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Notation

q - a power of an odd prime.
K - the function field of some smooth, connected, projective curve over a
field of size q, e.g. P1

Classical Setting Function Field

Z A
def
= Fq[T ]

Q K
def
= Fq(T )

R K∞
def
= Fq

((
1
T

))
C C

def
= K̂∞

H = {a + bi ∈ C : b > 0} Ω
def
= C − K∞

SL2(Z) \ H GL2(A) \ Ω(
a b
c d

)
z = az+b

cz+d
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Elliptic Curves and Drinfeld Modules

Elliptic Curves
An elliptic curve is (analytically) a
torus/C, i.e. a lattice quotient
C/(Zz + Z) for z ∈ H;

or (algebraically) a curve defined by:
E : y2 = x3 + A(z)x + B(z)

[Sil09, Figure 3.1]

Drinfeld Modules
Consider the rank 2 lattice
Λz = π(zA + A) ⊂ C .The associated
Drinfeld module of rank 2 is given
by

ϕz(T ) = TX + g(z)X q + ∆(z)X q2
,

the image of a ring homomorphism
ϕz : A→ C{X q},

(C{X q} is the non-commutative ring
of Fq-linear polynomials/C .)
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The classical thing we want to analogize

Let Γ ≤ PSL2(R) be a Fuchsian group with finite coarea. Let X (Γ)
denote the stacky curve over C which is the algebraization of the
compactified orbifold quotient X = Γ \ H(∗). We know (e.g. [VZB22,
Chapter 6])

M(Γ)
def
:=
⊕
k≥0

Mk(Γ)
∼−→
⊕
k≥0

H0(XΓ,Ω
1
XΓ

(∆)⊗k/2)
def
=: R(XΓ; ∆),

f 7→ fdz⊗k/2

[Gek86, page 13]:
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Why Stacks? What are Stacks?

Modular forms are *always* sections of a line bundle.
However,

H0(X , L⊗k) 6= Mk(Γ) and R(X ; L) 6= M(Γ),

where 
X = moduli scheme,

L = appropriate line bundle,

M = vector space of modular forms.

So, what are stacks?

1-category 2-category

functor / pre-sheaf fibered category
separated pre-sheaf pre-stack

sheaf stack
algebraic space / scheme algebraic stack

variety algebraic stack of finite type over a field
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So, what are stacks?

Definition

A stacky curve over an algebraically closed field K is:

· a smooth, integral, proper, scheme X of dimension 1, together with

· a finite number of closed points P1, . . . ,Pr called stacky points with
stabilizer orders e1, . . . , er ∈ Z≥2.

Example ([Lau96, Corollary 1.4.3])

The moduli space M2
A of rank 2 Drinfeld modules with no level structure

is known to be a Deligne-Mumford algebraic stack of finite type over Fp.
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Stacky Curves 101

Let X denote a stacky curve with signature σ = (g ; e1, . . . , er ). We say
that D ∈ Div(X ) has

deg(D) = degbDc = deg
⌊∑

i

aiPi

⌋
def
=
∑
i

baicπ(Pi ),

where π : X → X is the coarse space morphism. The (log) canonical
ring of (X ; ∆) is

R(X ; ∆) =
⊕
d≥0

H0(X , d(KX + ∆)),

where

KX ∼ KX +

(
r∑

i=1

(
1− 1

ei

)
Pi

)
,

is a canonical divisor of X and ∆ =
∑

j Qj ∈ Div(X ) is a log divisor.
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Computing the Canonical Ring of a Stacky Curve

[VZB22] gives an inductive presentation of R(X ) for X with
σ = (g ; e1, . . . , er ) in terms of R(X ′) with σ′ = (g ; e1, . . . , er−1):
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Example of (an inductive) presentation of section rings

Example ([CFO24, Example 5.1])

Let X denote a genus 1 curve over some field k.
[VZB22, Example 5.7.7] Let D ′ = 1

2P1 + 1
2P2

[VZB22, Example 5.7.9] Let D = D ′ + 1
2P3 = 1

2P1 + 1
2P2 + 1

2P3.

By the Generalized Max Noether Theorem [VZB22, Lemma 3.1.4],

H0(X , 2D)⊗ H0(X , (d − 2)D)→ H0(X , dD)

is surjective for d > 5, so all generators occur in degree < 5.
The minimal presentations have the form

RD = k[u, x1, x2]/ID

RD′ = k[u, x1, x
2
2 ]/ID′ ,

where ID , ID′ are the relation ideals. In particular, RD is generated over
RD′ by x2.
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Old Friends

Example (Goss and Gekeler’s famous GL2(A)-forms)

· g of weight q − 1 and type 0,

· ∆ of weight q2 − 1 and type 0,

· h of weight q + 1 and type 1.⊕
k≥0

Mk,0(GL2(A)) = C [g ,∆] and
⊕
k≥0

l (mod q−1)

Mk,l(GL2(A)) = C [g , h].

Example (Stacky j-line)

XGL2(A)
∼= P1(q − 1, q + 1) is a football (see e.g. [VZB22, 5.3.14]):

But, R(XGL2(A)) 6= C [g , h].
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What goes “Wrong” in Function Fields

Among other resources, we have:{
[Gek01] for signatures of Drinfeld modular curves, and

[VZB22] for computing canonical rings of stacky curves.

So, where’s our modular forms = sections of a line bundle?
We will consider:

· weight and type of Drinfeld modular forms;

· exponentials and u-series;

· special congruence groups Γ ≤ GL2(A);

· elliptic points and cusps of Drinfeld modular curves;

· GAGA for rigid analytic stacks.
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Drinfeld Modular Forms

Definition

Let Γ ≤ GL2(A) be a congruence subgroup. A modular form of weight
k ∈ Z≥0 and type l ∈ Z/((q − 1)Z) is a map f : Ω→ C such that

1. f is holomorphic on Ω and at the cusps of Γ;

2. f (γz) = det(γ)−l(cz + d)k f (z) for all γ =
(
a b
c d

)
∈ Γ.

Lemma ([Gek88, Remark (5.8.i)])

If Mk,l(Γ) 6= 0, then k ≡ 2l (mod q − 1).

Proof.

If f is non-zero modular for Γ of weight k and type l then

f (( α 0
0 α )z) = f

(αz
α

)
= f (z) = αkα−2l f (z).
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“Fourier series” for Drinfeld Modular Forms

Definition

We define a parameter at infinity

u(z)
def
=

1

eπA(π̄z)
=

1

π̄eA(z)
= π̄−1

∑
a∈A

1

z + a
.

Recall:

· u (αz) = α−1u(z) for any α ∈ F×q .
· u-series coefficients for a Drinfeld modular form uniquely determine

the form.

Lemma

deA(z)

dz
= 1⇒ du

u2
= −πdz , i.e. the differential dz has a double pole at ∞.
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Special Congruence Subgroups

Drinfeld modular forms are sensitive to determinants, so consider some
“friendlier” modular forms for Breuer and Böckle’s special congruence
subgroups:

[Bre16] Let Γ2
def
= {γ ∈ Γ : det(γ) ∈ (det Γ)2}.

(Suppose det Γ2 = (F×q )2.)

[Böckle] Let Γ1
def
= {γ ∈ Γ : det(γ) = 1}. Suppose Γ′ is such that

Γ1 ≤ Γ′ ≤ Γ.

The subgroups Γ2 and Γ′ may be thought of as the inverse image under
det : GL2(A)→ F×q of some subgroup of F×q .

Jesse Franklin Computing the Canonical Ring of Certain Stacks 14 / 27



Cusps and Elliptic Points

Let Γ ≤ GL2(A) be a congruence subgroup. Let X an
Γ = Γ \ (Ω ∪ P1(K )).

Definition

A cusp of X an
Γ is a representative for some orbit Γ \ P1(K ). A point

e ∈ X an
Γ is an elliptic point for Γ if StabΓ(e) is strictly larger than:

F×q ∼=
{

( α 0
0 α ) : α ∈ F×q

}
.

Example (with thanks to Mihran)

Suppose x 6= y ∈ A have deg(x) = 1 = deg(y). Consider Γ0(xy) \T :

We can “read off” that XΓ0(xy) has 4 cusps.
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Cusps are Elliptic Points

Let Γ1 ≤ SL2(Z). Consider a cartoon
of Γ1 \ (H ∪ P1(Q)):

Γ1 \ P1(Q)↔
(

singular
elliptic curves

)
,

but only elliptic curves with j = 0 or
1728 have extra automorphisms.

Let Γ ≤ GL2(A). Consider the
moduli XΓ = [XΓ/Z (GL2(A))] :

Aut(ϕ) ∼= F×q //F×q ;

Aut(ϕ(j=0)) ∼= F×
q2 //F×q ;

Aut(ϕ(j=∞)) ∼= {
(
a 0
0 d

)
} //F×q ;

so cusps on a stacky Drinfeld
modular curve are elliptic points!
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Isotropy Groups of Cusps (1/2)

Moduli Interpretation

Γ \ P1(K )↔

 “degenerate”
Drinfeld modules

of rank 2

 ,

=

(
Drinfeld modules

of rank 1

)
Carlitz module:

ρ(T ) = TX + X q ! πA ⊂ Ω,

where π ∈ K∞( q−1
√
−T ).

Aut(ρ) ∼= F×q ,

“extra” automorphisms specify π.

Gekeler’s Isotropy

It is well-known that ∞ (resp. any
cusp of Γ) is stabilized by matrices of
form:{(

a b
0 d

)
=
(
a 0
0 d

)
( 1 m

0 1 ) ∈ Γ
}
,

which is an infinite group.

Question: where does this infinite
group of translations ( 1 m

0 1 ) go?
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Isotropy Groups of Cusps (2/2)

Jesse Franklin Computing the Canonical Ring of Certain Stacks 18 / 27



Elliptic Points on Stacky Curves

Example (Classical j-line)

· X (1) = SL2(Z) \ (H ∪ P1(Q)) -
the “usual” j-line P1(C)

· M1,1 - DM stack representing
the moduli of stable elliptic
curves

M1,1 is a µ2-gerbe over
X (1) = [X (1)/Z (SL2(Z))], i.e.
X (1) is a rigidification M1,1//µ2:

M1,1
π→X (1)→ X (1)

P1(4, 6)
π→ P1(2, 3)→ P1(C) .

Example (Drinfeld j-line)

· X (1) = GL2(A) \ (Ω ∪ P1(K )) -
the “usual” j-line P1(C )

· M2
A - (DM stack) moduli of

stable rank 2 Drinfeld modules
(no level structure)

M2
A is a µq−1-gerbe over

X (1) = [X (1)/Z (GL2(A))], i.e.

X (1) is a rigidification M2
A//µq−1:

M2
A

π→X (1)→ X (1)

P1((q − 1)2, q2 − 1)
π→

→ P1(q − 1, q + 1)→ P1(C )
.
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Rigid Stacky GAGA

Theorem

Let A be a k-affinoid algebra, for k some non-achimedean field.

([PY16, Lemma 7.2]) Let X be an algebraic stack locally of finite
presentation over Spec(A). Suppose that for F ∈ OX −Mod we have

F ∼= lim
τ≥−n

F .

Then the analytification functor (−)an commutes with this limit.

([PY16, Theorems 7.4 and 7.5]) Let X be a proper algebraic stack
over Spec(A). The analytification functor on coherent sheaves induces
an equivalence of categories

Coh(X )
∼=→ Coh(X an).
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Geometry of Drinfeld Modular Forms (1/3)

Let q be odd;
Let Γ ≤ GL2(A);
Let Γ2 = {γ ∈ Γ : det(γ) ∈ (F×q )2}.
Consider the cover of modular curves

XΓ2

XΓ

When we compute the log canonical
ring R(XΓ2 ; 2∆) we get the following
result.

Theorem ([Fra23, 6.1])

There is an isomorphism of graded
rings

M(Γ2) ∼= R(XΓ2 ; Ω1
XΓ2

(2∆)),

given by isomorphisms

Mk,l(Γ2)→ H0(XΓ2 ,Ω
1
XΓ2

(2∆)⊗k/2)

of form f 7→ f (dz)⊗k/2, where
k ≡ 2l (mod q − 1).
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Geometry of Drinfeld Modular Forms (2/3)

Let q be odd;
Let Γ ≤ GL2(A);
Let Γ2 = {γ ∈ Γ : det(γ) ∈ (F×q )2}.
Consider the cover of modular curves

XΓ2

XΓ

When we compare the modular forms
for Γ and Γ2 we find the following.

Theorem ([Fra23, 6.2])

We have M(Γ) ∼= M(Γ2), with

Mk,l(Γ2) = Mk,l1(Γ)⊕Mk,l2(Γ)

on each component,where l1, l2 are
the solutions to k ≡ 2l (mod q − 1).
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Geometry of Drinfeld Modular Forms (3/3)

Let q be odd;
Let Γ ≤ GL2(A);
Let Γ1 = {γ ∈ Γ : det(γ) = 1}.
Suppose that Γ1 ≤ Γ′ ≤ Γ.
Consider the cover of modular curves

XΓ′

XΓ

When we compare the modular forms
for Γ and Γ′ we find the following
generalization of [Fra23, Theorem
6.2].

Theorem ([Fra23, 6.12])

We have M(Γ) ∼= M(Γ′), and each
component Mk,l(Γ′) is some direct
sum of components Mk,l ′(Γ) for
some nontrivial l ′.
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Conclusion

Thank you!

Further details available at arXiv:2310.19623

and at arXiv:2312.15128
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