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The classical (number-field) number theory and algebraic geometry which we wish
to study in the Drinfeld setting is based around the following objects:

-]

In his 1986 monograph Gekeler asks for a description of the algebras of Drinfeld
modular forms in terms of generators and relations. The only examples of results
in this direction so far are:

Let I' < GLy(A) be a congruence subgroup containing the diagonal matrices in
GL2(A) and such that det() is a square element in F for all v € T'. Let A be the

Modular forms - functions f : H — C such that f(vz) = (cz + d)*f(z) for all

v =+ <a b), where H is the complex upper half-plane, k£ € Z~,, and

c d
' < PSLy(R). Note that f(v2)d(v2)®%? = fdz®*?. Let M,(T") denote the

C-vector space of modular forms of weight k for I' and X = I'\H* denote the
projective modular curve associated to I'. Then

M (T) = H(X, Qx(8)%H?)
fro fdzB7

where A denotes the log divisor of cusps of I

Modular curves - tame Deligne-Mumford stacks 2" which are the moduli of
elliptic curves with certain level structures. Define such an 2 to be the
algebraization of the compactified orbifold quotient X = I'\H".

Section rings - for X a curve (scheme or stack) over C and £ a line bundle on
X, the section ring of Z Is

@ HO g@d

d=0

Gekeler/Goss - M (GLy(A)) = Clg, h]
Cornelissen - the algebra of modular forms for I'(aT + ();
Dalal/Kumar - the algebra of modular forms for I'y(T');
Armana - for any level N € A there is an isomorphism
M5, (Do(N)) > HY(Xo(N)™, )
f—7'fdz.

Throughout we suppose that our congruence subgroup I' < GLy(A) contains

the matrices [ O, forall a, o/ € . This means that if f € My ;(I"), we have
0 « q !

((5a)2) =1

W) =t (2) = f(2),

log divisor of cusps of the Drinfeld modular curve 2 = Z7.

Drinfeld modular forms for [ are differentials on (27, 2A):

There is an isomorphism of graded rings

1
where ()5

M(T) = R(2Z,QL-(2A)),

morphisms

M (T) > HY(Z, QL (20)%F/2)

of components given by f — f(dz)®*/?.

Remark:

M1, (T)

let ' <

It {1,ls are the two solutions to k£ =
= My, (T).

Main Theorem

example: For 2" = 2 (') as above, we have R(Z", A) El—) M, (I"), induced .e. if My, (I') #0, then k =2l (mod q—1). < GL»(A) be a congruence subgroup containing the diagonal matrices in
ke2Z~ — GLQ(A) Let FQ {’y el : det( ) (F;) } Then
by the isomorphisms above For 7 the Carlitz period and u(z) the parameter at co, we have
| du _ M(P) = M(FQ)v
w2 —mdz, with
so dz has a double pole at the cusps and dz®*? has a pole of order k = £(2). Mj(T'2) = Mi,(T') © Miy,(T)

Let ¢ be a power of an odd prime and T an indeterminate. The Drinfeld, or
function field, setting may be introduced by the following analogies with the
classical setting:

We observe that for f a modular form, the differentials fdz®"2 may have at
worst poles of order k at the cusps of a Drinfeld modular curve.

on each graded piece, where [y, [, are the two solutions to k = 21 (mod ¢ — 1).
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