve Z over an alge-
braically closed field K is a smooth proper integral scheme X /K of dimension 1,
together with closed points Py,--- , P. of X with stabilizer orders ey, - ,e, € Zxo

called stacky points of 2.
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Remark 3.2.9. It is worth noting one crucial generalization which we have made
in our assumptions when adopting the notion of a stacky curve from Definition 3.2.8
compared with the schemes of Chapter 2. Here we have made no restrictions on the
characteristic of the ground field K and hence use different notation from Chapter 2
where the assumption of characteristic 0 is essential. Indeed, as we proceed to do, one
can compute canonical Tings and find Petri-style generators and relations for stacky
curves even in positive characteristic.

Suppose then that char(K) = p. Let X be any smooth, projective curve over K.
Let G < Aut(X) be a finite group. Then the stack quotient [ X /G| has the structure
of a stacky curve. Furthermore, if ged(#G, char(K)) = 1 then we say that [X/G]
is tame in the sense of [VZB22, Definition 5.2.4]; otherwise, we say Z is wild.
For the remainder of this work, our stacky curves in positive characteristic are tame.
This is a necessary but not sufficient hypothesis for our positive-characteristic version
of Petri-style calculations to behave similarly to the classical work in Chapter 2 and
Appendices A and B in characteristic 0. See [VZB22, Chapter 5] for a more detailed
treatement of this necessary but not sufficient condition.

It is possible to work on wild stacky curves (see e.g. [VZB22, Remark 5.2.5]),
but beyond the scope of what we need now. Note that [VZB22, Remark 5.2.5] also
explains the “similar behavior” we mention holds when considering canonical rings
of tame stacky curves and schemes in characteristic 0. Finally, note that we discuss

tameness of the stacks which are our main focus in Remark 6.2.9.

52



3.3 HOW WE USE STACKS

See [Alp23] for a general stacks reference; see [VZB22] for an excellent and compre-
hensive reference on computing canonical rings of stacky curves and [O’D15] for a
useful generalization of [VZB22] that we need for the Drinfeld setting. We are most
interested in Deligne-Mumford stacks for this work, so some facts and examples will
be specialized to that case, but we indicate when this occurs. We also discuss rigid
analytic stacks and GAGA for rigid analytic and algebraic stacks, but leave that the-

ory for a later section.

It is shown in e.g. [Lau96, Corollary 1.4.3] that the moduli space of rank r Drin-
feld modules over the category of schemes of characteristic p is representable by a
Deligne-Mumford algebraic stack of finite type over F,,. One is able to compute the
graded rings of global sections of line bundles on stacks which represent the Drinfeld
moduli problems by means of geometric invariants with results that are slight variants
on the theory in [VZB22]. We will follow [VZB22] in describing this computation,

stating only select facts that we will need.

Recall from [VZB22, Definition 5.2.1], a stacky curve 2  over a field K is a
smooth, proper, geometrically connected Deligne-Mumford stack of dimension 1 over
K that contains a dense open subscheme. Every stacky curve 2 over a field K has
a unique coarse space morphism 7 : 2" — X with X a smooth proper integral
scheme over K (called the coarse space) from Definition 3.2.8. Here 7 is universal

for morphisms from 2~ to schemes, and the set of isomorphism classes of F-points
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on £ and X are in bijection for any algebraically closed field F' containing K. Note
that étale locally on the coarse space X, a stacky curve 2  is the quotient of an
affine scheme by a finite (constant) group G < Aut(X). For 2 € X some point, let
G, denote the stabilizer of x under the action by G. Only finitely many points of a
stacky curve 2" have nontrivial stabilizers in the sense that a dense open subscheme
of points all have isomorphic stabilizers, while some finitely many, the stacky points

of Definition 3.2.8, have strictly larger stabilizer groups.

Continuing the notation in the last paragraph, let 7 : 2" — X be a coarse space
morphism. A Weil divisor is a finite formal sum of irreducible closed substacks of
codimension 1 over K. On a smooth Deligne-Mumford stack, every Weil divisor is
Cartier. Any line bundle .Z on 2" is isomorphic to O4 (D) for some Cartier divisor

D. Finally, there is an isomorphism of sheaves on the Zariski site of X :

OX(lDJ) — W*O%(D>7

where

D)= [ Yar| Y Y] #Zﬂjw(ﬂ).

Example 3.3.1. Let f : & — % be a morphism of stacky curves with coarse spaces
X and 'Y = Speck for k some field respectively. Then the sheaf of differentials
Q. = Qéz'/speck is the sheafification (see [Alp23, Section 2.2.9] for sheafification) of

the presheaf on 24 given by
(U= 2) = Qo, w1104 ©):
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where Oy and Oy denote the structure sheaves on 2 and ¥ respectively (see e.g.
[Alp23, Example 4.1.2] for more details on structure sheaves for Deligne-Mumford

stacks).

Every smooth, projective curve X may be treated as a stacky curve with nothing
stacky about it. On the other hand, as we have seen in Remark 3.2.9 the stack quo-
tient [ X /G] for a finite group G < Aut(X) is a stacky curve, as in Definition 3.2.8. We
know from e.g. [VZB22, Remark 5.2.8] that Zariski locally every stacky curve is the
quotient of a smooth, affine curve by a finite group, so in some sense “most” stacky
curves have a quotient description [X/G] as above. Recall from [VZB22, Lemma
5.3.10.(b)] that the stabilizer groups of a tame stacky curve are isomorphic to the
group of roots of unity pu, for some n. In order to discuss Drinfeld moduli stacks, we

introduce two more stacky notions.

We say a gerbe over a stacky curve is a smooth, proper, geometrically connected
Deligne-Mumford stack of dimension 1 over its base field. Note that a gerbe is almost
a stacky curve, except that it does not contain a dense open subscheme. Let 2~
denote a geometrically integral Deligne-Mumford stack of relative dimension 1 over
a base scheme S whose generic point has stabilizer pu,, for some n. Then there exists

a stack, denoted 2" //u,, called the rigidification of 2", and a factorization

25X — S

such that 7 is a p,-gerbe and the stabilizer of any point in 2" //u, is the quotient of

the stabilizer of the corresponding point in 2~ by f,.
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Remark 3.3.2. In the factorization above, since 7 is a gerbe and furthermore is
étale, the sheaf of relative differentials & — 2 J/p, is 0, i.e. the gerbe does not
affect sections of relative differentials (over the base scheme), nor the canonical ring
which we define for stacks below. In particular, we can identify canonical divisors

Ko ~ 7Kg jpu,, and the corresponding canonical rings are isomorphic.

In particular, we treat seriously the stackiness of moduli spaces when we compute
the following homogeneous coordinate rings on modular curves such as our consider-

ation of Drinfeld modular curves.

Definition 3.3.3. Let 2" be a stacky curve over a field k and let £ be an invertble

sheaf on Z . Then the section ring of £ on 2 is the ring

R(Z, &) =P H (2, 2L%.

d=0

If & =~ Oy (D) for some Cartier divisor D in particular, we can equivalently write

Rp =@ H(Z ,dD).

d=0

Recall from [VZB22, Chapter 5.1] that a point of a stack 2" is a map Spec F' — 2
for F' some field, and to a point x, we associate its stabilizer G, = Isom(z, x), a func-
tor which is a representable by an algebraic space. If GG, is a finite group scheme, say
that 2" is tame if deg G, is not divisible by char(F') for any x € 2. We say a point

x with G, # {1} is a stacky point as in Definition 3.2.8.

Finally, for readability of our main results, we introduce some terminology inspired

by [VZB22, Definition 5.6.2] and [VZB22, Proposition 5.5.6]. Let 2" be a tame stacky
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curve over an algebraically closed field K with coarse space X. A Weil divisor A on
Z is a log divisor if A = ). P, is an effective divisor given as a sum of distinct
points (stacky or otherwise) on 2. By [VZB22, Proposition 5.5.6] if K4 and Ky
are canonical divisors on .2~ and X respectively, then there is a linear equivalence of

divisors

1
K%NKx—i-R:Kx—f—E(l—degG )l’,

where (G, is the stabilizer of a closed substack x € 2", and the sum above is taken

over closed substacks of Z .

Our main object of interest is defined in [VZB22, Defintions 5.6.1 and 5.6.2] which
we generalize slightly to allow for stacky points in a log divisor: the canonical ring of

a log stacky curve is the ring

Rp = @HO(%7dD)7

d=0

where D = K4 + A, for A a log divisor on Z .

Recall from [VZB22, Definition 5.6.6] that the signature of a log stacky curve
(Z°,A) is the tuple (g;eq,...,e.;0) where g is the genus of the coarse space X, the
integers ey, ..., e, are the orders of the stabilizers of geometric points of 2 with
non-trivial stabilizers ordered such that e; < e;,; for all 7, and 6 = deg A. The main
results of [VZB22] are organized around their inductive Theorem [VZB22, 8.3.1] which
succesively computes R(Z", A) for (27, A) with signature (g;e;,...,e,;0) in terms

of canonical rings of log stacky curves (27, A) with signature (g;eq,...,e._1;9). We
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summarize the way that their result splits into various base cases with the following

figure.

Figure 3.2: A Map of the Inductive Result in [VZB22]

[VZB22, Theorem 8.3.1]
g9=2
g=1landr+ 20> 2
g=0and > 2.

[VZB22, Section 4.4] - g =2;§ =1

[VZB22, Section 4.5] -

non-hyerpellitic;

0=1

[VZB22, Section 4.6] - exceptional cases

[VZB22, Section 5.7]

[VZB22, Theorem 4.1.3]

g=70 T

=

[VZB22, Theorem 9.3.1]

1

[VZB22, Lemma 9.1.2]

r=20

[VZB22, Section 4.2]

We also note some generalizations of [VZB22] to section rings of Q-divisors. Such

divisors are, as in [VZB22, Remark 5.6.4], often useful for log canonical rings in more

pathological situations than our current context, such as the case of “wild” ramifi-

cation of stacky points, for example. See [O’D15] for general Q-divisors on genus 0

curves, see [CFO24] for Q-divisors on elliptic curves, and thanks to [LRZ16] one is

able to at least tightly bound the degrees of generators and relations for spin canon-

ical rings of log stacky curves in all genera.

We remark, as in the Introduction to [CFO24], that [CFO24] more or less concludes
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the line of inquiry in computing explicit minimal presentations of general section
rings. The results of both [O’D15] and [CFO24| are sufficiently complicated and
combinatorial in nature so as to appear to John Voight “as much some kind of additive
number theory as algebraic geometry,” and in neither work is the notion of a stacky
curve as such relevant for proofs. Somehow it is too arbitrary to ask for general
Q-divisors, especially since for divisors of low degree or ineffective divisors, even on
elliptic curves, the section ring has a rather complicated presentation. There is no
reason to believe that for curves in higher genus, where ampleness of divisors requries
greater degree, that a description of such section rings will have any kind of uniform
principle to it. Furthermore, this is a rather algorithmic problem, where Magma and
the existing theory is enough to bootstrap some kind of presentation for a section
ring in a given example, whereas it is quite challenging and likely not aesthetically
interesting to describe some general theory. Finally, it should not be dismissed how
high of a bar is set by [VZB22]. This work covers curves in all genera with great detail
and is more often than not sufficient for the number-theory motivated calculations

we are concerned with in this thesis.
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CHAPTER 4

DRINFELD SETTING

In this chapter we discuss the arithmetic of function fields and introduce the Drinfeld
setting. Because of the well-established analogy between number fields and function
fields many results from class field theory such as Kronecker-Weber have a corre-
sponding theorem for function fields. However, as we are interested in arithmetic
geometry more than class field theory in particular, our description of this analogy
will be focused more on Drinfeld modules - the analogs of abelian varieties over a
number field, and their moduli. As we will later see, certain moduli spaces of Drin-
feld modules with level structure behave quite like moduli of elliptic curves, which
provides us a template for our theory of Drinfeld modular curves. This is foundational
material for our main results which describe the geometry of Drinfeld modular forms
in a manner quite like the more familiar case of modular forms over C or number

fields.
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4.1 NOTATION AND THE “SETTING”

References for Drinfeld modular curves are [Gek86], [Gek01] and [MS15]; for Drin-
feld modular forms see the survey [Gek99] and the papers [GR9I6|, [Gek88], [Brel6],
[Cor97a] and [DK23]. For the theory of Drinfeld modules themselves the best ref-
erence is [Pap23|. Before we discuss these objects, we quickly recall some basics of

function fields.

Let F, be the finite field of order ¢ a power of an odd prime. As function-
field analogs of Z, Q, R and C define the rings A = F,[T], K = Frac(4) = F,(T),
1 _

Ky =T, ((T)), the completion of K at the place oo, and let C' = K, be the com-

pletion of the algebraic closure of K, respectively. Then C'is an algebraically closed,

complete, and non-archimedean field.

We might just as well have taken K to be the function field of any smooth, con-
nected, projective curve over a field of characteristic ¢ rather than our particular
choice of K as the function field of P!. Our specification of this function field in par-

ticular is only for ease with notation.

We have the usual discrete valuation v : K* — Z given by
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which we extend to the Laurent series K, by

v (Z aiTi> =-—n and v(0)= .

=n

The corresponding metric, which we extend to C, is the non-archimedean norm de-

fined by |f| = ¢/,

The Drinfeld-setting version of the upper half-plane H < C is 2 oo K. We

will discuss this is more detail in the next section.

Note that the group GLy(A) acts on © by Mébius transformations as SLg acts on
H, but det(y) € F¢ for v € GLy(A). Let N € A be a non-constant, monic polynomial
and let I'(NV) be the subgroup of GLy(A) with matrices congruent to (§9) modulo N.
A subgroup I' of GLy(A) such that I'(/V) < T for some N is a congruence subgroup

and we call such an N of the least degree the conductor of T'.

Some important examples of congruence subgroups are the following:
(V) ={(¢%) (mod N)} and I'\(N) = {(§ %) (mod N)}.

We establish an important assumption for this work: throughout, I' < GLs(A)
is some congruence subgroup such that for every o, o’ € Fy, T' contains the matri-
ces of form (¢ ), that is, the diagonal matrices in GLy(A). This means we have

detI" = {det(y) : v € '} = F\. In general detT" is a subgroup of F.
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Let (det T")? be the set of squares of elements in det " : (det T')? = {2? : x € det T'}.
Let

Ty ™ {yeD:det(y) e (detT)%}.

When we write I' < GLy(A), we mean I' satisfying the conditions above, so det 'y =

The condition that I' has all possible determinants is simply for ease of notation,
as it is more pleasant to compute congruences modulo ¢ — 1 rather than # det I". Our
emphasis on the case when ¢ is odd is essential as we make repeated use of the fact

that ¢ — 1 is even.

We will make use of a kind of “parity” for congruence subgroups for which we

introduce the following terminology:

Definition 4.1.1. We say that a congruence subgroup I' is square if there is some z €
Q such that the stabilizer U, = {y € I' : 7z = z} strictly contains F;l = {(§9) : a e Fy}
and every vy € FZ\IF; has det~y a square in F;. Likewise, I' is non-square if it
contains a stabilizer T', for some z € (1 strictly larger than ¥y and some ~ with

dety € FX\(F)>.

In our application stabilizers are all GLy(A)-conjugate subgroups of IF;Q so that
one only needs to check for a single point z € 2 with a stabilizer I, 2 F whether I,

contains some matrix with a non-square determinant.
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4.2 THE BURHAT-TITS TREE

We can describe a fundamental domain for the Drinfeld “upper half plane” €2 follow-
ing [Gek86, Chapter V.1]. Thanks to Tristan Phillips we can even include a cartoon.
Along the way we introduce an important tool used to study the geometry of the

Drinfeld setting that we return to in Section 8.3.

Let .7 be the Bruhat-Tits tree of PGLy(K ) defined in [Ser80, Section 2.1].
Though we do not offer an exhaustive definition, we discuss many properties of .7 .
The Burhat-Tits tree is a connected tree, i.e. a simply connected simplicial complex.
The vertices of .7 are similarity classes of O-lattices in K, where O is the ring of
integers in K. We say two vertices L1 # Lo are adjacent if we can choose L; and
Ly in their similiarity classes such that L; < Ly of index ¢° where § = deg(0) is the
degree of the residue field of K at co over F,. Each vertex has ¢° + 1 neighbors. We
can assign a metric d(x, y) to the realization .7 (R) which gives distance 1 to adjacent

vertices and is linear on edges.

Consider a building map A : Q@ — J(R) given by z — similarity class of | |.,

where for (z,y) € K2 we say

(7, y)]: = |22 +yl.

We can give a topological picture of the “buidling” which A does with the construction:
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o for each vertex of .7, take a copy of

a union of ¢’ + 1 open balls
PY(C) -
with disjoint closures

and
o for each edge of 7, take an annulus P!(C') — (a union of 2 disjoint open balls),
o then glue these according to incidence in 7.

The result is a 2-dimensional manifold which is the boundary of a tubular neigh-
borhood of 7 (R). Then A is no more than a projection onto .7 (R). When ¢ = 2,
deg(0) = 1 s0 ¢° + 1 = 3, and Tristan Phillips sketched (by hand) the following

cartoon:

Figure 4.1: The Bruhat-Tits tree 7 (R) and a Fundamental Domain for the Drinfeld “upper
half-plane”
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4.3 DRINFELD MODULES

The theory of Drinfeld modules is rich in both algebraic and analytic structure. Both
interpretations and their equivalence are important in understanding the moduli
spaces of Drinfeld modules of a given rank. We state only what we need for our
computation of the canonical ring of certain log-stacky moduli spaces and the corre-
sponding algebras of Drinfeld modular forms. A concise and accessible introduction

to this material is the article [Poo22] and much more detail is covered in [Pap23].

Analytic Approach

We give a quick description of Drinfeld modules as lattice quotients. Following Breuer
[Brel6], we say an A-submodule of C' of form A = wjA+---+w, A, for wy, -+ ,w, € C
some K -linearly independent elements, is an A-lattice of rank r. Then we define

an exponential function as follows.

Definition 4.3.1. Let A < C be an A-lattice of rank r. The exponential function
of A, denoted ey : C'— C, is defined by

er@ = ] (1-5)-

0#AeA

For any A-lattice, the exponential e, is holomorphic in the rigid analytic sense
see e.g. [FvdP04, Definition 2.2.1]), surjective, F -linear, A-periodic and has simple
q

zeros on A. By an [F-linear function we mean the following.

Lemma 4.3.2. Let K be a field of characteristic p containing F,. Then f(z) € K[z]
is Fy-linear (i.e. f(azx) = af(x) for all a € F,) if and only if f(z) = Z ax? .

=0
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Let C{X1} = {aoX +a X+ +a,X? :ag, - ,a, € C, n >0} denote the non-
commutative polynomial ring of [F-linear polynomials over C, with the operation of
multiplication given by composition. Note we can use any A-algebra B in place of C
to define a similar polynomial ring B{X?} to C{X9}. For each a € A the exponential

satisfies the functional equation

ea(az) = ¢h(ea(2)),

where 2 (X) € C{X?} is some element of degree ¢"9°¢. Then we say a ring homo-

morphism ¢ : A — C{X?} given by

a— 80(/1\ def ap(a)X + -+ + ardega(a)Xqucga7
(an FF,-algebra monomorphism) is a Drinfeld module of rank r if the coefficient

with largest index is non-zero.

Algebraic Approach

We recall, without any proofs, some facts concerning the algebraic theory which cor-
responds to the definition above. A more complete discussion of these next facts is
found in [Pap23, Definition 3.1.4] and [Pap23, Lemma 3.1.4]. We are mostly inter-

ested in the notation.

We state the following result so that when we define a moduli space of Drin-
feld modules, we can make sense of Drinfeld modules over an arbitrary base scheme

and therefore eventually have a well-defined category fibered in groupoids when we
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consider moduli stacks later.

Theorem 4.3.3 ( [Wat79, Page 65]). Let B be an A-algebra, and let G, p de-
note the affine additive group scheme over B represented by Spec B[t]. Then the set
Endr, (Go,p) of Fy-linear endomorphisms of Go p, is Endr, (Gq,p) = B{X}.

Proof. Let A = k{(x). Then A represents the group scheme G, i.e. there is a ring
homorphism A — Endp, (G,) since affine group schemes correspond to Hépf algebras.
Suppose that g,h : A — R are A-algebra maps with g(x) = r and h(z) = s. Then we
need a A : A - A® A such that the composite (g,h) o A: A > A® A — R sends
x — r+s. The map A given by £ — £ ® 1 + 1 ® = does this and is the unique map

we want since the Yoneda correspondence is a bijection.

Endomorphisms of G, correspond to Q(z) € k{x) with AQ = Q®1+1®Q(z). In
particular, if Q(z) = >, a,2" then a,(z®1+1Qz)" = a,(z"®1+1Qz") so ag = 0. If r =
p"s for some s > 1 which is coprime to p, then (z® 1 + 1® )" = (2’ @ 1 + 1@ 27" )*

has a term s(z”" ® z~VP") and a, = 0. Then Q(z) = Y. b;a”’.

Then since Q(z) = zP corresponds to 7(x) = 2P € End(G,), the composite map
scaling by some b after 7" gives a map x ~— baP". Therefore any ¢ € End(G,) is

uniquely expressed by some )| bz . We also have z7b = bPz4. O]
Finally, we can introduce algebraic Drinfeld modules over any scheme.

Definition 4.3.4. A Drinfeld module of rank r over an A-scheme S is a pair

(E, ) consisting of:
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e a G,-bundle E (e.g. an additive group scheme) over S such that for all U =
Spec B an affine open subset of S for B an A-algebra in the Zariski topology on

S, there is an isomorphism ¢ : E|ly = G, g of group schemes over U
e a ring homomorphism ¢ : A — End(FE)

such that for a family of pairs (U, ;) which form a trivializing cover of E (i.e. U; =
Spec B; are an affine open cover and V; : Ex-1y,) = Gqp, are local isomorphisms of
additive group schemes), the morphism ¢ restricts to give maps ¢; : A — End(G, p,)
of form o, (T) = TX + by ; X9+ +b,; X7, compatible with the transition functions

Vi =P 0 w;l i.e. pj 0 Vi = 5 0 ; on all intersections U;; = U; 0 Uj.

Remark 4.3.5. In the special case when we consider Drinfeld modules over a field,
the algebraic definition of a Drinfeld module is simpler. In particular, we have E =
Gy, and we do not need any of the trivializations of our bundle as we are working
over a single affine scheme. Therefore, it suffices to provide a ring homomorphism
v : A — End(G,). We do not make further explicit use of the algebraic definition of

Drinfeld modules in this article beyond the following examples.

Recall from [Pap23, Definition 3.3.1] that a morphism of Drinfeld modules
u : ¢ — 1 over a field K of characteristic p is some polynomial v € K{X?} such
that up, = Y,u for all a € A, where X is an indeterminant. A non-zero morphism

u: @ — 1 is called an isogeny, and we define the group

Endg () < Homg (g, ¢).
Under composition Endg () is a subring of K{X 9} which we call the endomorphism
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ring of ¢. The automorphisms of a Drinfeld module ¢ are the invertible elements
of its endomorphism ring.

The determinant of a rank 2 Drinfeld module p3(T) = TX + gX?+ AX ¢ is the
rank 1 Drinfeld module

VA(T) Y TXx — AXO.

Example 4.3.6 ( [Car38]). The Carlitz module is the rank 1 Drinfeld module
defined by
o(T)=TX + X,

and corresponds to the lattice TA < Q. Here, T € Ko ( “~/—T) is the Carlitz period,

defined up to a (q — 1)st root of unity. We fix one such ™ once and for all.

As an algebraic Drinfeld module, the Carlitz module is the image of the ring ho-

momorphism

0 A — C{X7)

T—TX + X1

which is a rank 1 module since degp = q = |T|', over the A-scheme SpecC. Here,

| - | is the extension of the co-adic absolute value to C.

Example 4.3.7. Let z € Q, and consider the rank 2 lattice A, = 7T(zA + A). The

associated Drinfeld module of rank 2 is

O (T) = TX + g(2) X+ A(2) X7,
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where g and A are Drinfeld modular forms of type 0 and weights ¢ — 1 and ¢*> — 1
respectively. We will define Drinfeld modular forms in the next section. This is anal-
ogous to defining an elliptic curve by a short Weierstrass equation whose coefficients
are values of Fisenstein series. Once again this is an algebraic Drinfeld module over
an affine A-scheme. We have written down in particular the image of a degree 2
ring homomorphism ¢ : A — C{X%}. The Carlitz period T serves to normalize the
coefficients of the series expansion of g and A at the cusps of GLa(A) so that those

coefficients are elements of A.

For our intuition, we offer some further descriptions of algebraic Drinfeld modules.

Globally, the data of a Drinfeld module is a pair (¢, G) with ¢ : A — End(G). Locally,

the data of a Drinfeld module is

o a family of pairs (U;,1;), where the U; = Spec(B;) are affine opens which form
a trivializing cover for G, i.e. we have isomorphisms of group schemes v; :

G|z, = Ga,p, and “restricted” Drinfeld modules for the Zariski topology;

« some ring homomorphisms ¢; : A — End(G, g,) such that (G, g,, p;) are “re-

2

stricted” Drinfeld modules,

such that ¢j; = ¢; o ¢; " is an isomorphism of “restricted” Drinfeld modules on in-
tersections of affines. In other words, G,-bundles are automatically line bundles. We

sketch the argument as follows.
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Consider the diagram

We want to show that the transition maps 1/)?; . Bij|x] — Bij|x] are forced to
have form x — my;x for some m;; € Bj;. We chase z around the diagram and ensure
that the endomorphisms ¢, descend, i.e. satisfy the cocyle condition. That is, our
endomorphisms respect or commute with the transition maps ;. Note that we are
working on the corresponding algebras rather than directly on the group schemes,
that is on the functor of points, because this makes the computations algebraic and

vl
familiar. Recall that we have x — m,;;x and

@# 2 d
x> Tx + by jx? + by + -+ bgx? .

So, we compute

— — 2 d
mijlgof(T)mij = my; (Tx + b ja? + by a7 + -+ + by ja® )my

—1 d_q d
=Tx +mf bija+ - +mi; ™ by r?
= T(L’ + blﬂ'l'q + bgﬂ‘l'qQ + -+ bd,iqu

= SO?(T%
or in other words m;;¢;(T) = ¢;(T")m;;.

Example 4.3.8. An automorphism of the rank 2 Drinfeld module pr = T X + g X9+
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AXT over C' where g # 0 is given by a ‘pra for some o€ C*. We have

atora =a™t (TX +gX7+ AXqQ) o
=TX +a? tgX?+ o TAXY

= ¢, ifaely.
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CHAPTER 5

RIGID ANALYTIC STACKS; RIGID STACKY

GAGA

We fix once and for all some 7T € K (*~/—T), a Carlitz period, defined up to a

(¢ — 1)st root of unity. We define a parameter at infinity

e 11w 1
u(z) = exa(T2)  Tey(2) " ;z—ka'

We discuss the parameter v in more detail in coming chapters.
If we are discussing a stack, we may sometimes write “DM” as shorthand for

“Deligne-Mumford.” There should be no confusion with the phrase Drinfeld module

in particular as we will not be thinking about Drinfeld modules explicitly.
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5.1 RIGID ANALYTIC SPACES

We briefly recall some definitions we need to discuss rigid anaytic spaces, which are
the natural means to discuss quotients of the Drinfeld “upper half-plane” €2 by con-
gruence subgroups. A more thorough treatment and good reference for rigid analytic
geometry in general is [FvdP04]. We will specialize to rigid analytic spaces over C

for readability.

We need the following two intermediate definitions to define a rigid analytic space.

Definition 5.1.1 ( [FvdP04, Page 46]). Let zy,--- , z, denote some variables. Let
T, = C{z1, -+, z,) be the n-dimensional C-algebra which is the subring of the ring

of formal power series C[[z1, - , zn]]

T, = {anz‘fl...zg‘" € C[[z1, -+ ,2a]] : limc, = O}’

where a = (q,- -+ , ). An affinoid algebra A over C is a C-algebra which is a

finite extension of T,, for some n = 0.

Definition 5.1.2 ( [FvdP04, Definition 2.4.1]). Let X be a set. A G-topology on

X consists of the data:

1. a family F of subsets of X such that &, X € F and if U,V € F, then UV €

T 6

2. for each U € Z, a set Cov(U) of coverings of U by elements of F (We say

the U € F are admissible sets and the elements of Cov(U) are admissible
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coverings);
such that admissible coverings satisfy the axioms of a site Definition 3.2.3.

To recall the site axioms, we say that in the site specified by this “admissible

topology” the following conditions are met:
o {U}eCov(U);

o foreach U,V € # withV < U and U € Cov(U), the coveringU n V' el {U'nV:U eU}

belongs to Cov(U);

o let Ue .7, let {U;}ier € Cov(U) and let U; € Cov(U;). Then

Uui = {U": U’ belongs to some U;}

i€l
is an element of Cov(U).

Remark 5.1.3. G-topology is an abbreviation of Groethendieck topology, so we do

not type the “G” in math-mode.

Example 5.1.4 ( [FvdP04, Definition 4.2.1](Weak G-topology)). Let X = Sp(A) be
an affinoid space over C, i.e. A is a C-affinoid algebra. Any surjective map of C'-
affinoid algebras T,, — A induces an embedding of X in the standard polydisk Sp(T,,).
The topology on C' induces a topology on this polydisk Sp(T,) and so on X as well,
and this topology is canonical in the sense that it does not depend on the choice of

embedding.
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The admissible subsets of X for the very weak G-topology on X are the rational
subsets (see [FudP0/, Definition 4.1.1]) - R < X = Sp(A) is rational if there exists

fo,- -, fs € A generating the unit ideal in A such that

R={zxe X :|filx)| <|folx)| fori=1,---, s}.

A covering {R;}ier of a rational subset R by rational subsets R; is admissible for the

very weak G-topology of there exists a finite J < I with R = Uiy R;.

The weak G-topology on X consists of the admissible sets which are finite unions
of rational subsets, and an admissible covering {R;}icr of an admissible R has the
features that: all R; are admissible and there exists a finite J < I with R = U, R;.

The weak topology is slightly finer than the very weak.
Finally, we come to the point:

Definition 5.1.5 ( [FvdP04, Definition 4.3.1]). A rigid analytic space is a triple
(X, Tx,Ox) consisting of a set X, a G-topology Tx on X and a structure sheaf of
C-algebras Ox on X for which there exists an admissible open covering {X;} of X
such that each (X;,Tx,, Ox,) is an affinoid over C' and U < X belongs to Tx if and

only if U n X, belongs to T'x for each i.

Example 5.1.6. Consider the Drinfeld “upper half-plane” Q = P1(C) — P} (K,). We
know PY(K ) is compact in the rigid analytic topology, so we know from [GRY6, Sec-
tion 1.2] that Q2 is a rigid analytic space. The action by I' < GLy(A) a congruence

subgroup on 2 by Mdbius transformations has finite stabilizer for each z € €2, and as

in [GRI6, Sections (2.5) and (2.6)/, I'\Q is a rigid analytic space.
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Now we will follow [Vin12, Section 3.1.1.] for an explicit admissible open (pure)
cover of €):
We have a valuation vy, (z) = —deg(x) for K with local parameter T, which gives

rise to an absolute value normalized so that |x| = ¢4¢®). For n e Z let

¢ <] < ¢ and

2 =T = q " |z =T = q " forall ce Fy

Then D,, < € is an affinoid space over K. For v € K, let D, 4 oy + D, and

define a set of indices
I ={(n,z): forneZ, x runs through representatives of K../T " 'Oy},

where Oy is the ring of integers in Ko. Then {Dg, 2} is a pure covering of €2, i.e.

Q= U D(n’x).

(n,z)el

5.2 SEPARATEDNESS AND PROPERNESS OF RIGID

ANALYTIC SPACES

We wish to recognize rigid spaces over C as the analytification of some smooth ir-

reducible projecive variety over C. For a smooth irreducible projective curve X over
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any field k with a discrete valuation in particular,

(anal 1 fx) projective schemes X /k? : X flat over kY
analytic reductions o -

& generic fiber X xj0 k=~ X

Definition 5.2.1 ( [FvdP04, 4.10.1)). A morphism [ : Z — X of rigid spaces over
C is a closed immersion if there exists a coherent sheaf of ideals T on X defining
a closed analytic subspace Y of X such that f factors as Z %Y — X with g an
isomorphism. A rigid space X over C' is called separated if the diagonal morphism

A: X —> X x¢ X is a closed immersion.
We characterize separatedness with the following theory.

Theorem 5.2.2 ( [FvdP04, Page 111](Criterion for Separatedness)). A rigid space
X over C is separated if and only if X has an admissible affinoid covering {X;} such
that for all @ # 7 with X; n X; # &, the intersection X; n X; is affinoid and the

canonical map

OX(Xi)®COX(Xj) — Ox(Xi n Xj)
15 surjective.

Definition 5.2.3 ( [FvdP04, 4.10.2]). An affinoid subset Yy of an affinoid space Y3
is said to lie in the interior of Y, denoted Y1 < Ys, if Yo = Sp(A) where A has a

presentation for form

A:C<Zly"' ’Zn>:C<Zlu"' 7Zn>/(f17 ’fS)

and there is some p < 1 such that Y1 < {y € Ys : |zi(y)| < p for all i}. Equivalently,
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Y; is mapped to a single point under the canonical reduction Ys — Ys'.

A separated rigid space X is proper if there exist two finite admissible affinoid
covers {X;}ic1 .. n and {X[}izq... n with X; c< X for all .

We can think of a relative notion of proper rigid morphisms between rigid spaces:
A separated morphism f : X — Y is proper if Y has an admisisble affinoid covering
{Y;} such that for each j there exist two affinoid coverings {X;};—1... , and {X/}i=1...
of f7'Y; such that X; ccy, X/ for all i. We mean by this that if Y; = Sp(B) and

X! =Sp(4’), then A" has a presentation

A/:B<t17"' 7ta>:B<T17"' 7Ta>/(f17"' 7fb)

such that X; is contained in {z € X/ : |[ts;(x)| < p for all s} for some p < 1.

Some observations from [FvdP04, Pages 111 — 112]:

« A rigid space X is proper if and only if the canonical morphism X — Sp(C) is

proper.
o If the rigid space X is proper, then all morphisms f : X — Y are proper.

o Any finite morphism of separated rigid spaces is proper.

A major idea we will use:
Theorem 5.2.4 ( [FvdP04, Theorem 4.10.3](Kiechl)).

1. Let X be a proper rigid space over C. Then the cohomology groups H'(X,F) of

any coherent sheaf F on X are finite dimensional C-vector spaces.
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2. Let f: X — Y be a proper morphism of rigid spaces, suppose that'Y is separated
and let S be any coherent sheaf on X. Then the direct image f.S and all higher
direct images R'f,S are coherent sheaves on'Y. In particular the image f(X) is

a closed analytic subspace of Y.
Now we come to the point of this discussion.

Theorem 5.2.5 ( [FvdP04, Theorem 4.10.6](Recognizing projective varieties)). Sup-

pose X is a rigid space over C such that:
e X is reduced, separated and proper over C

o There is a C-vector space V' of finite dimensionn = 1 consisting of meromorphic

functions on X such that

1. The coherent subsheaf L of the sheaf of meromorphic functions M gen-
erated over Ox by V is a line bundle. This condition means there ezists
a morphism ¢ : X — PE™ of rigid spaces, where if fo, -+, fn is a basis
for V then ¢ is given by x — (fo(x) : -+ : fu(x)). Note that since C is
complete and algebraically closed we do not need to extend ¢ to the base

change of X to some completed closure.

We ask only that
2. ¢ is injective and

3. the tangent map (do), is injective for every x € X.

Then X s the analytification of some projective variety over C.
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Example 5.2.6. We have seen that the action by I' < GLy(A) a congruence subgroup
on Q by Mébius transformations has finite stabilizer for each z € Q, and T'\Q) is a

rigid analytic space.

In particular this is the analytification of the smooth, irreducible, algebraic, affine
curve Yr, with smooth projective model Xr whose C-points are T'\(Q u P'(K)) by
[GRI6, Theorem 2.2.1].

5.3 POINTS ON A RIGID ANALYTIC SPACE

Why do we consider the points on a rigid analytic space? It turns out that G-topology
is not local enough in the sense that there are nonzero abelian sheaves F on a rigid
space X such that the stalks F, = 0 for every z € X. Evidently, the set of ordinary

points on X is too small. What then should the points be?

We consider the case of an affinoid space and note there are sufficient glueing the-
orems that one can recover rigid spaces in general from this discussion with enough

MoXy.

Let X = Sp(A) be a C-affinoid space. For any abelian sheaf F on X and any
point x € X we can form the stalk F,, and for the category of coherent sheaves on X

this set is satisfactory in that:
o the functor F — F, is exact,

o a coherent sheaf F = 0 if the stalks F, = 0 for all z € X, and
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 for any x € X there exists some coherent sheaf 7 on X such that F, = 0 if and

only if y # x.

Definition 5.3.1 ( [FvdP04, 7.1.1]). Consider X = Sp(A) with the weak G-topology.

A filter p on X is a collection of admissible subsets such that
1. &, Xep
2. If Uy,Uyep then Uy nUs€p

3. IfUepand U c V, thenV € p

and we say the filter p is a prime filter if

4. If U € p and {U;}icr is an admissible covering of U, there is some i € I such

that U; € p.

Remark 5.3.2. The last condition is equivalent to: if Uy,Us are admissible and

U, v U, € p then either Uy e p or Us € p

The set of filters is ordered by inclusion, so by Zorn’s lemma every filter is con-

tained in some maximal filter. Maximal filters are prime, and we write
def . . def
P(X) := {prime filters} o {maximal filters} =2 M(X).

An essential idea for this section is the following:

Any point x € X induces a maximal filter {U < X : U admissible & x € U}.
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Let F be any abelian sheaf and p any prime filter. We can define the stalk F,, to

be the direct limit of the F(U) with U € p. Then we have the following:
Lemma 5.3.3 ( [FvdP04, Page 193]).
1. For admissible U < X, there is a natural inclusion P(U) < P(X).
2. If U,V {U,}ier are admissible then
(a) PU)cP(V) <= UcV
(b) If Uit P(U;) = P(X) then uieU; = X (note the converse is typically false)

Definition 5.3.4. A topology on P(X) has a basis {P(U) : U admissible} of open

sets.
We consider the categories of abelian sheaves next.,

Theorem 5.3.5 ( [FvdP04, Theorem 7.1.2]). Let Abx and Abpx be the abelian

categories of abelian sheaves on X and P(X) respectively.
1. P(X) is a quasi-compact topological space and is not Hausdorff if dim X > 1,

2. For every abelian sheaf F on P(X), the presheaf 0. F defined by (0.F)(U) =
F(PU)) for admissible U is a sheaf, and
for every prime filter p € P(X) the canonical map (0, F), — F, is an isomor-
phism,

3. 04 1 Abpx) — Abx is an equivalence of categories.

With all of this theory, we can finally come to the correct formulation of points

on a rigid analytic space.
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Note that the map X — P(X) which associates to a point z € X the maximal filter
{U : U admissible & U 3 x} does not make perfect sense topologically. We consider
instead X as a rigid site X,igq. The objects of this site are admissible subsets of X,

and

, Udv
Mor(U, V) =
{U=V}, ofw,

i.e. morphisms are at most the single inclusion of U into V. This means the G-topology
on X is also a G-topology on X,gq. It is not hard to verify the axioms of a site Defini-
tion 3.2.3 for these covers since isomorphisms are inclusions, composition of inclusions

are inclusions and fiber-products are well-behaved with respect to injective maps.

Similarly, we can consider the topological space P(X) as a site P(X )iop. Then we
have a morphism of sites o : P(X )iop — Xiigia and o, is an induced functor between

the categories of abelian sheaves on these sites.

With this framework, we have the following consequences of Theorem 5.3.5:
Corollary 5.3.6 ( [FvdP04, Page 194]).

o If p is a prime filter, then the associated functor from abelian sheaves on X to

abelian groups given by F — F, is exact.
e An abelian sheaf F on X is 0 if the stalks F, = 0 for all prime filters p.

o For a given prime filter p there exists an abelian sheaf F on X such that the

stalk Fy at the prime filter ¢’ is 0 if and only if ¢ = p.
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That is:

The prime filters P(X) are the “correct” collection of points

for the rigid analytic space X.

Example 5.3.7. On a given Drinfeld modular curve Xr, elliptic points, which are

no more than points z € Q) with stabilizers

‘az+b
“cz+d

zz,ad—bcelﬁ‘;}

strictly larger than F = {($8) : a € F)} are ordinary C-points, as these points are
well-defined “ordinary” points on the rigid analytic space Y** = Yr(C) = T'\Q2. On
the log stacky moduli curve Zr(A), where A is the Q-coefficient Weil divisor of cusps

for T (the points of T\P'(K) are cusps), elliptic points are stacky points.

The other stacky points are the cusps of a Drinfeld modular curve Xr.

algebraically analytically

Xr—Yr the orbits T\P*(K)

so these are points strictly on the smooth projective model of the affine algebraic curve
and correspond to a compactification of I'\S). See [Pin21] for more details about the
compactification of Drifneld moduli schemes algebraically, and see [BNO5] for more

algebraic details for stacky curves.
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5.4 RiciD GAGA

We begin with a special case.

Theorem 5.4.1 ( [FvdP04, Theorem 4.10.5](GAGA for rigid P%™)). There is a
functor F — F from the category of coherent sheaves on P% to the category of
coherent sheaves on the rigid space PE*". This is an equivalence of abelian categories
and commutes with the formation of cohomology groups. In particular every closed

analytic subspace of PE™ is the analytification of some closed subspace of Pg.

Example 5.4.2. The rigid analytic quotient spaces T\(2 u PY(K)) are known to be
one-dimensional and finite covers of GLy(A)\(Q U PY(K)) = Pg™ by [Gek01, Page
170/. As such, there is some embedding of these spaces by a line bundle (some mul-
tiple of the canonical bundle according to the classification of the curve, e.q. Petri’s
theorem) and so the embedded curve is a closed analytic subspace of an analytic pro-
jective space. Then such quotient spaces are the analytification of embedded projective

Drinfeld modular curves Xr.

With this rather crude argument we at least motivate the idea that Drinfeld mod-
ular curves (the stacky curves 2p which we consider in Chapter 6) have a coarse
space Xt whose analytification is a familiar rigid analytic space T'\(Q2 u P(K)). We
consider further both the mechanics of rigid GAGA itself, and the theory of covers of
Plan

Let M be a coherent sheaf on the algebraic curve P¢, over C. Then there is an

associated coherent sheaf M on P& PL™ given as follows:
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1. for an affinoid X, choose a Zariski open S with X = S # P},

2. M(X) ¥ o(x) ®0,,(5) M(S), where Ou,(S) = C(z) denotes the ring of

regular functions on S. Further, M*(P) & M7 (PL).

A morphism f : M; — M, of coherent sheaves on P, induces a morphism f*" between

coherent sheaves M7 and M3" on P.

At a point a € P§, consider the local parameter ¢t = z — a or t = z~!. There are

three important local rings:
1. the algebraic local ring C[t]
2. the analytic local ring C'{t} consisting of convergent power series, &
3. C[[t]] the ring of formal power series

and

Cltly = C{t} < C[It],

where the final local ring is the completion of the first two. Therefore the inclusion

Clt]w < C{t} is faithfully flat.

5.5  RIGID STACKY GAGA

Now we consider promoting the basic rigid GAGA from Theorem 5.4.1 to stacks.
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5.5.1 CONTEXT

In this section we explain a version of GAGA for Deligne-Mumford rigid analytic, and
algebraic Deligne-Mumford stacks. We begin by collecting some intermediate theory

from the literature for context.

First, we recall that DM stacks are Artin stacks. See [Art74] for the first dis-
cussion of what we now call Artin stacks and the papers [AOV07] and [AOV10] for a

more complete discussion of such stacks. Second, we recall that

rigid analytic spaces are adic spaces or Berkovich spaces

where adic and Berkovich spaces are each generalizations of rigid analytic spaces.
We remark that because of the enhanced levels of generality for these sites over
non-archimedean fields it is a fair question to ask, “why do we still work on rigid
analytic spaces?” Indeed, though sometimes this more classical theory gives us more
intuitive notions, say of points e.g. we still need to deal with G-topologies for rigid
spaces, so pedagogically a rigid analytic space is about as hard to think about as
the more general adic and Berkovich spaces. Our reason is this: we do not want to
reinvent the wheel. The theory of stacks for these sites is sufficiently well developed
for us to use it for our program of computing algebras of Drinfeld modular forms via
geometric invariants of Drinfeld modular curves as in [VZB22|. That is, our principle
is conservation of pain: we aim to state as little as possible to do as much as is

necessary.
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5.5.2 RIGID STACKS

We need a precise notion of a rigid analytic stack for rigid stacky GAGA. Let us
compare Definition 6.3.4 to some formulations in the literature to begin. One of the
first times the phrase “rigid analytic stack” appears is [Iwa06]. After a conjecture
on [Iwa06, Page 21], there is the following remark: “roughly speaking, this conjec-
ture says that in rigid geometry, the existence of local deformation theory implies the
global moduli stack which is represented by a rigid analytic stack.” Then in 2017 the
Ph.D. thesis [Warl7] develops a theory of Artin stacks on adic spaces. However, we

follow the more recent [EGH23, Section 5.1.7] for expedience.

Fix L some finite extension of Q,. Let Rig; denote the category of rigid ana-
lytic spaces over L. Equp Rig; with the Tate-fpqc topology (see [CT07, 2.1]). The
covers in this topology are generated by the admissible Tate coverings and the mor-
phisms Sp(A) — Sp(B) for faithfully flat morphisms of affinoid algebras B — A.
By [Con06, Theorem 4.2.8] all representable functors in this topology are sheaves and

coherent sheaves satisfy descent.

A stack on Rig; is a category fibered in groupoids which satisfies descent for the
Tate-fpqc topology. We use one last intermediate definition before we can rigorously

define the kind of rigid analytic stacks which are our focus.

Definition 5.5.1 ( [EGH23, 5.1.8]). A quasi-analytic space is a sheaf F on Rig,
such that the diagonal Ay : F — F X F is representable and there exists an étale

surjection U — F for a representable sheaf U.
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As in [EGH23, Remark 5.1.9.(i)] we do not need this level of generality since by
[CT07, Theorem 1.2.2] every quasi-analytic space is representable by a rigid analytic

space.

Definition 5.5.2 ( [EGH23, 5.1.10]). A rigid analytic Artin stack is a stack 2
on Rig; such that the diagonal Ay : X — X xp Z is representable by a quasi-

analytic space, and there exists some rigid analytic space U and a smooth surjective

map U — Z.

We define rigid analytic Deligne-Mumford stacks now, but return to this matter

in Definition 6.3.4.

Definition 5.5.3. A rigid analytic Deligne- Mumford stack is a rigid analytic
Artin stack 2 such that the diagonal Ay @ X — X xp X is representable by a

rigid analytic space, quasi-compact and separated for the Tate-fpqc topology.

5.5.3 GAGA THEOREM

Now we can make sense of a well-defined rigid and stacky GAGA following the theory
of [PY16]. The next two results are analogs of [Ser56, Theorems 2 and 3|. First, we

describe analytification with the following Lemma.

Lemma 5.5.4 ( [PY16, Lemma 7.2]). Let A be a k-affinoid algebra, for k some
non-achimedean field. Let 2 be an algebraic stack locally of finite presentation over

Spec(A). Suppose that for F € Oy — Mod we have F =~ lim F. Then the analytifi-

T=—"n

an

cation functor (=) commutes with this limit.

We have an equivalence of categories between algebraic and rigid analytic coherent

sheaves which we describe with the following two results.
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Proposition 5.5.5 ( [PY16, Proposition 7.3]). Let A be a k-affinoid algebra, for k
some non-achimedean field. Let Z  be an algebraic stack locally of finite presentation
over Spec(A). Suppose that F,G € Coh(Z") are coherent sheaves on Z . Then there

is an equivalence of categories given by the natural map
MapCoh(%/) (‘Fa g) = MapCoh(%an) (f‘an, ga").

Finally, the main result we need is the following.

Theorem 5.5.6 (Theorems [PY16, 7.4 and 7.5]). Let A be a k-affinoid algebra, for
k some non-achimedean field. Let 2" be a proper algebraic stack over Spec(A). The

analytification functor on coherent sheaves induces an equivalence of categories
Coh(2") 5 Coh(2 ™).

Remark 5.5.7. In particular the Theorems of Porta-Yu apply to both 1-categories
and co-categories. We can use the slightly weaker statement given above to avoid

defining co-categories, which do not show up for us.
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CHAPTER 6

DRINFELD MODULAR CURVES AND FORMS

This chapter describes moduli spaces of Drinfeld modules and Drinfeld modular forms.
In the next chapter we state and prove our main results about the connections between
the geometry of these two kinds of objects, and so our task now is to provide all of
the tools we will need in our coming arguments. We have finally established all of
the terminology we will need in preceeding chapters, so that with the puzzle pieces

we describe in this chapter, in the next we can fit together a complete description.

6.1 DRINFELD MODULAR FORMS

In this section we introduce Drinfeld modular forms. The technical conditions of the
rigid analytic space in which we work makes it necessary to introduce some facts
about the projective line P!(C) before we begin in earnest on a study of modular

forms. We discuss rigid analytic spaces in more detail in the following sections.

Definition 6.1.1. Let T € Ko.( “A/—T) be a fized choice of the Carlitz period (recall
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Ezample 4.5.6). Then we define a parameter at infinity

I S B
u(z) = exa(T2)  Teu(2) " ;42+a'

Remark 6.1.2. In the Drinfeld setting, 7™ plays the role of the constant 2mwi € C in the

2miz

parameter ¢ = e at infinity from the classical setting. That is, it is a normalization

factor so that the series expansion coefficients for modular forms at cusps are elements

of A.

One fact about this parameter which we will use later in our consideration of

modular forms is the following.
Lemma 6.1.3 ( [Gek99, Page 10]). Let a € FY. Then u(az) = o 'u(z).

Proof. For any a € Fy, the lattices A = Aw; + Awy © C and « - A are similar.
Furthermore, A is similar to (w;/w2)A 4+ A, where z = wy/wy € Q. So the exponential

functions ezqo4(Taz) and e4(2) for z € Q differ by a factor of Ta ™. O

We mention some terminology which is part of the definition of a Drinfeld modular

form.

Definition 6.1.4. We say a function f : Q — C such that f(vz) = det(y) ! (cz +
d)*f(z) for all v = () e, where k € Zso, | € Z)(q — 1)Z and T' < GLy(A) is a

congruence subgroup, is weakly modular of weight k and type | for T.
Now we are able to define a fundamental object of study for this thesis.

Definition 6.1.5 ( [Gek86, Definition (3.1)]). Let I' < GLo(A) be a congruence
subgroup. A modular form of weight k € Z-o and type | € Z/((q — 1)Z) is a

holomorphic function f:Q — C such that
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1. f(yz) = det(y)(cz + d)f f(2) for ally = (2%) e T, and

2. f is holomorphic at the cusps of I, i.e. at the representatives for the orbits of
PY(K) under the action of T.

Remark 6.1.6. We have gotten somewhat ahead of ourselves by describing cusps of
[, a topic which we return to in more detail in Definition 6.2.5. For now we make the
simplifying assumption that, like GLo(A) idtself, T' acts transitively on PY(K). We pick
o to be a representative for this orbit. That is, for now we say the unique cusp of I’
is o0, which is enough to make some comments on the role of cusps in the definition

of a Drinfeld modular form.

There are several interpretations of the second condition about holomorphy at oo,
two of which are particularly helpful for intuition and for the proof the main theorem

respectively:

1. [Gek01, (2.2.iii)] The condition is equivalent to f being bounded on {z € Q) :
|z|o = 1}, where | - |y is the co-adic absolute value, in any case when T’ has a

single cusp;

2. [Gek99, Definition 3.5.(iii)] f has a series expansion at cusps:

where u is the parameter at oo, with a positive radius of convergence. The second

condition means that a,, = 0 for alln < 0.

Remark 6.1.7. The observation from [Gek88, Definition (5.7)] that if f is Drinfeld

95



modular form, then f(z + b) = f(z) for b € A means that although not literally a
Fourier series, the series expansion of a modular form at the cusps of some congruence

subgroup is “morally” the Drinfeld setting equivalent to a Fourier series.
We introduce some terminology and notation respectively in the next definition.

Definition 6.1.8. Write My (") for the finite-dimensional C-vector space of Drinfeld
modular forms for T' < GLy(A) with weight k and type . The algebra M(T') of

modular forms for " is

MI)= @O Myl
l(m];dZOq—l)

since Mk,l : Mk/J/ - Mk+k/,l+l/.
Now we can introduce some non-trivial facts about Drinfeld modular forms.

Lemma 6.1.9 ( [Gek88, Remark 5.8.iii]). Suppose f(z) € My, (I') has a u-series

expansion f(z) = Z ayu’. Then the coefficients a; uniquely determine f.

n=0

Proof. Although the u-series may not converge on all of Q and only for |u(z)| small,
since () is connected in the rigid analytic sense, the result follows from having a unique

u-series anywhere within €. m

The weight and type of Drinfeld modular forms are not independent quantities in

the sense of the following fact.
Lemma 6.1.10 ( [Gek88, Remark (5.8.i)]). If My, (T") # 0, then k = 21 (mod ¢ —1).

Proof. Let v = (¢9) for some « € F;. By assumption I' contains the matrices of

form (§ %) for all a, o’ € ¥, therefore vy € I'. If f is a non-zero modular form for T
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of weight k and type [ then

_ azy _ _ k2l
F02) = £ (%) = £(2) = a*a™f(2),
so & = o in F and we conclude k =21 (mod ¢ — 1). O

Example 6.1.11. Some famous Drinfeld modular forms are the GLa(A)-forms: g of
weight ¢ — 1 and type 0, A of weight ¢> — 1 and type 0, and h of weight ¢+ 1 and type
1. We know from Goss and Gekeler respectively, see for example [Gek99, Theorem
(3.12)/, that

@ My 0(GLa(A)) = Clg, A and P M (GLy(A)) = Clg, h].
k=0 l (m]:):dzoqfl)

Example 6.1.12 ( [Gek88]). The function

E(z) “ T Z <2 az + b)

acA beA

monic

is an analog to an Fisenstein series of weight 2 over Q, and we can define a Drinfeld
modular form

Er(z) = E(z) —TE(T=z)

of weight 2 and type 1 for T'o(T), the congruence subgroup of Glo(A) containing

matrices (¢ %) with ¢ =0 (mod T).

As in [Gek99, Definition (3.5)], for f some Drinfeld modular form, we let v.(f)

denote the vanishing order of f at z € 2 and v, (f) denote the vanishing order of f
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at co. Then from [Gek99, Equation (3.10)]:

* Ue(f) UOO(f) _ k
ZGGL;A)\QUZ(JC) AP R

where Y* denotes a sum over non-elliptic classes of GLy(A)\Q. By a non-elliptic class
we mean some point in the quotient whose stabilizer under GLy(A) is strictly larger

than 7, which we discuss further in Definition 6.2.7.

6.2 DRINFELD MODULAR CURVES

Let us consider some moduli spaces of rank 2 Drinfeld modules (possibly with some
extra torsion information), first as rigid analytic spaces, then as moduli schemes, and

finally as log stacky curves.

For the well-definedness of Drinfeld modular curves, we consider some analytic
properties of Q. Since Q = P!(C) — P}(K,), and P'(K) is compact in the rigid
analytic topology, we know from [GR96, Section 1.2] that ) is a rigid analytic space.
The action by I' < GLy(A) a congruence subgroup on €2 by Mébius transformations
has finite stabilizer for each z € Q, and as in [GR96, Sections (2.5) and (2.6)], I'\(2 is

a rigid analytic space.

Recall that for any scheme S of locally finite type over a complete, non-archimedian
field of finite characteristic p, there is a rigid analytic space S*" whose points coincide
with those of S as sets. In fact, there is an analytification functor from the cate-

gory of schemes over C' to the category of rigid analytic spaces, so if X is a smooth

98



algebraic curve over C, then there is a rigid analytic space X" whose points are in

bijection with the C-points of X.

For example, we have the following description.

Theorem 6.2.1 ( [Dri74]). LetI' < GLy(A) be a congruence subgroup. There exists a
smooth, irreducible, affine algebraic curve Yr over C such that I'\Q2 and the underlying
(rigid) analytic space Y of Yr are canonically isomorphic as rigid analytic spaces

over C.

Remark 6.2.2. This underlying rigid analytic space is the analytification of Yr as
in [FudP04, Example 4.3.3].

Definition 6.2.3. We call the affine curves Yr with analytification Yi¥™ = T'\Q as
rigid analytic spaces over C' affine Drinfeld modular curves. Since Yr is smooth
and affine, it admits a smooth projective model which Xr which is a projective

Drinfeld modular curve.

Remark 6.2.4. In the spirit of [VZB22, Section 6.2], we say a projective Drinfeld
modular curve Xr is the algebraization of some rigid analytic space T\(QUP'(K)) =
X{", whose points are in bijection with the C'-points of the projective Drinfeld modular

curve Xr.

Let X" et '\ (Q u PY(K)) denote a rigid analytic, projective Drinfeld modu-
lar curve for some congruence subgroup I' < GLy(A). Let Xt = (X2")8 denote
the corresponding algebraic Drinfeld modular curve whose C-points are in bijection
with X{". This modular curve is not a stacky curve since there is a uniform f,_;

stabilizer which we know from the moduli interpretation - each point is fixed by
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Z(GLy(A)) ={(g5):aeF } =F;. However, as a scheme, Xt is the coarse space of
a stacky curve 2t given by the stack quotient [Xt/Z(GLy(A))]. Furthermore, if M2
denotes (Laumon’s) Deligne-Mumford stack representing the corresponding moduli
problem, then every point of M has a stabilizer containing (at least) F*. Then Mg

is a p,_1-gerbe over 21, i.e. Zr = M3 //u, 1 is a rigidification of M2:
M% —_— %F —> XF.

When we discuss stacky Drinfeld modular curves we mean a curve 2t as in this
paragraph, that is the rigidification of some moduli problem (i.e. of one of Laumon’s
gerbes).

Next we consider some special points on Drinfeld modular curves.

Definition 6.2.5. Let I' < GLy(A) be a congruence subgroup, let ¥ = I'\Q and let
X@ =T\(QuUPHK)). A cusp of X2" is a point of X" — Y™

Remark 6.2.6. As sets, X" = T'\(Q UPY(K)), so since GLy(A) acts transitively on
PYK) we have

Cr def {cusps of X"} = I\PY(K) = I'\GL2(A)/GLa(A),

where GLy(A)y = {7 € GLy(A) : y(0) = 0} = {(§

* %

)}. On a Deligne-Mumford stacky
curve, the stabilizer of each point is a finite cyclic group, so evidently there are too

many stabilizing matrices here. We will discuss this in more detail in Section 6.4.3.
Definition 6.2.7.
1. If e € Q has (GLy(A))e = {7y € GLa2(A) : v(e) = e} strictly larger than F) =
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{(§2)} then e is an elliptic point on Q. In this case, GLy(A)e = F ;.

2. Let T' < GLy(A) be a congruence subgroup. A point e € T\(Q u PYK)) is an
elliptic point for I' if the stabilizer ', is strictly larger than the center of
GLy(Fg): Fy = {(§9):aeF)}.

Remark 6.2.8. An elliptic point e on Q is a point which is GLy(A)-conjugate to
some element of F2\F, < Q. Fiz once and for all an elliptic point e € F2\F, on Q.
We write

EI(T) = {elliptic points of X{"}.

Remark 6.2.9. Note that Drinfeld modular curves Zr, for I' < GLy(A) any congru-
ence subgroup, are tame over C' in the sense of [VZB22, Example 5.2.7]. We may de-
scribe 2t by the stack quotient | Xt/Z(GLy(A))], and since ged(char(C), # 7 (GLg(A))) =

1 the quotient is tame.

Example 6.2.10 (The j-line). Let X (1) = GLy(A)\(QUP(K)) be the “usual” j-line.
Let M? be (Laumon’s) Deligne-Mumford stack representing the moduli corresponding
problem. Then M? is a u,1 gerbe over Z° (1) = [X(1)/Z(GLa(A))]. In other words,
Z (1) is a rigidification M? //j1g—1:

M2 — 2 (1) — X(1)
P(¢-1)?%¢*—1) & Plg—1¢+1) —PYC).
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6.3 COMPACTIFICATION OF DRINFELD MOD-
ULI SCHEMES AND UNIFORMIZATION OF
DRINFELD MODULI STACKS

6.3.1 SCHEMES

We start with facts, mostly for the notation, about Drinfeld modules. Let A = F [T
and let K = Frac(A). For any scheme S over K and E a line bundle on S, write
Endg, (E) for the ring of F;-linear endomorphisms of the commutative group scheme

underlying E. Any trivialization
Gov = Elv
over an affine subscheme U = Spec(R) < S induces an isomorphism
R{X"} > Endp,(El|v)

as in Definition 4.3.4. Let (E, ¢) be a Drinfeld A-module and let N be an ideal of A.
Then

o[ N] el ﬂ ker(p,)

aeN
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is an A-module subscheme of E which is finite étale over S. Its sections over any

geometric point of S form a free A/N-module of rank r. Further, the A-module
r def — T
VN = (N 1/‘4)@ )

where N=! < K is the inverse fractional ideal of N, is also a free A/N-module of rank

r. A level N-structure on ¢ is an A-module homomorphism
AV — @[N](S)

which induces isomorphisms in every fiber.

Now we can describe the moduli spaces of Drinfeld modules of rank r.

Theorem 6.3.1 ( [Pin21, 2.1.1]). There erists a scheme M} y over K and a triple
(Eum'v7 SOuniv’ /\umv) such that

1. for any K-scheme S and (E, ¢, \) there exists a unique morphism f : S — M} y

S’LLCh th(lt (E, 0, )\) ~ f*(Eum'v’ Spum'v’ )\um’v)’ and

2. M} y is an irreducible, smooth affine algebraic variety of finite type and dimen-

stonr — 1 over K.

Example 6.3.2. Mfl,N >~ Y the (coarse space of the) Drinfeld modular curve whose
C'-points are the rigid analytic space I'\Q2, where I' < GLy(A) is a congruence subgroup

with conductor N.

Note that for any two ideals N © N’ < A there is a natural inclusion V}, < V};,

so any level N-structure restricts to a level N'-structure. We may apply this when
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N’ = (a) for any nonzero a € A: let V' < (4=14/A)®". Let R be any K-algebra and

let R AVE denote the quotient ring Ry, ®r, K modulo the ideal

1 1
— — 1: Div(N v— V7 .
({av®a Z v—v’® a € Div(N) and v € Vy V;})

v'eVr

The inherent grading of Ry; as a K-algebra induces a grading on Ry; ®r, K and
each generator for this ideal is homogeneous of degree 1. For any f € Ryr ®p, K let
[f] denote its image in RAszG and let RS AVE be the localization of RA%Q obtained

by inverting the elements [1 ® 1] for all v € \;1(, et Vi —{0}.

Now that we have the notation we need, we can deal with the problem of com-
pactifying the Drinfeld moduli schemes Yr = Mi,N, so we restrict our notation to

this case from now on.

Consider @) AV2 = Proj(R A,Vﬁ,)a a projective scheme over K with a natural very
ample line bundle O(1) and natural ring homomorphisms Ry vz ,, — O(n)(Q4,vz) for

each n € Z. Together, these mean we have a closed embedding

QA,VI% - Qvﬁ X SpecFq Spec(K).

Let

de .
Quvz < Proj(RS4yvz) = Spec(RS4yz.0).

Then since RS vz is the localization of R AV2 obtained by inverting a non-empty;,

finite set of elements of degree 1 we see that (2 Avz s an affine open subscheme of
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Qa2 In fact, by [Pin21, Theorem 2.7.6], Ayvz Is a dense open subscheme of Q4 yz2.
What is more, we have encountered this subscheme before, in another guise. By

[Pin21, 2.6.5], we know M} y = Q7 y is the affine Drinfeld modular curve Yr. Finally,

norm

v is the Satake compactification

from [Pin21, Section 2.9], we know the scheme @)
M?  of M3 ., where we denote by RUVS the integral closure of Ry vz in RSy, v2
) ) VN ) 5
and
Qv < Proj(Ry).
We have seen this projective curve as well, it is the projective model X1 from Defini-

tion 6.2.3.

6.3.2 STACKS

Let us compare this with the theory of uniformization of Deligne-Mumford curves.

For this discussion, all stacks are assumed to be smooth and separated. We say
an orbifold is a smooth, DM, (topological, algebraic or rigid analytic) stack which
is generically a (topological, algebraic or rigid analytic) space. On any stack, we say
an orbifold point is some point at which the intertia group jumps. Denote the
coarse space of a (topological, algebraic, or rigid analytic) stack 2~ by X. To avoid
2-isomorphisms, all such morphisms are declared equalities. We will consider the

property of stacks which we now introduce.

Definition 6.3.3 ( [BN05, Page 4]). A topological stack 2" is uniformizable if its

universal cover is a (genuine) topological space.

Let Top be the category of topological spaces with the usual Groethendieck topol-
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ogy where covers are simply topological open covers. A morphism f : % — 2 of
stacks over Top is representable if for any map X — 2  with X a topological
space, Y = X X o % is isomorphic to some topological space. A pre-DM topolog-
ical stack is a stack for which there exists some epimorphism p : X — 2 from a
topological space such that p is representable by a local homeomorphism. A pre-DM
topological stack is a DM topological stack if A : 2" — 2 x 2 is representable
by a closed map with discrete finite fibers. For any topological stack 2~ there is a

genuine topological space, X, the coarse space of 2 .

Let Rigid be the category of rigid analytic spaces, endowed with some G-topology
which is at least as fine as the very weak G-topology (recall Example 5.1.4). The 2-
category of stacks over Rigid contains the category of rigid analytic spaces as a full
subcategory. We say a morphism of stacks f : % — 2 over Rigid is representable
by local homeomorphisms if for any map X — 2 from a rigid analytic space X
to 27, the fiber-product Y = X x o & is isomorphic to a rigid analytic space and
the induced map Y — X is a local homeomorphism of rigid analytic spaces. A stack
Z over Rigid is a pre-DM rigid analytic stack if there exists an epimorphism
p: X — %2 with X a rigid analytic space, such that p is representable by local
homeomorphisms. A morphism of pre-DM rigid analytic stacks is representable
if for any map X — 2 from a rigid analytic space that is representable by local
homeomorphisms, the fiber product Y = X X o % is isomorphic to a rigid analytic

space.

Definition 6.3.4. A pre-DM rigid analytic stack 2 over a non-achimedean field k

is a DM rigid analytic stack if the diagonal 2 — 2~ xy Z is representable by
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closed map with finite fibers.

Remark 6.3.5. We earlier defined such a stack in Definition 5.5.3. The condition
here that the diagonal is a closed map with finite fibers is equivalent to the separated-

ness and quasi-compactness from Definition 5.5.35.

Example 6.3.6. The Drinfeld moduli spaces, M3 in the notation of [Lau96, Section
(1.4)] are known to be Deligne-Mumford algebraic stacks of finite type over F, by
[Lau96, Corollary 1.4.3].

Remark 6.3.7. Inspired by [BNOS5, Proposition 3.5/, we can state a “conjecture” of
similar content and form:

Let 2 be a DM rigid analytic stack. Then there is a covering {U;} of & by open
substacks such that each U; is a quotient stack [X /G|, where X s a rigid analytic
space and G a finite group acting rigid-analytically on X.

This statement is only meant to indicate the question: “what does it mean and

take for a statement of this form to be proven?”

Note that there is a well-defined coarse space X for a rigid analytic DM stack 2",

where by well-defined we mean that X is a rigid analytic space of dimension 1.

Where are the groupoids?

Let 2" be a smooth, DM algebraic stack of finite type over C, with X; = X x X
an étale groupoid representing it. We define 2" to be the quotient of the groupoid
X" 3 X§" x X§". The same thing allows us to get a topological stack from a

rigid analytic stack. The homotopy groups of a rigid analytic DM stack 2~ are
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defined to be those of 27*P. So it seems likely that there is some natural functor
AlgDM — Rigid — Top, which is well-defined in the sense of respecting the coarse
space constructions. Naively, we also expect the statements of [BN05, Lemma 4.1,
Theorem 4.2 and Theorem 4.3] hold verbatim when we replace “analytic” stacks by

“rigid analytic.”

Likewise, we might hope for a theory of uniformization of rigid analytic stacks
similar to the corresponding theory for analytic stacks in the sense of the following
statement. Note that homotopy groups of analytic and algebraic stacks 2~ are defined
to be those of 2°*P. The fundamental group of a topological stack 2" %P classifies the
connected covering spaces of 2P because the pointed connected covering spaces of
Z %P are in bijection with subgroups of m; (2P z). Recall that a covering space
of 2P is a representable map of stacks % — 27'°P that is stable under base change.
In particular 2P has a unique universal cover .2 up to equivalence. Accordingly,
we say that a rigid analytic stack 2" is simply connected if 7;(.27*°P, x) is trivial,

where 27%P is the topological stack associated with 2 .

Remark 6.3.8. Since we have a theory of uniformization of analytic stacky curves,
it seems worth considering whether something like the following statement can be
proven.:

Fvery rigid analytic Deligne-Mumgford stacky curve has a universal cover which is a
simply connected rigid analytic DM stacky curve. All simply connected rigid analytic
DM stacky curves have form similar to C' — Ky : generally C with some compact
subspace removed. That is, we can classify these rigid stacky curves according to

their simply connected universal covers.
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Remark 6.3.9. If some statement like Remark 6.3.8 is true, or can be shown to be
true, then it seems likely that something like the following statement will be true:
Every uniformizable DM rigid analytic stacky curve Z is the stack quotient [ X /G|

of a rigid analytic space X by a finite group G.

Remark 6.3.10. All of the “conjectures” stated in this section are versions of Theo-
rems in [BNOS5] which hold for “ordinary” analytic stacks. It seems possible then that
similar proofs, but using rigid analytic notions of convergence for example, would
prove these statements. In particular though, we do not rely on any of these ideas
in our proofs and want to emphasize these questions to indicate directions for fu-
ture study. It is even fair to call these questions ill-defined, but taken together all
we mean to do by including these statements is ask: “Can we do [BNO05] for rigid

analytic stacks?”

6.4 (Cusprs OF DRINFELD MODULAR CURVES

In this section we consider the Drinfeld setting version of [DS05, Chapter 2, Sections
2 and 4]. Before we begin thinking about cusps, let us consider charts on the affine

Drinfeld modular curve Y, a) with Ygr,4)(C) = Yér, ) = GLa(A)\S2.

6.4.1 DBASICS OF CHARTS ON DRINFELD MODULAR CURVES

Let m : Q@ — Yér. a be the quotient map, and let 7 € €. First we will define
some coordinates. Let &, </ (1%) € GLy(C), where by 7 we denote our version

of “complex conjugate” in C. That is, if 7 = Y, a;T" € Q, then recall that 7 is

“convergent” in the sense that lim, |a|||T"|| = 0, where for a # 0 € A we have
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a| Y glesa 5o |a;| = ¢° for a; € F, and ||T?|| = ¢'. Fix e > 0 and let N € Z_ be such
q

that for n < N we have |a,T"| < €. Then 7 = Y, _, b;T" € Q is the unique element

such that

Z aibj =0

1+j=m
for all m < N and for all m € Z>y the remaining coefficients in the series 7 have

b = ay,. Define the period of 7 by the integer

#Btabe() - _[d € Stabp(7)
he Y # (Z(GLy(A)) Stabr (7)) Z(GLy(A))) = i

4 Stabr(r), —Id ¢ Stabr(r).

The 6, maps 7 — 0 and 7 — o0. The isotropy subgroup of 0 is
Stabs. 7L, (anrs-1(0)/Z(GLa(A)) = (6;Z(GLa(A))TS) /Z(GLy(A)),
which is conjugate to the isotropy subgroup of 7:
d; (Z(GLa(A)) Stabr(1)/Z(GL2(A))) 6, 1,

so is cyclic and of order h.,. This group fixes 0 and oo, and it consists of maps z — az, so
those maps must be rotations through multiples of 7/h, about the origin because the
group is finite cyclic. That is, d, “straightens” neighborhoods of 7 to neighborhoods
of the origin since GLy(A)-equivalent points will be spaced apart by fixed angles. The

coordinate neighborhood of 7(7) in Yéi, () is the m-image of an the intersection of

1. a circular sector through 7/h, about 7 in €2, and
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2. admissible opens sets in a pure cover of Q (see Example 5.1.6).

So the identifying action of 7 is basically an “unwrapping” action of the h, power
map taking a sector to the disk. We mention one last point for our intuition and

notation before making the discussion above precise.

Corollary 6.4.1 ( [DS05, 2.2.3]). Let I" < SLy(Z) be a congruence subgroup. Each
T € H has a neighborhood U < H such that for all v € T, if v(U) nU # & then

~v € I';. Such neighborhoods have no elliptic points except possibly T.

In the Drinfeld setting, we expect cusps of a Drinfeld modular curve are stacky
points, so they are elliptic points by Definition 6.2.7 which we use in [Fra23]. Now

let us make things more precise.

Given 7(7) € Yar,(a) and let U be some neighborhood in €2 the intersection of
some neighborhood as in Corollary 6.4.1 and some admissible open from Example
5.1.6. Let ¢ : U — C be the composite 1) = p o d, where § = &, and p(z) = 2.
Then (7') = (6(7'))" is the straightening 0, followed by the h,-fold wrapping.

See [DS05, Figure 2.2] for a sketch of the corresponding maps in C.

Let V = ¢(U) < C. We know V is open by the open mapping theorem, indeed
open sets for the rigid analytic topology are both open and closed in the metric
topology. Since the projection m and the map v identify the same points of U, there

should be an equivalence between 7(U) and ¢(U), which we verify next. For any
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71, T € U we have

m(n) =7n(n) < n € GLy(A),
> 7 € GLy(A), 7
= (1) € (0GLy(A).61)(6(m))

— 0(r1) = pj_(6(72)),

for some d € Z and py,, = ea(z/h,), where e, is the exponential function from the
definition of our parameter u(z) at oo in Section 4.3, since 6GLy(A),6~! is a cyclic

h,-rotation group. So

(1) = m(r) < §(n)" = d(m)"

= Y(n) = Y(n).

This means there is an injective map ¢ : 7(U) — V such that the following com-

mutes:

and in fact since 9 is surjective by definition, we know ¢ is too.

It remains to check whether transition maps between coordinate charts are holo-

morphic (in the sense of [FvdP04, Definition 2.2.1]). Let Vis = o1(m(Uy) nw(Us))
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and let Vs, wo(m(Uy) nm(Us)). Then consider the diagram

For z € 7(U;) n w(Us) it suffices to check holomorphy in some neighborhood of

p1(z) € Vis. Suppose x = (1) = w(72) for some 11 € Uy and 15 € Uy with 7, = y7y

for some v € GLy(A). Let Upy def Ui 0y Y (Us). Then 7(Uy2) is a neighborhood of =

in 7(Uy) n7(Us) and ¢ (m(Usz)) is a neighborhood of ¢4 (x) in Vis.

If 1 (x) = 0 then an input u = ¢1(2’) to ¢9; in this neighborhood has form

u=gi(n(r') = ¢u(r) = ai(r)"

for some 7/ € Ujo and hy the width of 1. Let 75 € U be such that ¢(72) = 0 and the

width is hy. The corresponding output is

pa(z’) = p2(m(7(7)))
= ¥2(v(7)
= dz(7(7)"
= (8207 ) (d1(7))"

= (00 1) (u)",

Then the only case where a transition map might not be holomorphic is when
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hy > 1, and hence 7, and 7 are elliptic points. By construction U; contains at most
one elliptic point and the local coordinate maps it to 0. If A; > 1 then 75 is the point
7o € Uy and the second straightening map is d; = d,, and hy = hy. That is, we have

maps

51
0 > Bl 'l>7'2*—>0,
and
-1
0 4 — &

0 doyd;t = ((0)‘ 2) for some «a, f € C*. Then ¢y is the map
we ((58) ™" = (a/B)w,

which is holomorphic on Y¢7, 4y = GL2(A)\Q since u has only a double pole at .

6.4.2 CHARTS AT CUSPS

Now we will turn to X" = T'\(Q u P}(K)) for T' < GLy(A) a congruence subgroup
containing the diagonal matrices in GLy(A). For each s € PY(K), there is some
d = 05 € GLy(A) which maps s — co0. As in [Gek86, V.2.(2.5)], the stabilizer Stabr(s)
contains a maximal subgroup of form {(} %) : b € B} for B some fractional ideal of A.
Since the exponential from Definition 4.3.1 is invariant under translations z — z+b for
b e A, there is some B-stable, admissible subset ' of €2 such that u (from Definition
6.1.1) identifies B\ with a pointed neighborhood of 0 in C. For “sufficiently large”

r we may use ' = {z € Q : |z]; = r}, where | - |; is the imaginary absolute value
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from [Gek86, V.1.(1.1)]. In general Stabr(s) has form
{(2¢%):beB, and certain a,d € Fy}

which contains transformations of form z — az. Let w denote the order of the cyclic

group of these transformations. Then u" is a local parameter at s.

We define the width of a cusp s € P!(K) to be

hs = # (Stab(;L2(A)(OO)/ Stabéz(GLz(A))m‘l(OO)) :

See [DS05, Figure 2.6] for a sketch of the corresponding discussion for C. At a cusp,
infinitely many sectors in a given admissible open come together and the width of
the cusp is the number of distinct strips up to isotropy. This is dual to the period of
7 € () in that it is inversely proportional to the size of the isotropy subgroup. Since

GL2(A)y is the set of all upper-triangular matrices, with the maximal subgroup
GLa(A)% = {(}9) rae A}

and the subgroup of cyclic transformations (§§) for a,d € F, the group is infinite

and cyclic, so width is characterized by

Z(GL2(A))(6T0 ™ )oe = Z(GL2(A))(§ 1)),
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with h > 0, which is finite. We claim it is independent of choice of 4. Indeed
he = # (GLa(A),/Z(GLy(A))T)

so width is well-defined on X&) and is independent of 4. If s € P!(K,) and

v € GLy(A) then

width of y(s) under width of s under

Ayt r

If I' is normal in GLy(A) then all cusps have the same wdith.

Let U = U, 8 HA U {o}), where A = Unzer) Pnyes where Dy, , are the
affinoid spaces from Example 5.1.6 and [ is the index set from the same Example.
Let ¢ % p o0, where p(z) = u(z/h), where u(z) is the parameter at oo. Let V < C
be the image of ¢, i.e. ¢ : U — V is the map 7 — u(d(7)/h).

We see the same way as before that ¢ and 7™ do the same identifications about s.
Once again, it remains to check that transition maps are holomorphic. Let U; <
correspond to 0, € GLy(C), where 7, has width h; and let Uy = 6, (4" U {o0}). For
each x € 7(Uy) nm(Us), we have x = 7(71) = m(72) for some 71 € U; and 15 = y(7;) for
some v € I'. Let Uy = U; n v 1(Uy) be a neighborhood of 7} in Q. Then ¢, (7(U;2))
is a neighborhood of pi(z) in Vis = o1 (n(Uy) nw(Us)). If hy > 1 then 71 ¢ Usa,
otherwise d2(7(71)) € A is an elliptic point for I'. In the classical proof, for .45 as

in [DS05, Proof of Lemma 2.4.1], we know .45 does not contain any elliptic points for
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SLy(Z). However, 4" contains elliptic points for GLg(A). So, if Ay > 1 then we do

not necessarily have that 0 ¢ ¢1(7(Ura)).

An input point ¢1(z') to @1 in Viy has form ¢ = (6;(7'))™ and output

pa(a’) = pa(m(¥(7)))
= 12(7(7"))
= u(72y(7')/h)

= u(T0yyo7 L (ul/™) /hy).

Then as before the only case where a transition map might not be holomorphic is

hy > 1 and 0 € ¢y (7(Us2)).

Let Uy < 571 (A U {0}), where §; : s; — o0 and let U, wf 651 (AN U {0}), where

9o 0 89 — 0. If w(Uy) nw(Usy) # &, then for some v € I we have
Yo7 (A U {o0}) (AU {oo)) # o,

i.e. d970; ' moves some point in .4 U {0} to another, so is a translation 4 (¢ 4). Then
(1) = 01 (0) = 857 (§5) () = s,

so hy = hy and the transition map moves a point in ¢1(m(Uis)), some u = (1) =

117



(1 (7)/h), to the point

Yo (7(7)) = u(mdxy0;  (61(7))/h)
= u(m((a/d)or(7) + b/d)/h)
= u(w(b/dh))u,

which is holomorphic.

6.4.3 IsoTrROPY GROUPS OF CUSPS

As usual let I' < GLy(A) be a congruence subgroup containing the diagonal matrices
of GLy(A). We have seen that for any s € P!(K), the stabilizer Stabp(s) consists of

some upper-triangular matrices

{(85):a,delF; be A}.

This group is infinite, but we know that the stabilizer of any point on a tame Deligne-

Mumford stack is a finite cyclic group. To each s we associate a finite integer h its

width, defined by

hy = # (Stabar,(a)(s)/(Z(GLy(A)) Stabr(s))) .

The order w of the cyclic group of transformations z — «z induced by some 7 €
Stabr(s) is hs when I' < GLy(A) is a normal subgroup so that all cusps of X" have

the same width.
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We need to think of some subgroup of the isotropy group of a cusp as the “right”
automorphisms of that cusp to have a well-defined Deligne-Mumford stacky curve as
our stacky Drinfeld modular curve, and the width gives us a natural-looking order of
this group. The question becomes: “why can we ignore the infinite group of transla-

tions (§7) in the isotropy group?”

Recall from [Gek86, V.2.(2.4)] that the cusps of T, the orbits I'\P!(K), are also
described by {classes of ends in I'\.7} where .7 is the Bruhat-Tits tree of PGLy(K )

(from Section 4.2). These classes of ends are infinite graphs of the form within some

quotient graph I'\.7. The translations () are clearly automorphisms of such ends
in the sense of picking some point or another along the end to be the representative
for a cusp. However, these automorphisms do not distinguish one class of an end
from another, instead they describe the class of the end itself. That is, translations

identify an entire half-line in I'\.7 with a single cusp I's for some s € P!(K).

The key to this confusion comes from thinking of a given compact rigid analytic
Drinfeld modular curve X2 = T'\(Q2 u P!}(K)) as a compactification of Yi* = I'\.Z,
where .# denotes the fundamental domain for €1 that we sketched an example of in
Section 4.2. So far we have written Y2 = I'\Q2, but every point in Q is GLy(A)-
equivalent to some point in .%, and we find it more convenient to phrase our com-
pactification in terms of the quotient of this fundamental domain rather than the full

Q) since then the translations have “already disappeared.”
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To make sure we have a well-defined compactification which leaves the “right” size

isotropy groups of cusps we will adopt the notation of [Vinl2, Section 3.1.4]. Let

Qe={2€eQ: inf |z—2|>c}
reK

denote a neighborhood of « in 2. Then the u function (recall 6.1.1) identifies A\,
with a pointed ball B,\{0} for some small radius r. There exists some constant cq
such that for all ¢ = ¢g and v € GLy(A), if Q. ny(Q) # & then in fact v € Stabp(o0).

Then for such a ¢ we have an open immersion of rigid analytic spaces

given by the identification

Stabp(OO)\Qc - Brw\{o}

2 u(2),

where w is the order of the finite cyclic group of transformations z — «z contained
in Stabr(s), i.e. w is the width hs of s. Note that when I' = GLy(A) itself, w = ¢ — 1

as in [Vinl2, Section 3.1.4] or [Gek86, V.2.(2.5)].

The upshot of compactifying Y*" according to this specification of a chart at o
is that thinking of compactifying a quotient of the fundamental domain .# for €, as
opposed to compactifying 2 and then taking a quotient, is we have already removed

translations from the isotropy groups of cusps. Then for any given cusp s € I'\P!(K)
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we say

Aut(s) = {(§5):a,deFy}.

6.5 MODULI INTERPRETATION

In this section we discuss moduli interpretations of Drinfeld modular curves for sev-
eral kinds of congruence subgroup. We begin by recalling some analogies from the
classical setting and some results from [Brel6] about the group GLs(A); in particular.
We can state moduli interpretations for several distinguished congruence subgroups
I' and their square-determinant subgroups I's. Thanks to Mihran Papikian we also
discuss some moduli interpretations for SLy(A) and extend our ideas to its congruence
subgroups.

First we recall the arithmetic congruence subgroups I'(N) < I'1(N) < T'o(N) of

GL3(A) containing the matrices

(6%), (o%), and (§%) (mod N)

respectively. In order to not go too far afield describing the degeneration of rank
2 Drinfeld modules in a moduli stack which is similar to the singular elliptic curves
appearing as cusps of a classical modular curve, we content ourselves to consider rigid
analytic affine coarse spaces. An excellent discussion of the elliptic curve version of
the problem we are avoiding with this simplification is covered by [Alp23, Exercise

2.4.12.(b)] and [Alp23, Exercise 3.1.17]. As in the classical case, we have the following
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moduli interpretations

F'(vy — (the moduli of rank 2 Drinfeld modules with a basis for N torsion),

Yi ) — (the moduli of rank 2 Drinfeld modules with an N-torsion point) , and

To(vy — (the moduli of rank 2 Drinfeld modules with an N-torsion group).

We next recall (Section 4.3) that the determinant of a rank 2 Drinfeld module

©*(T) = TX + g(2)X? + A(2) X7 is the rank 1 Drinfeld module
W(T) Y TX — Az) X0

There is a Weil pairing

wr = @[T] x @[T] = ¢[T]

sending (z,y) — xy?—z%, the Moore determinant. From Gekeler we know h(z)7"! =

—A(z) and from [Brel6, (4.2)] we have
VH(T)(Arh(2)71) =0,

where \p = Tea(T™ 1) € p[T], for p = TX + X7 the Carlitz module. Then the

determinant of ¢* is isomorphic to the Carlitz module via

V= h(z)""ph(z)

and is associated to the lattice L, = 7h(z) ' A. The N-torsion module of 1% is gen-

erated by Tea(£)h(z)~*. Recall that the lattice TA associated to the Carlitz module p
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relies on the choice 7 € C, which is defined up to a factor of F)* and is transcendental

over K. If we compare with this situation with elliptic curves, a given elliptic curve

E defined by the lattice quotient C/(2Z + Z) has
wy (N"Hwz + ug), N1z + v2)) = e2miN T vz muzen)

where the right hand side does not depend on z. There is only one multiplicative
group scheme G,, here, whereas there are many rank 1 Drinfeld modules, so h(z)™*

serves to pick out the correct one 9)*.

Breuer explains in [Brel6, Section 5] the following moduli intepretation:

the moduli of rank 2 Drinfeld modules
YiLaa), — with (F)*-classes of T-torsion

on their determinant modules

Now we are in a position to discuss some new results. Let I' < GLy(A) be a
congruence subgroup and let Ty = {y € T' : det(y) € (F))*}. Then it is clear that

[y =T n GLy(A)a, so we state the folowing.
Proposition 6.5.1. As stacky curves Zr, = Zr X Pang () ZaLa(A)s-
Proof. As T and GLy(A)y are subgroups of GLy(A) there are covers

ZGLa(A)s

l

Ar —— Zarya)

so that by the universal property of fiber-products we have
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ZGLa(A)

and in particular we claim the dotted arrow is an isomorphism. Consider all of the
stacky curves as closed subspaces of some rigid analytic projective space, each having
been canonically embedded so that the embedded curves are isomorphic to the stacky
modular curves. Then as sets and in particular closed subspaces of a rigid analytic

projective space we have

an __ an an
Ty = AT X228, %GLz(Ah

To\(Q U PY(K)) = T\(Q U PY(K)) X Loy @ur k) GLa(A)2\(Q U PY(K)).

By Rigid GAGA for stacks Lemma 5.5.4 the result follows for algebraic stacks. [

Now we can give some new moduli interpretations as an easy consequence. Once

again though, we consider only the coarse space when doing so.

124



o the moduli of rank 2 Drinfeld modules with a basis for N torsion,
T(N)s —
with (F)*-classes of T-torsion on their determinant,

yan the moduli of rank 2 Drinfeld modules with an N-torsion point

T (N)s —

with (F)*-classes of T-torsion on their determinant, and

yan the moduli of rank 2 Drinfeld modules with an N-torsion group

To(N)2 —

with (F;)Q-classes of T-torsion on their determinant module.

Next we consider the moduli interpretation for SLy(A) itself, and for congruence
subgroups of SLy(A), the “Schottky groups,” from [GvdP80]. Thanks to Mihran Pa-

pikian we have the following elegant formulation.

Let the pair (¢,«) denote a rank 2 Drinfeld module ¢ and o € F¥ = Aut(p).
(Recall [Pap23, Definition 3.3.1] or Section 4.3 for automorphisms of a Drinfeld mod-
ule). We say (¢, a) is positively oriented if o € (F;)* and negatively oriented
otherwise. Furthermore, we define (p, ) = (v, 3) if there exists some isomorphism of
Drinfeld modules u : ¢ — 1 which preserves the sign of the orientation, i.e. ua = f3

with both of a, 3 € (F)) or neither a nor 3 a square. Then SLy(A)\Q classifies pairs

(p, )/ = (up to the isomorphism specified). That is,

Yoo — ( the moduli of rank 2 oriented Drinfeld modules. )

It should not be difficult to extend this moduli interpretation to the distinguished

congruence subgroups I''(N), T1(N) and Tj(N) of SLy(A), where the superscript
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denotes the subgroups of the arithmetic congruence subgroups (from the beginning
of this section) consisting of matrices with determinant 1. It is interesting to consider
similar moduli interpretations for congruence subgroups I containing I'y = {y € I :
det v = 1}. Clearly each of these will be some moduli of rank 2 Drinfeld modules with
(Fx )2-classes of T-torsion on their determinant in addition to some further torsion on

their determinant.
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CHAPTER 7

(GEOMETRY OF DRINFELD MODULAR FORMS

In this chapter we state and prove our main results about Drinfeld modular forms.
We will see that like modular forms over C or a number field, Drinfeld modular forms
are sections of some line bundle on a particular Drinfeld modular curve. We can
compare Drinfeld modular curves for certain related pairs of subgroups of GLa(A)
and therefore compare their respective algebras of Drinfeld modular forms. Our first
main result however is the most important, since with it we now have a technique
to describe every algebra of Drinfeld modular forms currently in the literature and
hopefully soon many more such algebras, by computing canonical rings of log stacky

curves.

7.1 DRINFELD MODULAR FORMS AS DIFFER-

ENTIALS

We prove our first main result:
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Theorem 7.1.1 ( [Fra23, Theorem 6.1]). Let q be an odd prime and let T' < GLg(A)
be a congruence subgroup containing the scalar matrices of GLy(A) and such that
det(y) € (F))? for every v € T. Let A be the divisor supported at the cusps of the
modular curve 2t with rigid analytic coarse space X&" = T\(Q u PY(K)). There is

an isomorphism of graded rings

where Qé{r is the sheaf of differentials on Zr. The isomorphism of algebras is given
by the isomorphisms of components My, (T') — H°(Zr, QY. (2A)%%2) given by f —
F(dz)®+%2,

Proof. Suppose f € My, (T'). For any v = (¢%) € I we have

_, dety*/2
Ao,

F(y2)d(72)®*? = (cz + d)*(det ) (cz + dF

where k = 2l (mod ‘1;21) All of the factors of automorphy cancel and

Fyz)d(y2)®? = f(2)d=%?,

so the differential form f(d2)®%/2 e H(Q,Q2"?) on the upper half-plane § is I-
invariant. As in [GR96, Section (2.10)], we know f(dz)®*? is holomorphic on T'\{).

d
ea(z) = 1, we have —Q; = —7dz, so the differential dz in this case has a double
z u

Since

pole at co. Then since f is holomorphic at the cusps of I,

div(f(dz)®*?) + kA > 0,
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and therefore f(dz)®%? is a global section of the twist by 2A of sheaf of holomor-
phic differentials on the rigid analytic space X2 = I'\(Q UP}(K)). We claim this is a

global section of (a twist by 2A of) the sheaf of differentials on the algebraic stack 2.

By rigid analytic GAGA, [FvdP04, Theorem 4.10.5], we know that the categories
of coherent sheaves on the rigid space P%™ and coherent sheaves on P are equiva-
lent and every closed analytic subspace of P™ is the analytification of some closed
subspace of P¢. So, the sheaf Qyu(2A) corresponds to the sheaf Oy (2A) on the
algebraic curve X which is the coarse space of :Z". Finally, by [PY16, Theorem 7.4],
we know the sheaves Q, -Fan(2A) and Q). (2A) on the rigid analytic stacky curve and

algebraic stacky curves Zp" and Zr respectively are equivalent. m

7.2 ALGEBRAS OF DRINFELD MODULAR FORMS

7.2.1 A SPECIAL CASE

When we compare the algebras of Drinfeld modular forms for I' a congruence subgroup

and 'y < I we arrive at the following conclusion.

Theorem 7.2.1 ( [Fra23, Theorem 6.2]). Let q be a power of an odd prime. Let
I' < GLy(A) be a congruence subgroup containing the diagonal matrices in GLy(A).

Let Ty = {y e T :det(y) € (Fy)*}. Then M(T') = M(Ty), with
My i(T2) = My, (T') @ My, (1)

on each graded piece, where ly,ls are the two solutions to k =2l (mod g — 1).
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Remark 7.2.2. Let Zr and Zr, be the (stacky) Drinfeld modular curves whose
coarse spaces are the algebraizations of T\(QUPY(F,(T))) and T2\(QUPH(F,(T))) re-
spectively. Let D = Ky, + A ~ Kx. + R+ A and Dy = KggFQ + Ay ~ KXF2 + Ry + Ay
be log canonical divisors on Zr, and Zr,, where K x. and KXF2 are canonical divisors
for the coarse spaces of Zr and Zr, respectively, and A and Ay are the log divisors

of Zr and v, respectively.
1. Suppose T is “square.” Then M(T's) = M(T'), and Koy, +Ag = Koy + A,

2. Suppose T is “non-square.” Then each sy € supp(As) has #(I's)s, = 5(#I's) for
any s € supp(A). If one could show that the cusps of Zr are in bijection with
the cusps of Zr, then the log canonical ring R(Zr,; As) is the spin canonical
ring of the log curve (Zr;A) as in [LRZ18a, Definition 2.9]. In the following
proof we do not need such a bijection between cusps, and merely comment on

this *hopefully* “easy” way to strengthen our result in future work.

Remark 7.2.3. Since there are many intermediate lemmata involved we break the
proof of Theorem 7.2.1 up into the next few parts of this section. We state and prove

the generalization afterwards.

7.2.2 PROPERTIES OF [

We begin with some group theory and elementary number theory which inspired our

second main result and is instrumental in its proof.

Lemma 7.2.4. Let I' < GLy(A) be a congruence subgroup containing the diagonal

matrices in GLy(A). Let Ty = {y e I' : (det) € (F))*}. Then Iy is a normal subgroup
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of I with [I" : 'y] = 2, and for any a € F}\(FY)?, the matriz (§9) is a representative

for the unique non-trivial left coset of I's in T'.

Proof. Let ¢ : I' — F) be the map v — (det )@/ Then since (det~)?™' =1 for
all v € T, we see kerp = I'y. If v € T'\I'; then (det)@ Y2 = —1 (mod q — 1) so

o(I') = Z/27Z as multiplicative groups and [I' : I'y] = 2.

If v € T\I'y, ie. det(y) € FX\(Fx)?, then for any o € F\(F))* there is some
Yo € I'y with

Y= (3{(1))72-

We recall from elementary number theory the following.

Lemma 7.2.5. Suppose q is odd. For a fized k, 1 is such that k = 2] (mod ¢ — 1), if

and only if

NIk

(mod g — 1), or

byt (modg-—1).

Proof. We know that 2/ = k (mod ¢ — 1) if and only if 2] — m(q — 1) = k for some
integer m. If ged(2, g — 1) does not divide k then there are no solutions, and if it does

then there are exactly ged(2, ¢ — 1) = 2 distinct solutions modulo ¢ — 1. O
To be explicit, we illustrate this Lemma with computations:

(=) Suppose that k = m(q — 1) + 2l for some integer m. Since g — 1 is even, k is

o k. q_l . m s .
sol =35 (mod %=). If m is even, % is an integer,

q J—
even and | = —m(%F) +

[SIES
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m—1

5 18, so we have

and otherwise

=% (modgq-—1), m even

L=%+%1 (modg—1), modd

(<) Suppose I = I; = £ (mod ¢ — 1). Then l; = ni(g — 1) + £ for some ny, so

k=-2n1(qg—1)+20. Ifl = Iy = 5+ T2 (mod ¢—1) then lp = ny(¢—1)+E+ 42

for some ny and we have k = —(2ny +1)(¢ — 1) + 2l5. In either case we conclude

that k = 2] (mod ¢ — 1).

7.2.3 (Cusps AND ELLIPTIC POINTS

We wish to compare the cusps and elliptic points on the Drinfeld modular curves
for I' and I's. Our notion of elliptic point is slightly different from Gekeler’s so that
it adapts to the notion of a stacky Drinfeld modular curve more naturally. So, we
discuss some of the properties of our elliptic points with the next two group-theoretic

results.

Lemma 7.2.6. Let q be a power of an odd prime, let ' < GLo(A) be a congruence
subgroup containing the diagonal matrices in GLio(A). Suppose e and ey are distinct

elliptic points for I'. Then the stabilizers I'., and I'., are GLgy(A)-conjugate.

Proof. Since both I'e, and I, stricty contain F by definition of an elliptic point, and
each stabilizer is a subgroup of GLg(A).,, where i = 1 or 2, both elliptic points for I'

are also elliptic points on 2. Then e; and ey are GLy(A)-equivalent to each other. If
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ver = eq for v € GLg(A) and v € T, then

Yy tes =Yy H(ver)
= é1

= €2.
[

Lemma 7.2.7. Let q be a power of an odd prime, let I' < GLgy(A) be a congruence
subgroup containing the diagonal matrices of GLg(A). Let Ty = {y € T' : det(v) €
(detT')?}. Let e € EI(T'y). Then

1, if ' is “square”
[Te : (T2)e] =
2, if ' is “non-square.”

Proof. By definition, the stabilizer I'; strictly contains Fy and as this is a subgroup
of the stabilizer GLy(A)., we see that e is an elliptic point for GLy(A), i.e. an elliptic
point on €2, so we know GLy(A), =~ IF;. This means (I'y), I I GLy(A), = IFqXZ and
in particular since

(T3). = ker((det)’T : T, — F),

the result is immediate according to whether (det)% is surjective onto {+1}. By
Lemma 7.2.6, we need only check whether I'. contains some v with dety € F\(F)?

to determine the index of the stabilizer (I's). for all elliptic points e. O

The main idea for this step of the proof of Theorem 7.2.1 is the following compar-

ison between elliptic points and cusps for I' and I's.
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Proposition 7.2.8. Let q be a power of an odd prime, letT' < GLa(A) be a congruence
subgroup containing the diagonal matrices of GLy(A). Let I's = {y € ' : det(y) €
(det I")?}.

1. EI(T) = EI(T),
2. Crc CF2

Proof. Suppose e5 € Ell(I'y), so by definition the stabilizer (I'y)., is strictly larger than
Fx. Since (I'y)e, is a subgroup of I'c,, it must be that I, strictly contains Z(F,), so
es € EI(T).

For the same reason, if e € Ell(I"), then e is an elliptic point on €2, and we know
GLy(A), = IFqXQ. In particular, as IF;2 and F are cyclic groups, we know (T'y). and T,
are cyclic and we have 1 < Z(F,) < (T'g) 9T, < GLy(A), = F ;. Since ¢ — 1 | #I,
there is some 1 < n < ¢+ 1 such that n | ¢ — 1 and #I'. = n(q¢ — 1). Suppose that

(7) = I'c. Then the left cosets of F in T, have representatives

for 1 <j<n(¢g—1)and o; € F, so we can write

2 (n=1)(¢—-1)
F;@lﬂ?;@...@viﬁ?;_
Qo

Qg1

v
Qg1

TR >2F © L F @@
%)

We claim that if T' is “non-square,” the cosets with representatives 77 /a; with j
even form a subgroup isomorphic to (I'y)./F. If T' is “non-square” then by Lemma

7.2.7 we know that I'. contains some 7/ with det+’ a non-square, so det~y is non-
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square. Otherwise we would have 4" =~/ for some n, and so with det~ € (F;)Q, we

would have det+’ a square, which is a clear contradiction. Then for any even j we

J J
det (7 ) _ det;
a a

is a quotient of squares so is a square. For odd j, since det~/ € FX\(Fy )2 then for any

have

o' € F non-square, there is some v, € I'y such that v = (§9) 72. However, whether

a given q; is a square or not,

/
det(7? /o) = a gy de2t 72,

Q;

which is not a square. Otherwise if I is “square,” by Lemma 7.2.7 we have I', = (I'y)e.

Whether I' is square or not, (I'.)/Fy has a nontrivial subgroup isomorphic to

(I'2)e/F, so the stabilizer of e in Ty strictly contains F and e € EI(I'y).

Now we consider cusps. Let s € P1(K). Then I's 2 T'ys, i.e. the action of T'y
partitions P!(K) more finely than the action of I'. If s;,--- s, are cusps of I, we

write \P!(K) = I's; i --- 1 I's,,, and then

FSZ' = FQSZ' [ (F\FQ)SZ

If the points of P!(K) in the orbits (I"\I's)s;, under the action by T’y have orbit

representatives tq,--- ,t,, then we can write

FQ\]P)l(K) = F2$1 [ FgSn L F2t1 N Fth7
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so the cusps of I'y are Cr, = {s1, -+, Sp,t1, -+ ,t;m}, which contains Cr. O

Corollary 7.2.9. Let q be a power of an odd prime. LetT' < GLy(A) be a congruence
subgroup. Let T'y = {v € I' : det(y) = 1}. Suppose that 'y < I" < T for some
congruence subgroup 1. Then Cr < Crv, i.e. the cusps of I' are some subset of the

cusps of T”

Proof. The proof of the second part of Proposition 7.2.8 about the cusps did not
make any particular use of the special choice of I = I'y, and so holds in this more

general situation. O]

7.2.4 MODULARITY AND SERIES EXPANSIONS AT CUSPS

Our next steps in the proof of Theorem 7.2.1 deal with the u-series expansions of

modular forms.

Proposition 7.2.10. Let f be holomorphic on ) and at the cusps of I's, and let
B =a?eFx

¥, where o generates F. Suppose that f(vz) = (det )™ (cz + d)* f(z) for

v=1(2Y%) €Ty Then
F(89)2) = f(B2) = B2 f(2).

Proof. Since (¢ %) € T'y we have f (%> = f(z) = ofmo/“f(z), so aF 2 = 1.
o

Suppose that = generates the cyclic group F, so a = 2™ for some n. If ged(n, ¢ —

1) =1, i.e. av is a generator, then we claim k£ = 2] (mod ¢ — 1). The order of « is

__e=t _ .
O g1 1T
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and we can write k = 2] (mod #<{a)) so
ged(n,g—1)(k—20) =0 (mod qg—1).
But ged(n, g — 1) is coprime to ¢ — 1, from which the claim follows.

k—21)

Since 8 = o2, we have =1, so

2k =4l (mod ¢ — 1).

Then we have k = 2] (mod q;—l), since if 2k = m(q— 1) + 4l for some m, we can write

qg—1
k = — 21.
m( 7 >+

k -1
Then [ = B (mod %), SO

F(89)2) = f(B2) = B7*2f(2),

since (g (1]) e I'y. This matrix has square determinant by assumption and is in I' by

our assumption that I' contains all matrices of form (§ %), for any o, o’ € Fy. O
We complete the proof of Theorem 7.2.1 with the following result.

Proposition 7.2.11. Suppose I is “non-square.” Let f be a modular form of weight
k and type | for I's. Then there are two modular forms fi and fy for I' of weight k
and types l1 = k/2 (mod ¢ — 1) and ly = k/2 + (¢ — 1)/2 (mod ¢ — 1) respectively,
such that f = f1 + fo.
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Proof. Suppose that f(y22) = (dety2)!(cz + d)*f(2) for 7o = (2}) € I'y. Write the

u-series f(z) = > o anu”. Let § = o® € F¥

o » Where a generates F . By Proposition

7.2.10, f(Bz) = 37%2f(z). Using this relationship, we have from Lemma 6.1.3

n=0 n=0

f(BZ> _ Z anﬂ—nun _ /B—k‘/Q (Z anun) 7

so for each non-zero a, we have 3™ = 37%2 or a™?" = a~*. Then k = 2n (mod ¢—1),

so by removing the zero summands from the u-series, we may write

f(z) = Z au” + Z a,u".

n=k/2 (mod q—1) n=k/2+(¢—1)/2 (mod g—1)

Let a € F) be some non-square, so by Lemma 6.1.3 we have u(az) = a~'u(z). Let

fl = 2 anun

n=k/2 (mod ¢—1)

and

fo= Z a,u"

n=k/2+(¢—1)/2 (mod ¢—1)
be the modular forms for I'y uniquely determined by their u-series by Lemma 6.1.9.

Then
filaz) = Z apa "t = a™h Z apu”,

n=k/2 (mod g—1) n=k/2 (mod g—1)

k
where [ = 5 (mod ¢ —1). Let v € II'y. For any a € FX\(FX)* there is some
2 = (2%) € I'y such that

v=(59),
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SO

fi(12) = filonez) = a7 fi(rez) = o det(y2) T (cz+d)" fi(2) = det(y) ' (cz+d)* f1(2)

and f; is a modular form for I'. Likewise we have

folaz) = Z a,a " = b Z apu”,

n=k/2+(q—1)/2 (mod g—1) n=k/2+(q—1)/2 (mod g—1)

kE+qg—1

where now [, = (mod g — 1), so for v, and 75 as above,

fo(y2) = a7 det(v2) ez + d)* fo(2)

and fs5 is a modular form for T'. O

7.3 A GENERALIZATION

Gebhard Bockle suggested the following generalization of Theorem 7.2.1.

Theorem 7.3.1 ( [Fra23, Theorem 6.12]). Let g be a power of an odd prime. Let
[' < GLy(A) be a congruence subgroup. Let T'y = {v € " : det(y) = 1}. Suppose that

I is such that T’y < TV < I'. Then as algebras
M(T) = M(I"),

and each component M (I") is some direct sum of components My y(I') for some

nontrivial I.
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Remark 7.3.2. The subgroups I which appear in the statement of Theorem 7.5.1

may be thought of as the inverse image under det : I' — F 1 of some subgroup of F.

Proof. (Theorem 7.3.1) Write f|, for the (Peterson) slash operator of weight £ and

type [ for v = (2Y) € GLy(K) defined by

o = det(v) (cz + d)* f(72).

If fe Mg, (I"), by normality I'" <T' we have that f|, is weakly modular of weight k
and type [ for any v € I'. Since the cusps of I' are some subset of the cusps of I" we
see that f|, is holomorphic at the cusps of I' since f is holomorphic at the cusps of

IV, indeed the u-series of expansions of f|, and f agree at the cusps of I".

The action of IV is trivial, so we have an action of the finite group
/T = det(T")/ det(I"),

which has order some divisor of ¢ — 1 since 1 < detI” < detI' < F. Then we may
describe the group ring F,[I'/I"] via idempotents as follows. Let n’ = #(detT") and

let n % #(detI"). Then

n/n’'—1

F[T/T'] = @ Feei,

1=0

where T acts on the e; via maps v — (dety)™. So as I-modules, we have

Mk,lav) = @ Mm(rl>€i,
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where

My (T e; = My i (T).

Finally, since modular forms for IV are holomorphic at the cusps of IV, and since the
cusps of I" are a subset of the cusps of IV, we know IV-modular forms are holomorphic

at the cusps of I'. n

Remark 7.3.3. One can verify that the slash operators f|, are holomorphic at the
cusps of I directly by considering their u-series expansions at small neighborhoods of

the cusps of T'.

7.3.1 SLASH OPERATORS AT CUSPS

Write f|., for the (Peterson) slash operator of weight k and type [ for v = (2 %) € GLy(K)

defined by
fly & det(z)!(ez + d)*f (7).
If fe Mg, (I') and v eI, then
f|7 = [
Let I'y = {y € I' : det(y) = 1}. Suppose that 'y < I" < T for some congruence
subgroup 1", i.e. I is the inverse image of some subgroup G’ < F;. We call such a I"

a Bockle subgroup. Note that Bockle subgroups IV are all normal in ' and in any

I' such that TV < I < T.

Proposition 7.3.4. Fix some Bockle subgroup 1" of a congruence subgroup I' <

GLy(A). For any f € My, (I") the slash operator f|, is weakly modular of weight k
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and type l for all v € I'. Furthermore, fl|, is holomorphic at the cusps of I,

Proof. The first part of the claim follows since I'' < T". We will verify explicitly the
second part about holomorphy by considering u-series expansions of f|, at the cusps
of I, since as sets

{cusps of '} < {cusps of I'"}.

Let s = 7(o) for some v € I'. The local map ¢ : U — V around s has form
Y = pod of form 7 — z — u, where § = v !, p(2) = u(z/h) and h is the width of
s. Let w denote some holomorphic differential on Xy . Since w is holomorphic at the
cusps of X the local differential w|y has the form g(u)u(du)™ for some n, where g
is holomorphic at 0. So on U — {s}, the form f is the pullback under ¢ of w|y_g
to f(7)(dr)". Whereas in the classical case (see [DS05, Page 80]) we have f = f|s
of weight 2n, where f(z) = (2mih~)"q"g(q)", for ¢ = exp(2miz/h), in the Drinfeld

setting we have f = fs of weight k, where

with u = (Te4(z/h))~'. Then f|, = f is holomorphic at the cusp oo.

Now let m(T") € A be some monic polynomial and let p denote the ideal it generates.
Let
def (0 -1
Wp - (7r 0 ) € GLZ(K)

be the matrix interchanging oo and 0. By composing the map W, with v € I' and
taking wu-series expansions in small neighborhoods of each of the cusps of IV we see

that f|, is holomorphic at the cusps of IV in much the same way we verified at co. [
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CHAPTER 8

COMPUTING ALGEBRAS OF DRINFELD

MODULAR FORMS

In this chapter we discuss some applications and sample calculations using the theory
of chapter 7. We also indicate how we intend to strengthen this theory in coming

work and some open problems for further investgation.

8.1 AN ALGORITHM

The program of this manuscript enables us to write an algorithm that takes on input
some congruence subgroup of GLy(A) and returns the algebra of Drinfeld modular

forms for that subgroup.

0. Set Up

» Fix ¢ a power of an odd prime;
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« Pick a congruence subgroup I' (e.g. I'(N), I'1 (V) or I'g(IV), some I'y within

one of the previous, or some " as in Theorem 7.3.1);
1. Geometric Invariants

« Genus - Determine g(Z21) e.g. with [Gek01], [GvdP80] (for subgroups of
SLy(A) when N has odd degree) or Riemann-Hurwitz;

o Stacky Points

— Elliptic points - Determine whether I' contains non-trivial stabilizers

for the unique elliptic point of GLg(A) in €;

— Cusps - Consider the actions of I' and I'y; < I on (A/N) he

prim>
vectors in (A/N) x (A/N) which span a non-zero direct summand in
a Chinese Remainder Theorem decomposition (up to F;—scalars); or
compare the quotient graphs I'\.7 and I'\.7, where .7 is the Burhat-
Tits tree of PGLy(K ) using the algorithm of [GN95]

(Note: in practice this is often difficult. We say more in Section 8.3.)

2. Computing the Log Canonical Ring - by ecither [VZB22] (see e.g. Figure
3.2), [O’D15], [CFO24], [LRZ16], or directly with e.g. Magma, compute as ex-
plicitly as possible the log canonical ring R(.2ZT,,2A) using the invariants you

have computed above;

3. Recovering the Algebra - by either Theorem 7.2.1 or Theorem 7.3.1, compare
the algebra of modular forms for square determinant matrices I's with the chosen

" to determine which generators are actually I'-forms (as opposed to I'y-forms)
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and pare down the relations from the previous step into those among these

['-generators.

8.2 KNOWN EXAMPLES

We consider several examples from the literature which we can now treat using the

geometry introduced in Chapter 7.

8.2.1 DRINFELD MODULAR FORMS FOR Gl (A)

Example 8.2.1. Let 2" be the Drinfeld modular curve with coarse space X whose
analytification is X = GLa(A)\(Q U PYK)). Then Z is a stacky P' with two

stacky points:

e a point P. with a stabilizer of order q corresponding to the unique elliptic
point of Q (note that GLy(A) is “non-square”)

-1

e a cusp, denoted oo, with a stabilizer of order a

Let

q—1
2

g+1

2

1 1
D:K%+2A~Kpl+<1—)Pe+<l+ )OO+200

be a log stacky canonical divisor on 2 . Then by [O’D15, Theorem 6] we have

Rp = C[g,h] = M(GLy(A),).
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8.2.2 DRINFELD MODULAR FORMS FOR ['4(T)

We know from [Gek01, Theorem 8.1] genus formulae for the Drinfeld modular curves

associated to I'(N),T'1 (V) and T'g(N). If deg N > 1, then g(X(N)) > 0.

Consider M (I'y(aT'+3)) and M (I'g(aT'+f3)). We know from [DK23, Theorem 4.4]
that for R any ring such that A ¢ R < C, the R-algebra of Drinfeld modular forms
M(To(T))r is generated by Ep(z) (from Example 6.1.12), and the Drinfeld modular

forms
def T79(T'z) — Tg(2)

Ap(z) e ST =9G) o A (2) T

Ta-T

for I'o(T') (from [DK23, Equation (4.1)]). Furthermore, [DK23, Theorem 4.4] tell us
that the surjective map R[U,V,Z| — M(I'o(T))g defined by U — Ay, V — Ar and

7 — Ep induces an isomorphism

R[U,V. Z))(UV - Z°") = M(To(T))x.

Note that from [DK23, Proposition 4.3(3)] we know that M, ;(I'o(7")) has an integral

basis, i.e. a basis consisting of modular forms with coefficients in A.

Recall that from [DK23, Section 4] we know the only two cusps of I'g(7), which

we write 0 and o0, are exchanged by the matrix

def _
Wr = (% 01)‘

We will use M(To(T)) = C[U,V, Z]/(UV — Z?) from [DK23, Theorem 4.4] to make

146



sure that the log stacky canonical ring of the corresponding Drinfeld modular curve

(1), does in fact compute this algebra of Drinfeld modular forms for I'y(7"),.

Example 8.2.2. Since UV —Z? describes a conic, we know that the curve C[U,V, Z]/(UV —
Z?%) < P% is rational, and all rational curves have genus 0. There are 2 cusps, say 0
and o for Zr,(ry so there are at least the same cusps on Zryr), and hence there are
2 elliptic points.

Let To(T)y denote the image of To(T)y in GLo(A/T) = GLy(F,). As in [Gek01,
Section 3], let (A/T)3,.,, denote the primitive vectors in A/T x A/T, i.e. those vectors

which span a non-zero direct summand. Then from [Gek01, Section 3] we know

{cusps of Xryr),} = m\(A/T)inm/quv

so the cusps of Xvyr), are precisely the I'o(T)z-orbits of 0 and o which correspond
to the primitve vectors (1,0) and (0,1). So, there are exactly these two cusps and no

further elliptic points. Let o € Q be such that

2k—2l—kq _ _2k—2—kq

- %" Ekg-n )

and the number r of best lower approximations to o with denominator strictly greater

than 1 isr = 2. Then let

Y Koy, + 20 ~ Kpr + a(0) + a(o0) + 2(0 + 0)

= (o) + (a + 2)(0),
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since Kp1 = —200. We see that

k k
0 —_ = —_
h (2D> 2[2(04)J+k+1
2k -2l -k
=k(q>+k+1

k(g —1)
k— 2l
14+ =
+ q—l

= dimc(Mk,l (FO(T»)v

where we know this dimension from [DK23, Proposition 4.1].

Finally, we see from [O’D15, Theorem 6] that the canonical ring Rp, i.e. the log
stacky canonical ring for v, (r),, is generated by 3 functions, Ar, Aw and Er cor-
responding to U,V and Z respectively, and has a single relation UV — Z2. We include
a rough sketch of the monoid M < {(d,c) e Z* : —d(a+2) < ¢ < da} from [0’D15],

where generators for Rp correspond to shaded-in lattice points in degrees 2 and q—1:

Figure 8.1: Monoid Sketch
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8.3 CONGRUENCE SUBGROUPS OF Sly(A) AND

OTHER OPEN PROBLEMS

There are two major limiting factors in computing examples of algebras of Drinfeld
modular forms for congruence subgroups. The first is that the signature (recall Sec-
tion 3.3) of many Drinfeld modular curves may not be compatible with existing results
for log canonical rings of stacky curves. Worse yet, we may not even be able to get so
far, as we need to strongly compare cusps of a congruence subgroup I' < GLy(A) with

its square-determinant subgroup I'y < I' to even determine the necessary signature.

Thanks to Mihran Papikian for pointing out the following. The comparison we
need between cusps and the genus computation for a Drinfeld modular curve can both
be accomplished combinatorially with an examination of the Bruhat-Tits tree .7 of
PGL2(K). We adopt the philosophy of Serre, described by Gekeler and Nonnen-
gardt [GNO5, Introduction|, that to study group theoretic properties of a congruence
subgroup I is similar to considering the action of I' on .7 as a way to comment on

what the Bruhat-Tits tree “does” for our algorithm in Section 8.1.

We know from Mumford a genus formula for the modular curves which arise as

quotients of Q U P!(K) by a discrete subgroup I' < PGLy(K,,) with finite covalence:

genus(I'\(Q U P!(K))) = genus(I'\.7)

— dim(H,(D\7, Z)).
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This dimension in turn be computed using the theory of [GN95] discussed below.
It is well-known that GL2(A)\.7 is a half-line, and we know from [Ser80] that so is
SLa(AN\T .

Figure 8.2: The half-line GLa(A)\T (or SLe(AN\T )

The technique of [GN95] is to consider ramified coverings mr : I'\.7 — GLy(A)\ 7.
This allows the authors to derive genus formulae [GN95, Theorem 2.17] for I'y(N\.7),
[GNO95, Corollary 5.3] for I'y (N\.7) (note the difference in naming convention for sub-
groups between our Section 4.1 and [GN95, Section 0]) and [GN95, Corollary 5.8] for
(N\Z.

We end this section by discussing how to approach the comparison of cusps via

the Bruhat-Tits tree. Mihran Papikian kindly sketched the following example.

Example 8.3.1. Let © and y € A have degx = degy = 1. Then one computes
from [GN95]

Figure 8.3: [GN95] computes To(xy)\T “layer by layer”

So, by collapsing half-lines into arrows, we have

where in Figure 8.3 half-lines, and in Figure 8.4 arrows, indicate the cusps of
Lo(zy).
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Figure 8.4: To(xy)\T

We can extend the main results of this thesis or [Fra23] by comparing graph
quotients I';\.7 and I'\.7 with the constructive algorithm [GN95, (3.8)] to form the
necessary comparison between cusps of these congruence subgroups. We hope this
enables us to compute further examples of algebras of Drinfeld modular forms for
at least the arithmetic subgroups I' < GLy(A). In joint work with Mihran Papikian
and Kevin Ho, we hope to extend this theory to graph quotients I'\.Z for arithmetic
congruence subgroups I'" < SLy(A). It will be interesting to see whether we will

be able to compute algebras of Drinfeld modular forms for congruence subgroups of

SLs(A) eventually.
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APPENDIX A

APPENDIX - WHY ARE CANONICAL RINGS?

In this Appendix we discuss the localization of rings, the infinitesimal lifting criterion
and morphisms of schemes. No topic in this chapter is strictly necessary for the proofs
of our main results. These are ideas which appear in the literature often enough to
merit some treatment here, but the main point we focus on is showing that a curve

is isomorphic to its image under a canonical embedding into projective space.

A.1 LOCALIZATION

Localization is perhaps one of the most important tools for doing calculations in alge-
braic geometry. The remainder of this chapter relies heavily on the theory we describe
in this section. Though arguably elementary, it is nevertheless worth having a notes
on this topic on hand at all times. These notes come from [AM21] who provide a

more thorough treatment.

Let A be a ring. A multiplicatively closed subset is some S = A such that
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leSandabe Sif aand b e S. If S is some multiplicatively closed subset, we define

a relation ~ on A x S by
(a,s) ~ (b,t) = (at —bs)v =0

for some v € S. By definition this relation is reflexive and symmetric, so we verify

that it is transitive to be sure we have a well-defined equivalence relation.

Proof. Suppose (a,s) ~ (b,t) and (b,t) ~ (c,u). There are some v,w € S such that

(at — bs)v = 0 and (bu — ct)w = 0, so
atvuw — bsvuw =0 and  buwsv — ctwsv = 0;

by adding these together we have (au — ¢s)tvw = 0. Since S is closed under multi-
plication tvw € S and we conclude (a, s) ~ (c,u), i.e. ~ is a well-defined equivalence

relation. O

Let a/s o [(a,s)] ={(b,t) e Ax S :(a,s) ~ (b,t)} denote the equivalence class

of (a,s). Let ST'A denote the set of these equivalence classes. Then S™'A is a ring

under the operations

a/s + b/t et (at + bs)/st
a/s(b/t) < ab/st.

The ring S7!'A is a commutative ring with 1, and we have a ring homomorphism

A — S71A given by x — x/1. We enumerate several facts about this ring.

 For each s € S we know s/1 € (S71A)*.
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e If a/1 =0 then as = 0 for some s € S.
« Every element of S™'A has form (a/1)(s/1)™' = a/s for some a € A and s € S.
e We can determine S™'A up to isomorphism by the former three facts.

We conclude this section with two examples.

Example A.1.1 ( [DF04, Example 4; page 708]). Let V # & be some set. Let k be a
field. Let R be any ring of k-valued functions on V' containing the constant funcions.
For any a €'V, let M, denote the ideal of functions in R that vanish at a. Then M, is
the kernel of the evaluate-at-a ring homomorphism R — k given by f — f(a). Since

R contains the constant functions the evaluation is surjective, so M, is a mazximal

ideal. The localization of R at M, is

Ry, = {f/g: f,g€ R and g(a) # 0}.

Fach function in Ry, can be evaluated at a by (f/g)(a) = f(a)/g(a), i.e. Ry, is the

ring of k-valued rational functions defined at a.

Example A.1.2 ( [Har77, Page 76]). Let S be a graded ring. Let S, denote the ideal

Sy S B0y

of S. Let Proj(S) be the set

p is a homogeneous prime ideal of S
Proj(S)=<pdS:

which does not contain all of S,
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For each p € Proj(S), let T be the multiplicative semigroup of homogeneous elements
of S which are not in p. Then we have a localized ring S, © P18 and a subring Sy

of degree 0 elements of .S,.

A.2 THE INFINITESIMAL LIFTING PROPERTY

A strong result in the spirit of claims like “genus g > 4 curves are the intersections
of quadrics” or “there are 27 lines on a cubic surface” in algebraic geometry is the
fact that “the tangent space of a smooth variety of dimension n has dimension 2n.”
In this section we will discuss the infinitesimal lifting property, one of the tools used

to prove that fact about tangent spaces.

First, we define a formal derivation ¢ as follows:

d(cf) = cd(f), c constant

of +9) € af) + alg)

def . .
kﬁ(:vixj) = 1,25 + 1,25

When we equip a polynomial ring with this formal derivation we will be able to
describe the tangent bundle of the associated affine variety explicitly. We first define
an intermediate object that we use to describe the tangent bundle of a differential

ring, i.e. a ring with a formal derivation.

Definition A.2.1. Let A = R[xy -+ ,x,|/{f1, -, fe). The first jet space A' of A
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is the ring

AV ALy, @R, ),

where 0 is our formal derivation.

Let A = Rlzy--- ,2,]/{f1,-- , fe). Let Y = Spec A. The tangent bundle Ty /p
onY is Ty/R = Spec(Sym(Q%,/R)). Now we may reap the benefit of of defining a jet

space with the following result.

Lemma A.2.2. In the terminology above, we have
Ty)r = Spec(Sym(Q%//R)) = Spec(A').
Proof. We argue that Sym(Q%,/R) = A'. By definition
Y/R—@R Ty, Ty |de; = Rlxy, -, 2,]%",

and for V' a finite dimensional free R-module with basis vy, -« , v,

Sym(V) Y Rlzy, -, 2m],
where z; is identified with v;. In other words

Sym(A®") =~ Alxy, -+, 2]

SO

Sym(Q&—/R) >~ Rlzy, -, x,][doy, -, day,] = A
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]

Note that in the case of no relations in the definition of A', i.e. when A' %

AlZy, -+ ,2,] = Rlxy, -+ ,xp, 21, ,2,], we see that dim(A') = dim((A")?) =
2 dim(A™).

Now that we understand the tangent bundle to an affine variety, we consider
schemes next. There is one trick which is very motivational and useful, but most

importantly can be illustrated with a cartoon.

X C Rla,yl/(f)

l etale

Figure A.1: An Infinitesimals Trick Cartoon

vV

To define an étale morphism from X < A? to A!, one of the charts, we need to lo-
calize at ‘;—i and use the infinitesimal lifting property. Let U = D+(g—£) be the Zariski
open nonvanishing locus of %. Then U = SpeC(A%f), and we get our étale map by

Y
lifting. Recall from considering the relative cotangent sequence (as in [Har77, Page

182]) that if A — B is an étale morphism of R-algebras, then Qp/r = Q4/p ®4 B.
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Now we define the lifting property which is our main focus.

Definition A.2.3. A morphism B — A of R-algebras has the infinitesimal lifting
property (resp. is formally smooth) if and only if for all R-algebras C 2 I, for I

and ideal such that I? = 0, the following commutes

B— A

J 3 J

C;C’/I

Figure A.2: Infinitesimal Lifting Property

and there is a lift A — C of A — C/I, indicated by the dashed arrow.

That is the “what” of the infinitesimal lifting property, but “why” is it so named?

The motivation is that we regard elements of I as infinitesimals € such that 2 = 0.

Now our strategy will be to cover a smooth scheme X over a ring R by affine
opens U; = Spec(4;) such that there exist étale maps ¢; : U; — A%™X_ We begin with

an easy exercise.

Lemma A.2.4. R[z] — R[m,y]/(f)m has the infinitesimal lifting property.

Proof. Let B = R[X] and let A = R|z, y]/(f)m and consider the diagram

where 3(x) = ¢, a(xr) = ¢ and a(y) = d are such that f(¢,d) = 0. Then &(z) =
c1 + ¢y for some ¢o € I and a(y) = dy + dy for some dy € I so that d2 = 0. Note

the same is true for ¢y by definition of I but we can say something even stronger.
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RLe] —— Bl gl/()
B ,/:’// o

(oG] |

By definition of § and the commutativity of the diagram, c; = 0. Therefore we need

f(e,dy + dy) = 0. Consider the Taylor series

of

o ~(c,dy)dy + O(d3) =

f(C dl)

Then 1f is invertible, we can solve for ds, so consider C//I to be the localization of

A at @, namely C/I = A%. Then

dg = Tf(c, dl),
e

so @& is well-defined. O

Now we generalize little-by-little.

Lemma A.2.5. Suppose X < A%, = Spec R[xy,- - ,x,]/(f). Then the maps R[x;] —

Rlxy, - x|/ () mras [af/a j have the infinitesimal lifting property for all 1 <i < n.

Proof. This is the same setup as Lemma A.2.4 but with worse notation. Fix some ¢

and consider the diagram
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where (x;) = ¢; and «a(z;) = ¢ for some ¢; € C/I such that f(e1,---,¢,) = 0. As
before we have

ci = B(r;) = a(x;) = ¢ + ¢

for some ¢ € I so ¢ = 0. Likewise &(z;) = ¢; + ¢ for ¢;2 = 0 since it is a member of

I, and the vanishing condition f(cy,- - ,@,) = 0 means in the Taylor series we have
f(cl+€17"' 3 Ciyrrn Gyt 7Cn+c~n)
0
+ . (cr+ Gl Gy g O+ GG +O(c?) =0, (A.2.1)
i

where ¢+ means c¢; is removed. As before since we are in the localization at % we
1

can solve for ¢; and & is well-defined. O

We content ourselves with stating one more partial result, as this is sufficient to
illustrate how to use this theory while not going overboard with the rather heinous

notation.

Lemma A.2.6. The maps R|z;] — [R[xOMTl]/(fO)fl)]JaC(fO;fl)a for 0 <i,5 <1 all

have infinitesimal lifting.

Proof. Now since there are two functions, we need to localize at their Jacobian, de-

noted Jac(fo; f1). Fix an ¢ either 0 and 1. Consider the diagram

R[z;] —— R[a:o,xﬂ/(fo,fﬁm

C = C/I
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where
¢ =pB(x;) =a(r;) =ci+6, Gel=¢=0

and &(z;) = ¢; + ¢ for j # 4, (¢;) € I so ¢;* = 0 and now we have fi(cg,¢1) = 0
for both £ = 0 and k = 1. As always we make use of the localization to compute the

infinitesimals ¢; for j # ¢ (remember i is the coordinate fixed at the beginning). We

have i
fo(co, c1) + det o oo (co,c1)é + O(¢*) =0
ofo  ofi
) ox1 o1
fi(co, c1) + det ro o (co, 1) + O(¢*) =0
ofo  ofi
L ox1 ox1
SO
. —[f +9]
¢ =—"——2 (cy,c
= e ) Y
and & is well-defined. O

A.3 MORPHISMS OF SCHEMES

We conclude this chapter by discussing how one shows that a curve is isomorphic to
its image under a canonical embedding. To start we collect some background material

to follow this discussion as it proceeds in [Har77].

Definition A.3.1 ( [Har77]). A morphism of locally ringed spaces (X,0x) —
(Y,Oy) is a map (f, f*) with f :+ X — Y a continuous map of spaces and f# :
Oy — Ox of sheaves of rings, such that for each point P € X the induced map

f# : Oy, pp) — f+Ox,p on stalks is a local isomorphism of local rings.
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We describe a local homomorphism of local rings as follows. Given a point P €
X, the morphism of sheaves f# from Definition A.3.1 induces ring homomorphisms
Oy (V) — Ox(f~V) for each open V < Y. As V ranges over all open neighborhoods
of f(P), the preimages f~1(V') range over a subset of all neighborhoods of P. We get
a map

Ov,p) = h_éﬂ Oy (V) — 1%!1 Ox(f(V)) —» Oxp

which induces a local homomorphism fﬁ : Oy,ppy — Ox p. So, if mypy < Oy f(p)
and mp 4 Ox p are the unique maximal ideals of their respective local rings, then

(fE) " (mp) = myp).

We can now properly consider how to construct a scheme from a graded ring. Let
S be a graded ring. Let S, denote the ideal S el @a=>0S5g0f S. Let Proj(S) be the

set

p is a homogeneous prime ideal of S
Proj(5) = {p2S:

which does not contain all of S,

First we describe a topological space. If a is an ideal of S then let V(a) = {p €
ProjS : p 2 a}. We can define a topology on Proj(S) by defining {closed sets} =
{V(a) : a some homogeneous ideal of S}. Next, we need a sheaf of rings on Proj(5).
Let T be the multiplicative semigroup of homogeneous elements of S which are not in

p. Then we have a localized ring S, “ 718 and a subring S(,) of degree 0 elements
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of S,. For any open subset U < Proj(S) define the structure sheaf by

for each p € U, s(p) € Sy

and there is some neighborhood V of p in U

o) YisiU - |_| Sp) and some homogeneous a, f € S -
peU
(of the same degree) such that for all ¢ € V
\ [ #qand s(q) =a/f €Sy )

We can now formally define the scheme associated to a graded ring.
Proposition A.3.2 ( [Har77, I1.2.5]). Let S be a graded ring.
1. For any P € Proj(S) the stalk Op is isomorphic to the local ring S(p).

2. For any homogeneous f € S, let D, (f) = {P € Proj(S): f¢ P}. Then D.(f)
is an open subset of Proj(.9), these open sets cover Proj(.S), and for each D, (f)

we have isomorphisms

(D+(f), Olp, () = Spec(S(y))

as locally ringed spaces, where S(yy < Sy is the subring of degree 0 elements.
3. Proj(S) is a scheme.

With the tools we defined in this chapter it is an exercise to argue that if X is

any scheme whose canonical bundle Ky is very ample, then as schemes

Yy (X) = X = Proj(R(X, Kx)),
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i.e. a scheme is isomorphic to its image under a canonical embedding, which is Proj
of its canonical ring. One need only show that for each point P in the image ¢x, (X)
the stalk OW(X (x),p is isomorphic to a local ring, and that there is a compatible cover

of the image g, (X) by affine open subschemes, as in Proposition A.3.2.

Example A.3.3. Suppose X is a genus g = 4 canonical curve over C. We will verify
that ¢, (X) < IP’%_l, the image of X under the canonical embedding, is a well-defined
scheme, that it is isomorphic as a scheme to X and that it is isomorphic as a scheme

to Proj R(X).

First we discuss well-definedness. To show that v, (X) is scheme we need to show
it is a locally ringed space with a cover by open affine subschemes. As a set, ¢, (X) <
P% " s the collection of points of form (so(P), - ,s,_1(P)) € ProjClxo, - ,24-1],
where P € X is a point. We equip ., (X) with the induced subspace topology from
IP’%_I, where the topology on P(g:_l is defined by closed sets of the form V(a) = {p €

PL " p 2 a} for a a homogeneous ideal of Clxg, -+ ,241].

The more delicate matter is constructing a sheaf of local rings on @, (X) and
we proceed as follows. For each p € p,, (X) let T' be the multiplicative semigroup
of homogeneous elements of Clxg,---,x4-1] not in p. For this to be well-defined,
we need to think of p as a homogeneous prime ideal which does not contain all
of ®a=0Clxo, - -+, xg_1]a, but since ¢, (X) < ProjClwzo, - ,x4-1] is a subset, p €
P%" so is indeed such a point. Likewise for each p we define Clxg, - --  Tg—1](p) =

(T'Clzg, - -+ ,x4-1]), to be the subring of the localized ring T~ 'Clxg, -+ ,24-1] =

Clzo, -+ ,x4-1]p consisting of elements of degree 0. Then for U < ¢, (X) any open
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set, we define

def
OSDW)((X)(U) = S U - |_| C[mOa T 7mg—1](p)

PEPw (X)
to be the collection of those s such that for p € U, s(p) € Clxo, - ,24-1](p), and there
exists some neighborhood V' of p in U and homogeneous a, f € Clxg,--- ,x4_1] of the

same degree such that for all g eV, f ¢ q and s(q) = a/f in Clzo, - ,24-1](g)-

To verify that ., (X) is a locally ringed space, we need to show that for each
P € Yuy(X), the stalk Oy, (x)p s isomorphic to some local ring, and in particu-
lar the local ring we will use as the target is Clxg, - ,24-1](p). Consider the map
¢:Op, (x)p — Clxo, -+ ,xg-1](p) defined by sending any local section s in a neigh-

borhood of p to its value s(p).

Given any a/f € Clxo, -+ ,x4-1]p), for a, f homogeneous of the same degree and
f & p, since D(f) is an open neighborhood of p with the section a/f of O, (x) over

D(f) whose value at p is a/f, ¢ is surjective.

Given some neighborhood U of p in ¢, (X) and s,t € Oy, (x)(U) with the same
value at p, there is some open neighborhood V- < U containing p such that s = a/f
and b = t/g for a,b, f,g € Clxg, -+ ,x4-1] with dega = deg f, degb = degg and
f,g ¢ p. By “the same value at p” we mean that s =t in the local ring, so by defini-
tion of the localization Clxg, - - - ,x4_1], there is some h ¢ p such that h(ga — fb) =0

in Clxg, -+ ,x4-1] so that a/f = b/g in every local ring Clxg, - ,24-1](q such that
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f,9,h ¢ q. The set of such q is the intersection D(f) n D(g) n D(h) which is a finite
intersection of open sets containing p, so is an open set containing p. Since s = t
in this neighborhood of p, we conclude that s and t have the same stalk at p, so ¢ is

njective.

Now we verify that the cover by open affine subschemes of IP’gffl restricts to such
a cover of ¢, (X). Once again this is a three part computation where we argue for
well-definedness of the restricted cover as a cover, a homeomorphism of spaces from

the cover to the embedded curve, and finally an isomorphism of sheaves of local rings.

From the proof of part (2) of Proposition [Har77, 11.2.5], we have a cover of P%fl
by the open sets indexed by homogeneous f € ®a=oClxo, - - -, x4-1]a of form D, (f) =
{p € ProjClxzo, - ,x4-1] : f & p} = ProjClxg,--- ,x4-1] — V(f). Further, for each

D (f) there is an isomorphism of locally ringed spaces

(D4(f), Opo-1|p,(5)) = SpecClxg, - - -, x4_1](s)

where Clxzg, -+, x4-1](p) is the subring of Clxg, - - ,x4-1]y consisting of degree 0 ele-

ments in the local ring.

Since X is a canonical curve, @, is a closed immersion, so by version 2 of
[Sta18a, Lemma 29.2.1] for each affine open D, (f) < P%_l, there exists some ideal I
of Clxo, -, xg_1](p) such that @, (D (f)) = Spec(Clzo, - -+ ,x4-1](s)/1) as schemes
over D (f) = SpecClxg, - ,x4-1](s). We finally conclude that ¢, (X) is a well-
defined scheme.
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Now we can work out isomorphisms between the embedded curve, the original
curve, and Proj of the canonical ring. We begin by defining the maps from which we
get isomorphisms of schemes X = ¢, (X) = Proj R(X). We have the usual canonical
embedding @, : X — @ (X) which is base-point free and a closed immersion. For
the other isomorphism of schemes, we need a map from P%fl — Proj R(X) which

restricts to an isomorphism on the embedded curve. The isomorphisms
R(X) ®c (Clzo, - ,xg-1]/1) = Rlzo, -+, xg-1]/IR[T0, -+, 34-1]

given by r (mod I) ® n +— rn (mod I) are well-behaved with respect to localization,

so we have a map of affine open subschemes

5t D (f) > Spec (R(X)/TR(X))

and since those affine opens cover ¢, (X) and Proj R(X) respectively, we get a map
of schemes v : v, (X) — Proj R(X) given by the map on points P — 1 ® P corre-

sponding to the base change PL' — Proj R(X) restricted to o, (X).

Consider the diagrams

|_|90;)1( D.(f)) — UD+(f) —— [UDs(a)

(
| l |

X =X Duy (X) —=— Proj R(X)
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and

Ox Opuy(x) 7 Oproj(x)

| |

Ozt o, 5y W Opuy )ity LU OProj rx) D4 (@)

We want to arque that the pairs (gowx,gpfx) and (v,v?) are isomorphisms of
schemes, so the maps on spaces are homeomorphisms and the maps on sheaves of
local rings are homomorphisms of sheaves of local rings such that the induced maps

on stalks are local isomorphisms of local rings.

By definition of a closed immersion, X is homeomorphic to a closed subset in ]P’%_l,
and @, (X) the embedded curve is the only possible choice. From the M ®g R/I =
M /IM -style isomorphisms of affine opens in the covers of ¢, (X) and Proj R(X)
we can glue together these homeomorphisms between affine schemes D+(f)|%x (x) for
f € Clzg, -+ ,x4_1] homogeneous of strictly positive degree and D, (a) for homoge-
neous a € R(X), into a homeomorphism v, thanks to the scheme structures on the

affine opens, i.e. the descent data of the covers.

Finally we have the induced maps of sheaves of local rings gofx D Opuy(x) —
(¢ux)«Ox and v* : Opyoi r(x) — VO, (x) such that for each point of X and ¢,y (X)
respectively, the induced maps on stalks are local homomorphisms of local rings. Since
Yuy and v are homeomorphisms, we can strengthen the local homomorphisms on stalks

to local isomorphisms since we have set bijections between the affine open covering
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schemes. This means that given P € X and ¢, (P) € puy(X) as U and V vary over
all open neighborhoods of ., (P) and v(g., (P)) respectively, ¢, (U) and v~ (V)

vary of the entire set of neighborhoods of P and p,, (P) respectively, so we get maps

Oy (X)ipuy () = I Oy, (x)(U) < 1im Ox (¢ (U)) = Ox p
U U

and

Oproj R(X) vy (P) = 10 Oproj rx) (V) < T Oy, () (VT (V) = O (x), 00 (P)-
1%

This means the local homomorphisms of local rings are local isomorphisms, so we are

finished.
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APPENDIX B

APPENDIX - SYZYGIES AND COHOMOL-

OGY

As in [GL85] and [Gre84] we can describe the homogenous canonical ideal of a curve
via calculation of certain Koszul cohomology groups, giving another means to prove
Petri’s theorem. We develop some tools like the Koszul complex and discuss how
Green and Lazarsfeld use them to prove the that the image of a general curve of
genus g = 4 under a canonical embedding is cut out by quadrics. The point of doing
a purely cohomological version of Petri’s theorem, as Green and Lazarsfeld put it,
is that when explicitly computing all possible syzygies for an embedded curve as
in [Mum99, page 237] or Section 2.5, paring down relations to some minimal set is
“unavoidably a bit messy.” By using the theory of Green and Lazarsfeld we at least

avoid this “messiness.”
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B.1 EULER SEQUENCE

In this section, some relations between different sheaves are introduced. Eventually,
by forming the long exact sequences in sheaf cohomology from different short exact
sequences given here, one can use the Koszul cohomology to inductively demonstrate

that all syzygies for the canonical ideal of a curve with g > 4 are generated in degree
2.

A fundamental exact sequence we use many times in this section is the following.

Definition B.1.1. The FEuler sequence on P" is the following exact sequence of

sheaves on P

0— Qpn — Opn (1) — Opn — 0
which relates the sheaf of holomorphic differentials €2 to the structure sheaf on Opn.
For rigor, it is worth checking exactness.
Lemma B.1.2 ( [Vak02b]). The Euler sequence is exact.

Proof. Let ¢ : O(—1)2*) — O be the degree 1 map
(S0, 5 Sn) ¥ ToSo + + -+ + TpSy.

Identifying the kernel of this map with differentials can be done locally since injectivity
and surjectivity are local properties. Consider U, where xy # 0 some open set.

Consider some coordinates x;,) = ZZ—; for 1 < 7 < n. To each differential

f1($1/07 T2/0, " 7%/0)(1951/0 +oee fn($1/0, e ,xn/o)d%/o € Qpn
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there are n + 1 sections of O(—1) since by treating the projective coordinates naively,

f1d331/0 = fld(%)

_ f xodr1—x1dTo
= 171:(2)

_h =z
= x:)dxl + xgl fldI().

Note zq (‘Tﬁlfl) +1q (3{—;) = 0 and that both =3 f; and g’:—; are homogeneous of degree
0 0
—1.
Let B : Qpn — O(—1)®*) be given by
z fi [ fn>

1 Xz
Jidzyo + -+ fudang — (_gfl — = *me*; e
xy xy g To Zo

First of all 8]y, (2pn) < ker ¢ since

$0<—i;f1—"'—igfn)+x1 (i{l])—k'--—l—xn(f:;) =
0 0

Then 8|y, is one-to-one since ker 8|y, = {0} as B( frdz1jo+- - -+ fudzn) = (0,---,0) if
and only if f; = 0 for 1 < i < n. Also B is surjective onto the kernel of O(—1)®+1) —

Ox since for

(907 s ,gn) € ker(O(_l)GB(nH) N OX),

let f; = xog; for each 1 < i < n. To verify this construction consider the map on two

different coordinate patches at once, say Uy n Uy, where in particular there should be

178



a compatible solution. Note that

fldﬂfl/() + -+ fndl’n/o = fldi + f de/l -+ fn xn/l

Zo/1 To/1

$01dl’21 Tg/1dTo/1 To/1dTpn/1—Tn/1dT0)/1
ZIQfldx0/1+ [10%2/1 —T2) /f2+'--+ /19%n/1—Tn) /fn

p)
Zo/1 Zo/1

= %fldl’o/l + dez/l - f2§2/1 droy + -+ + L=dw, ) — fngon
Zo 0/1

Zo/1

= f1+f212/1+ 1 dx 0/1 + 7d952/1 + -+ ;;ﬁdxn/l

0/1

_ _f1+f23:2/;-2% A+ frnZn) deo/l + f29§1 dl‘Q/l 4ot f;zl dxn/l-

0/1

In particular the dry/ term maps to the second factor in O(—1)®+) and gives i—z
as desired and likewise for each dz;/; term for j > 2, indexing factors of O(—1)®"+1)

from 0 to n. Also, the dxy, term goes to the “zero factor”

zi/T
<Z] 1 f'L (xo/x11)2> ZT;
=fi—
T )

as desired. The first factor must be corrected because the ), z;(ith factor) = 0. O

Since the Euler sequence is exact then the following “twist” is exact
0 — Qpn(1) - O — Opa(1) — 0, (B.1.1)

Let L = Opi(1) ®o, Ox, let r = h%(L) — 1 and say M; = ¢%Qpr(1). Then the

following pullback by ¢ of the sequence B.1.1 above is exact

0— M, — H(L)® Ox — L — 0. (B.1.2)
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It is not hard to show that the following is exact
0> M QL' - H(L)®@ L' - L@ LF' —0.

This next Lemma is just another twist, but this time with some wedge products.

Lemma B.1.3. The following is exact.
2 2
0— AM @@L - N\ H(L)® L' > My ® LF — 0. (B.1.3)

Proof. Taking wedge products in B.1.2 and twisting by L*~! also preserves exactness

so to obtain the sequence in the statement, first consider the dual sequence
0— LY — HO(L)V ®r Ox — M) — 0.
By [Stal8b, Tag 00DM] the following is exact
2 2
LY@ H (L) ® Ox — /\ H'(L)" ® Ox — /\ My — 0.

Take the dual again, note that M, ~ L®e, H°(L)®r Ox by B.1.2, and the following

is exact

2 2
0— A\ M, — N\ H(L)®: Ox — M,
and twisting by LF~! finally gives

2

2
0> AM L' - A\H(L)®s L' — M, @ L*.
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The rightmost map is given by
(517 82) @ f > 51®82f — 5251 f

and is surjective since this is a Koszul map dy;—1 (see Definition B.2.2) composed of
(Id®my—1) and (¢iq ® Id), where 14 is dual to an injective map and is surjective,
and my,_; is surjective by definition of the multiplication map in @genL*. This makes

the sequence right exact. O]

B.2 THE KoszuL COMPLEX

Before we describe a cohomology that allows us to compute a canonical ideal, we

recall the following.

Lemma B.2.1. Let R be a ring and let M be a free R-module with basis yo, - -+ , Yp.

The homogeneous coordinate ring of P is Sym(M) = Rlyo, - , Yn]-

Proof. Both the symmetric algebra Sym(M) and the polynomial ring R[yo, -+ , Yn],
where the y; are a basis are free objects in their respective categories. The homoge-
neous polynomials of degree 1 are a free R-module which can be identified with M
itself and in particular satisfies the following universal property of the symmetric al-
gebra: for every linear f : M — A a morphism of algebras, there is a unique algebra
homomorphism ¢ : Sym(M) — A such that f = goi, for i : M — Sym(M) the
inclusion map. Suppose that [’ : R[yo, - ,yn]1 — A is a linear algebra morphism
for some R-algebra A. Then since R[yo, - ,yn] is the free object in the category

of R-algebras there is the unique ¢’ : R[yo, - ,yn] — A such that f' = ¢’ o for
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i/:R[yOf" 7yn]1;)R[y07"' 7yn] [
Now we may define the Koszul cohomology.

Definition B.2.2 ( [Gre84, 1.a.2]). Let F be a field, let V' be an n-dimensional F-

vector space and let B = @ ., By be a graded Sym(V')-module. The Koszul complex

is the long exact sequence
p+1 J p J p—1 J p—2 J
o AVOB T AVRB, ™ N\ VOB " N\ V@B, "2
where the maps d, , are defined to be the composite maps

dp, = (Id®@m,) o (A'®1d),

ANV > APV RV, s dual to the esterior product map
where
mg:V ® By — Byia, is multiplication in B.

The following diagram illustrates the composite boundary maps in the complex

from Defintion B.2.2.

AN'V®B, 22 A"V @V B,

d,
N) lld ®myq

AV ® By

Figure B.1: Maps in the Koszul Complex

We begin by working out each of these maps and verifying that the differentials

satisfy d®> = 0 to ensure that we have a well-defined complex. In order to do so we
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will first introduce a map between wedge products which we can define for any pair

of N a free R-module and ¢ : N — R a morphism.

Consider a diagonalization A : AN — A N ®g /\ N, the unique map of algebras
defined by
m—m@l+1Q@m
forme A'N=Nandm®1+1@me ANQA°NOA°"NOANc AN AN.
In particular the component A" of A which maps /\Z N—->N® /\i_1 N by
A'(my Ao Amy) 22(—1)j*1mj®m1 A AT A A Y,

J=1

where m; means that m; is left out of the product, gives a description of the differ-

entials
i i—1
0o \N— AN

in the long exact sequence of wedge products of N. Define o, to be the composite

5@:/\N£N®R </_\1N> WﬁlR@)Ri/_\lN:i/_\lN.

Note when ¢ = 1 the composite is just .

Let us verify that we have a well-defined complex of wedge products with the

differentials d,, above.

Lemma B.2.3. Let V/F be a finite dimensional vector space over the field F and

Sym(V') be the symmetric algebra over V. Then the differentials 6, : N\*'V — A’V
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for o € V¥ satisfy 62 = 0.
Proof. Let A: AV — AV be the map 2 — 2 ® 1 + 1 ® 2. Consider A’ : A’V —
Ve A ~'V given on the basis by

P
A'(mlA-~-/\mp):Z(—l)j_lmj®m1/\mQ/\---/\mj/\---/\mp.
j=1

Let ¢ € VY = Homg(V,F) and let d, := (¢ ® 1) o A’ be the composite map
p , p—1 ) p—1
AVvarve | AV] = AV

Then

(5§0<m1 VANIEIREVAN mp) = (@@1)( ?zl(—l)j_lmj@)ml A A m] A A mp)
= 90( §:1(—1)j_1mj)®m1 A A mj A A,

= 37 (1 Np(my) @my A Ay A Ay,

and extend by linearity, so

02 (ma Ao Aamy) = 0,00 (=1 p(my) @ my Ao Ay A A my)

= (@ 1) (ot (1) tm @ 3571 (1) o(my)

@My A AT A AT A A TI)

= Z£:1<_1)k_1€0(mk) ® Z§:1(_1>j_190(mj)

@My A AT A AT A A ).
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A basis for APV as a free F-module of rank (dlmF (;/)) is
p —

{vi, v, 1<y < - < g < dimp(V)}

corresponding to all (p — 2)-subsets of {1,--- ,dimg(V')}. So, we can write

("528")

—2
2 _

O (my A Amy) = Z ar(vy, Ao A y)
1=0
where the a; of the term mq A -+~ AT Ao AT A - Ay,) S

(=DM (=17 o (mi)p(my) + (1) (=1)" " p(mp)p(my) = 0,

because for each interchange of m; and m; in the wedge to bring m; out in front, a

factor of —1 is added. We conclude that (53 = 0. O]

The next Lemma in this series is a characterization of the map A’ which appears

in the Koszul complex.

Lemma B.2.4. Let V/F be a finite dimensional vector space with basis vy, -+ ,v,.

Then the dual to the exterior product map

p—1 p
VA AV = AV

given by

VW R®ar— v’ A«

is the component A" of the diagonal map on the pth graded piece /\P V' of the exterior
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algebra \'V given by
p .
A'(v1/\-~~/\vp)22(—1)9’1%@@1/\---/\ﬁjA---/\vp.

Proof. Consider the following diagram

\Y Py/v v p
aAv e NV NV 5 VLA AT

1 w J 1

a®v’ e ATTVYRVY s APV RV D s Al A Ay

Since (A" V)Y = A'VY, for oy A---Anw) € APVY we have (v A --- Aw))Y =

p

U1 A -+ A Uy, which is abbreviated v. So by definition of A’

p
J Lyv AT A ALY
v/ QUi A ATEA AL,

p
] 1 _
Z v3®v1/\ AU A /\vp =

i 1

and applying the exterior product map v¥ ® a — a A v¥ to A’V therefore yields
p .
Z Y7l Ay A A (W) A A
The exterior product map on duals of V' is given by
(@®vY —anAnvY),

which is the dual of A'. O

Finally, to conclude our laborious well-definedness checks, it is not hard to check

that d? = 0 in the Koszul complex since we observe that 53, = 0 from Lemma B.2.3.
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Now we may reap the fruits the Koszul cohomology bears. We define the Koszul

cohomology groups as follows.

Definition B.2.5 ( [Gre84, 1.a.7]). Let F be a field, let V be an n-dimensional

F-vector space and let B = @,_, B, be a graded Sym(V')-module. The Koszul co-

qEZ

homology groups of B are the groups

kerd, ,

im dp+1,q—1

Kp,q(B’ V) =

where the maps d come from Definition B.2.2.

Our convention will be that K, ,(B,V) =0 whenp <0 orp > dimV.

The reason we have introduced the Koszul cohomology is to give a proof of Petri’s
theorem. Now we have the tools to consider how Koszul cohomology groups are re-
lated to generators and relations for a graded Sym(V')-module. With the appropriate
vector space V' in mind, it turns out that this calculation will tell us about generators
and relations for the canonical ring from Petri’s theorem.

To this end, let B = @, B, be a graded Sym(V')-module for V/F some vector

qeZ

space. If x1, x5, -+ are generators for B with degx; = e; then a weight ¢ relation

among the generators has form
Zuixi, for some u; € Sym? (V).

We say such a relation is primitive if it is not a Sym(V')-linear combination of

relations of lower weight. In the terminology of Section 2.5, a primitive relation of
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weight q is a (first) syzygy of weight q. We saw in Section 2.5 that syzygies form
groups. These groups have a natural action of the symmetric algebra, and so form a
graded Sym(V')-module. We denote the (pth) syzygies of weight ¢ by M, ,(B,V)

to agree with [Gre84, Definition 1..3]. For example:

My, is the module of degree ¢ generators for B as a Sym(V')-module;
M, , is the module of primitive relations in weight ¢ for B, i.e. the (first) syzygies;

M, , is the module of (first) syzygies of weight ¢ among relations for B, i.e. the

(second) syzygies of B;

and so on. ..
By [Gre84, Theorem 1.b.4], we know
K, (B, V)= M,,.,(B,V)

as [F-vector spaces, i.e. the Koszul complex computes syzygies.

B.3 COMPUTING SYZYGIES WITH KoszuL Co-

HOMOLOGY

This section is devoted to the proof of a theorem that Koszul cohomology computes
an upper bound for the degree of relations for the ideal of an embedded curve. Let X

be a curve over some algebraically closed field F. Suppose L is some very ample line
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bundle on X with associated embedding ¢ : X — P", where r = h%(X, L). We say
that L is normally generated if the natural maps p; : Sym” H°(X, L) — H°(X, L*)
given by

$51® 852 - @S> S-Sk

are surjective for all £ > 0. On the other hand, we say some subvariety V < Py is
projectively normal if the canonical maps H°(Pg, Op:(d)) — H(V, Oy (d)), where
Oy = Opr/Iy is the structure sheaf on V| are surjective for all d > 0. In fact, a
line bundle L on a curve X is normally generated if and only if the embedded curve
@L(X) c P is projectively normal. Indeed, we have H%(X, ¢} Op;(d)) = H(X, L),
so since H°(Pg, Opr(d)) = Flxo, . . ., 2]q and

Sym"(H°(X, L)) = Sym"(Bsy® - -- ® Bs,) = R[s0, . .., 5:]r,

where R = R(X, L) is the section ring R(X, L) = @, H*(X, L®*), as Sym(H(X, L))-
modules Sym"(H°(X, L)) = H°(P%, Op;(k)) and the equivalence follows.

Recall from the sequence B.1.2 that we define a certain pullback of differentials
My, = ¢%Qpr(1). Consider the map oy, : A> HO(X, L) ® H(X, L") — HY(X, M ®
LF) given by

(V1 A V) ® v — V] ® Vo — V3 ® Vv
Then we can state Green’s theorem which bounds the degrees of relations which
generate the canonical ideal of X.

Theorem B.3.1 ( [GL85, 1.3]). Suppose L is a normally generated line bundle on

a curve X over F an algebraically closed field. Suppose ko € Z is such that the maps
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or : N> HO(L) — H(M, ® LF) are surjective for all k = ko. Then every minimal
generator for the canonical ideal of X (i.e. every primitive syzygy) in P9=' has degree

at most k.

The idea of the proof will be to show commutativity of the diagram below.
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/\ H(L)® HO(LF1)

/\ZHU ®S\mk 1H0 ‘A \ /'0 /()
\\ HU(L)®HU(Lk> Yk HO(Lk“)

ket ik H°(L) ® Sym* HO(L o Sym**! HO(L)

/ /

H(L)® I Tisa

o —

Figure B.2: Koszul Cohomology Bounds Syzygies

To show Theorem B.3.1 we rely on another “visual” theorem from topology.

Lemma B.3.2 (snake lemma). If the following commutes

the sequence
ker(a) — ker(b) — ker(c) % coker(a) — coker(b) — coker(c)

is exact, where d denotes a connecting homomorphism.
Proof. See [DF04, page 792]. O]
We also use the following Lemma to prove Theorem B.3.1.

Lemma B.3.3 (Symmetric-Tensor-Exterior algebra sequence). Let M be a free R-

module of rank n, where R contains % Then the following sequence is exact

2
0—Sym’M > M®M — /\ M —0.
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Proof. Let A : M®? — /\2 M be the map a®b — a A b. To make this explicit, suppose
a=,  ax;and b=, j—1 bjz;. Then the exterior algebra relation x ® x = 0 forces

(x+y)®(y+2z)=0and (z®y) + (y®x) = 0, which means

anb =000 ) A (Z?:l bjx;)
—a®b— " | a;x; ® b,

The exterior algebra A\ M is a well known quotient of @,exM®" and the map A is
surjective. Let s : Sym®> M — M®? be the map mimsy — %ZUESQ Me(1) @ Mo(2) =

%[m1®m2+m2®m1].

Since ab — (—1)d°&@debpq = (0 in Sym?*(M),

mi@ms+me®mq =0

N mymes :(_1)degadegbm2m1
mymsg =0, or

mi = My with degm; odd,

and in the latter case m? = 0 € Sym® M. So ker(s) = 0 and s is injective. Then

im(s) < ker(A) since

M AMa+Ma AML =M1 AMyg— Mg AMgy =0

and finally ker(A) < im(s) since

(z®y) + (y®@x) = 2s(xy)
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and

(z+y) @@y +z)=s((z+y)(y+2)—s((y+2z)(z+y)).
0

Proof of Theorem B.3.1. Every minimal generator for the canonical ideal of X in P”
has degree at most kg if and only if the maps H°(L) ® I, — I41 are surjective
for all k£ > ky. This statement means that Ij, generates I as a graded ring. Let
pr : Sym* HO(L) — H°(L¥) be the surjective maps from the definition of a normally

generated line bundle. Then ker pr, = I, and the following commutes.

0 0

(&35

ker(fu) ker(vy)

0 —— HY(L)® I, —— H°(L)® Sym"(H(L)) =22 HO(L)® HO(L*) —— 0

J Mk Vk

0 ——— Iy —— Sym" " (HO(L)) Pt HO (L) ——— 0

where the vertical maps are multiplication in their respective graded rings. The lower
horiztonal short exact sequence is the exact sequence induced by the assumption that
Pr+1 1s surjective and the likewise the upper short exact sequence is induced by px but
with the tensor preserving exactness. It is nontrival that the tensor preserves exact-
ness but this follows from right exactness of the p-sequences per [Stal8d, Tag 00CW].
By the snake lemma B.3.2, HY(L) ® I}, — I, is surjective if ay : ker up, — ker vy,

is surjective. There are two Koszul complexes with maps that takes values in ker ji,
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and ker v respectively and the normal generation of the line bundle relates these
complexes so it is possible to show that «ay, is surjective with a computation in Koszul

cohomology.

Let B = dsy™ ™) 0 A2 HO(L) ® Sym* ' HO(L) — H°(L) ® Sym* H(L) be the
maps

(V1 A V) a1 ® (Vg - ) — v ® (v - ).

Then ;. is realized in ker py as the symmetric relation r ® y — y ® x = 0 forces
MUy a)—v® (v -a) > a® (v ®vy) —a® (v, ®vy) = 0.

By definition B.2.2 8 = (Idpo(r) ®pr—1) 0 (A" ®@Idg k1 50(1y), Yia is dual to the exte-

rior product which is injective, and p_1 is surjective so Sy is surjective onto ker py.

Turning to ker 4, recall the pullback of the Euler sequence on P" from B.1.2. Twist

the sequence by L¥ and take global sections so that the following is exact
HO(ML ®Lk) _f) HO(L) ®HO(Lk) Yr HO(LkJ-‘rl)

and kerv, = f,H°(M; ® L*). To make it more clear how Koszul cohomology will
compute these global sections, the pushfoward will be abusively written as just
HO(Mp ® L*), but keep in mind that this is H°(M; ® L*) ¢ H°(L) ® H°(L*). The

global sections of the sequence from Lemma B.1.3 form the exact sequence

2 2

N\ H (M) ®@ H(LF') — /\ H(L) @ H*(L*) % H*(M, ® L*)
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where o, = dﬁ’f?Ho(Lk)) is a Koszul map with exact the same form at [, but the

Koszul complex is with respect to a different graded algebra over H%(L). Just as with
Bk, imop € kervy, but this time the matter is subtler, since there is apparently no

symmetric relation to fall back on. But

Ve(o((s1 A 52)® f)) = (51 @saf — 52 ®51f)
= 8182f - SQSlf

since pg_1 is surjective so s; and s, are the image of some symmetric tensors and

5182 = 8951. Then the following commutes

N> HO(L) ® Sym* ™' HO(L) P er L

l1®pk—1 lak

A’ HO(L)® HY(LF1') —Z— ker iy

and if oy is surjective then so is ay. O

B.4 NOETHER'S THEOREM

In this section, Noether’s theorem is proved as a consequence of Theorem B.3.1. This

is another tool we use in Petri’s theorem.

Theorem B.4.1 ( [GL85, Noether|). A canonically embedded nonhyperelliptic curve

X < P91 with genus g is projectively normal. That is to say the maps

H°(P™", Opo-1 (k) — H°(X, Q%)
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are surjective for all k = 0.

One useful fact to have on hand for the proof of Noether’s theorem is the example
of the wedged pulled back Euler sequence B.1.3. Let Mg = ¢&Qp (1) and let Qq =

Mg be the Ox-dual. The following is exact.

2 2
0— Qe - (/\HO(Q)V> Qr Q7 — (/\QQ> ®0 " —0. (B4.1)

This next Lemma introduces an exact sequence which is derived under the as-

sumption that the line bundle being studied is very ample.

Lemma B.4.2 ( [GL85, page 7]). Let X be a non-hyperelliptic genus g = 4 canonical,
smooth, irreducible, complex algebraic curve and let ¢ : X — P9~1 be the map obtained
from global sections of the canonical bundle. Let D = x1+ - -+ x,_9 € Div(X), where
the x; are points in X of general position which are distinct and linearly independent
in P91, Let Ap be the (g — 3)-plane in P9~ spanned by the points supporting D. Let

L = Q(—D) and suppose that L is very ample. Then
1. Ap is the subspace P(Wp) < P(H®(Q)) where Wp = H°(Q2)/H(Q(—D)).
2. There is a surjection of sheaves on X, up : Wp ®c Ox — Q® Op.

3. Apn X =D as schemes.

6. Let Xp = kerup. Then Xp = @f;f@x(—xi).
Proof.
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1. The line bundle L = Q(—D) is very ample if the induced map ¢y, is a closed
immersion. In other words L separates points and tangent vectors and hence
there is a hyperplane, some global section s; € H°(X, L), which passes through
each z; and not the others. So, the image of D under the immersion are those
global sections of H°(Q) which correspond to hyperplanes intersecting in exactly

Ti, - ,Tg_9, i.e. the set

Wp = {se H(Q) : divs + D = 0} = H(Q)/H*(Q(—D)).

2. Recall from B.1.2 the sequence
0 — Mg — H°(Q) ®c Ox — Q — 0.

The map up corresponds to the map H°(Q) ®c Ox — € given by the pullback

by ¢r, of

(80, cee ,89_2) —> TpSo + -+ Ig_QSg_Q

and therefore is given by a map of the same form. The correspondence is in the

sense of the diagram [GL85, 2.1] abbreviated below up is surjective since the

HO(Q) ®(C OX _— Q

| |

WD 4>UD Q ® OD

Euler sequence is exact.

3. D is naturally a subscheme of P(WWp) so since by assumption D spans Ap

this step follows from the dinstinctness and independence of points in general

197



position.
4. By Riemann-Roch, since deg D = (¢ — 3) < 2¢g — 1,

WX, L) —hO(X, Kx @ L™") =degL+1—g
)

(X, L)—(29—2—-29—-2) =g—3+1—g

WO(X,L)—4 ——2
so hO(Q(—D)) = 2.

5. Recall that Mq(_p) is defined by ¢f 5 Q2pe-1(1). To identify this with V(D) =

Tx (D) consider another version of B.1.2

which is exact since L = Q(—D) is very ample by assumption. The original

version of the Euler sequence Definition B.1.1 twisted by D is the exact sequence
0— Q]pgfl(D) — O]pgfl(D — 1)®g d Opgfl(D> — 0

so since by the previous part of the lemma h°%(Q(—D)) = 2, taking the Ox-duals

the pullbacks of the Euler sequences must give the same exact sequences.

6. This is a decomposition of the maps with form (sp,---,s,-2) — oS0 + -+ +

Tg—28g—2 INto the components s; — x;s;.

Next we consider another sequence of vector bundles.
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Lemma B.4.3 ( [GL85, 2.3]). Let X be a non-hyperelliptic genus g = 4 canonical,
smooth, irreducible, complex algebraic curve and let ¢ : X — PI9~1 be the map obtained
from global sections of the canonical bundle. Write Q = wx, let Mg = p&Qps-1(1)
and let Qq = My be the Ox-dual.

1. The following is exact

0 — Mq—py — Mq — Xp — 0,

2. By Lemma B.4.2 the following is exact

0— QY(D) > Mg — @®~Ox(—x;) — 0.

Proof.

1. Recall the definitions Mo-py = @& _p)Spe-1(1) and Mo = ¢gSps-1(1). Let
1 : D — X be the inclusion of the divisor. Since D is effective and very ample
by assumption and X is projective the map is a closed immersion so there is an
exact sequence

0 — Ox(—D) — Ox — i,Op — 0

where the maps are respectively the inclusion of regular functions which van-
ish at —D and the quotient map by that inclusion. Taking Euler sequences

(vertically, on each term) gives the following exact sequence

0—>Qx(—D)—>Qx—>Qx®0D—>O.
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This is just inclusion of holomorphic differentials with fixed zeros followed by the
quotient by the inclusion. The pullbacks need to commute with this sequence

which makes

0—>MQ(_D)—>MQ—>2D—>O

exact, so now the inclusion is happening on the curve itself rather than in the

projective space containing the embeddings.

. In this proof let g = 5 for ease of notation, so that D = x1 + 9 + 23 and Ap
is the 2-plane in P* spanned by these points. Consider the flag of linear spaces
Ay € Ay © Ap corresponding to the divisors Dy = x1, D; = 1 + 9 and D
itself respectively. Let Fy = Dy = x1, let Ey = x5 and let E5 = x3. Then there

is filtration of ¥ p by vector bundles

ZDDFlDFQDO

such that F;/F;11 = Ox(—E;) by [Stal8e, Tag 0120].

O

This next result about global sections allows for a proof of a ‘dual version’ of

Noether’s theorem.

Lemma B.4.4 ( [GL85, Corollary 2.4]).

Let X be a mon-hyperelliptic genus g = 4 canonical, smooth, irreducible, complex

algebraic curve and let ¢ : X — PI971 be the map obtained from global sections of

the canonical bundle. Write Q@ = wx, let Mg = p§Qpe-1(1) and let Qo = My be the
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Ox-dual. Then for each | > 1,
2
H Qo2 ") =0 and H° (/\ Qa® Q’) =0.
Proof. Consider Qq = My, where
MQ == QﬁzQHqul(l) == QZSZQH.‘Dgfl ® L

Taking the dual of the exact sequence Lemma B.4.3, and then tensoring by Q7! gives

the sequence
0 — (@/Ox(2:)) @0 > Q@ - Q(-D) Q" — 0.
The induced long exact sequence is
H((@{0x(2:)) @ 07") = H(Qo® Q™) —» H'(Qx(-D)@Q™) — ---
where
HO(@Z]Ox(2:)) @ Q") = HO@ZI0 H (2)) = @THO (1K x + ),
for Kx a canonical divisor, and where
HY(Q(-D)®0 ") = HKx — D —IKx) = H'(—(1 - 1)Kx — D).

Since deg(—IKy +z;) <0, H(—IKx + z;) = 0 and likewise since deg —(l — 1) Kx —
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D) < 0 for all [ > 1, both of the H”s surrounding H%(Qq ® Q') are 0 and H*(Qq ®

Q7Y = 0. Taking the induced long exact sequence from (B.4.1),

2

H(Qo®Q ™) - A H(Q)Y@H Q) - H </\QQ®QI> e

by the argument above

/2\ HY(Q)Y @ H Q™) = HY </2\ Qa® Q’)

and again by the argument above the right hand side vanishes by degree considera-

tions. 0

This next lemma is equivalent to Theorem B.3.1 if Lemma B.4.4 and Noether’s

theorem hold. It is a purely cohomological version of Petri’s theorem.

Lemma B.4.5 ( [GL85, Corollary 1.7]). Let X be a non-hyperelliptic genus g = 4
canonical, smooth, irreducible, complex algebraic curve and let ¢ : X — P971 be
the map obtained from global sections of the canonical bundle. Write Q = wx, let
Mg = 05Qpo-1(1) and let Qq = My be the Ox-dual. Suppose H'(N* Qo ® 27 = 0

for alll = 1 and the map

N\H Q) — H° (/\%)

from the sequence (B.4.1) is surjective. Then the homogeneous ideal of X in its

canonical embedding is generated by quadrics.

Proof. By Lemma B.4.4 H'(A\® Qo®Q ") = 0 and the map A* H°(Q)¥ — H(A* Qq)

is injective. Therefore it is enough to show that dim HO(A® Qq) = dim A* H(Q)¥ =
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(g) to conclude that the map in the statement is surjective. By Noether’s theorem, (2
is normally generated since it is projectively normal in its embedding and nonhyper-
elliptic, so the maps p, from Theorem B.3.1 are surjective for £ > 0. The punchline
of this lemma is a specific version of Theorem B.3.1 so the game is to show the maps
o from B.3.1 are surjective for £ > 2. Let [ = k — 2 and let ¢4 be the maps in the

long exact sequence induced by the sequence (B.4.1)

2 2
HO(QQ®Q—Z—1) N /\HO(Q)\/ ®H0<Q_l) T/’l_+)2 HO (/\ QQ@Q_Z> -

Note that 1, is surjective for k > 2 by the hypotheses, but in practice the important
feature of these maps is their transpose. Recall the sequence Lemma B.1.3 where
wedge products of a pullback of Euler are twisted by L*~!, and write down the long

exact sequence
_>H0(ML®LI€ </\ML®Lk 1) Tk/\HO ®Hle 1)

By duality 74 is the transpose 1], so since 1, is surjective, 75 is injective, but 73 is
injective if and only if oy is surjective. By Theorem B.3.1 the homogeneous ideal of

X in its embedding is generated by quadrics. HO(A”Qq® Q) = 0, O

Finally, with the tools used to prove Lemma B.4.5 in mind, Noether’s theorem

can be proved.

Proof of Theorem B.j.1. Recall that €2 is normally generated if and only if the maps
HY (Mq®Q7%) — H°(Q)® H' (%), from the twist of the pulled-back Euler sequence

B.1.2, are injective by Lemma B.4.4. But given Lemma B.4.5, those maps are injective
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if and only if the injective maps H(Q) — H°(Qq) are surjective. Let Mg_p) =
V(D) Recall that Q is very ample by assumption, and the following sequence, a

filtration of Mg, is exact

0 — Mo(_p) — Mg — & 7Ox(~x;) — 0

Therefore
h°(Qa) < h®(QU=D)) + X7 h(Ox(x,))
=2 +(9-2)
= h(Q).

B.5 KoszuL COHOMOLOGICAL PROOF OF PETRI’S

THEOREM

In this section, the Koszul cohomology will be used to prove Petri’s theorem for
the case of a genus g > 4, non-exceptional curve. Let X be a non-hyperelliptic,
smooth, irreducible, projective complex curve of genus g > 4. To prove Petri’s result
that Ix/pe-1 is generated by quadrics, [GL85] use Lemma B.4.5. The essence of the

argument is to demonstrate that

204



since this condition is sufficient for the Lemma B.4.5 to apply by [GL85, Remark 1.9].

We know from Lemma B.4.4 that H'(A*Qq ® Q') = 0 for all I > 1, and that
the map A” H°(Q)Y — H°(A”Qq) induced from Lemma B.4.1 is injective. We will

use the following version of the uniform position theorem of [ACG11, page 112].

Lemma B.5.1 ( [GL85, page 10]). An effective divisor E of degree k spans a (k —

r — 1)-plane in P9=1 if and only if it moves in a linear system of dimension r.

Let X be a non-hyperelliptic, smooth, irreducible, projective, complex curve of
genus g > 4. Let A € W}(X) be a degree 4 line bundle on X with h%(X, A) = 2
such that A and wy ® AY are generated by global sections. Let D = (div f) for
some f e HYX,A). Since A is generated by global sections and all of the spaces in

consideration lie over C which has characteristic 0

D=$1+"'+$g,1,

for some distinct x;. Then no effective divisor contained in D can move in a nontrivial
linear series. Indeed, suppose such a divisor existed. Then |D| either has a base-point
or dimension at least 2, both of which contradict global generation and uniform posi-
tion per Lemma B.5.1. In P9~! = Proj(H"(X,w)) this means D spans a (g — 3)-plane

Ap, and by Lemma B.5.1 any proper subset of the z; are linearly independent.

Let ¢ : X — P97! be the map obtained from global sections of the canonical
bundle. Let D = x; +---+ x4 for some distinct closed points x; in general position.

Write Q = wy, let Mg = ¢§Qpe-1(1) and let Qq = My be the Ox-dual. Let
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Mgq—py = Q¥ (D). Finally, let ¥p be as in Lemma B.4.2. Then it is not hard to show

that the following is exact

We will use one last Lemma to prove Petri’s theorem.

Lemma B.5.2 ( [GL85, 3.2]). Let X be a non-hyperelliptic genus g = 4 canonical,
smooth, irreducible, complex algebraic curve and let ¢ : X — P9~1 be the map obtained
from global sections of the canonical bundle. Let D = x1+---+x4_1 for some distinct
closed points x; in general position. Write Q = wx, let Mg = @&Qpe-1(1) and let
Qa = Mg be the Ox-dual. Let ¥p = kerup be as in Lemma B.4.2. Then the
sequence

0 —d Ox(—ZL’g_Q — xg_l) — ZD i @g;fOX(—fl) — 0
15 exact.

Proof. Let D" = 14 x5 and let E = x,_5+x,_1. Then Q(—D’) is generated by global
sections since the only possible base points are z,_» and x,_; but if either were a base
point then some (g — 2) of the {z;} would lie in the (g — 4)-plane Ap spanned by D’.
Let V = H(Q(—D"))/H°(Q(—D)) and let vg : H*(Q(—D"))®c Ox — QR Of be the
natural map defined by evaluating sections of Q(—D’) on E. Let vg : V ®c Ox —
Q2 ® O be the induced map. As effective divisors D and D’ span hyperplanes \p

and Ap < P97 which in particular are the subspaces

Ap =P(Wp), Ap = P(Wp) < P(H’(2)).
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Then the following commutes.

V®cO0x —2— Q® 0g

0 ED WD®COXL>Q®OD*>O

l

0 —— ED’ e WD’@COX —_— Q@OD/ — 0

If s € H'(Q(—D')) is some section which does not vanish on D then s cannot
vanish at x, o or x,_;. So vg and therefore vg are surjective. Since dim¢V = 1

implies that kervg = Ox(—F) the following is exact

0— Ox<—$g_2 — ZL’g_l) — ED — ED/ — 0.

Finally since D’ is composed of a pair of linearly independent points spanning a line
AD/
ED/ = Ox(—ZL'l) @ OX(—JZQ).

Now the proof of Petri’s theorem can proceed as in [GL85].

Theorem B.5.3 ( [GLS85, page 2]). Let X be a non-hyperelliptic, smooth, irreducible,
projective complex curve of genus g = 4. Suppose A is a degree 4 line bundle on X

with h°(A) = 2 such that A and wx @ AV are generated by global sections. The the
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homogeneous ideal of X in its canonical embedding Ixpe—1 is generated by forms of

degree 2.

Proof. By the exactness of B.5.1 the following is exact

2

0— AE)) = /\Qa— I Q-D) —0.

The exactness of Lemma B.5.2 implies that

2

2
0— /\ (Ox(21) ® Ox(22)) = /\ L) = Ox (214721, 1)BOx (T2+Tg2+741) — 0
and
0— Q(—D + 131) @ Q(—D + l’g) — EB ® Q(—D) — Q(—D + Tg—2 + ngl) — 0

are exact. Finally since g > 4 all of the divisors in two previous exact sequences

above are properly contained in D so each has a unique section and

h? (/2\2,3) < @) + (g —3).

Then since h°(Q(—D+x;)) = 2 for each i but h®(Q(—D+xy2+x4-1)) = KO(Q(=D")) =
3 it follows that

RO(2) ®Q(—D)) < 2(g — 3) + 3.
By the exactness of
2 2
0— AZh— A\Qe—Z)He0-D) -0,
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conclude that

K (/2\@9) < (3) +3(g—3)+3 = (g)

With the bound we have just obtained we see that Lemma B.4.5 applies, and we

conclude that the canonical ideal Ix /ps—1 is generated by quadrics. O
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