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The Drinfeld Setting

q - a power of an odd prime.
K - the function field of some smooth, connected, projective curve over a
field of characteristic q, e.g. P1

Classical Setting Function Field

Z A
def
= Fq[T ]

Q K
def
= Frac(A) = Fq(T )

R K∞
def
= Fq

((
1
T

))
C C

def
= K̂∞

H = {a + bi ∈ C : b > 0} Ω
def
= C − K∞

SL2(Z) \ H GL2(A) \ Ω(
a b
c d

)
z = az+b

cz+d
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Elliptic Curves and Drinfeld Modules

Elliptic Curves
An elliptic curve is (analytically) a
torus/C, i.e. a lattice quotient
C/(Zz + Z) for z ∈ H;
or (algebraically) a curve defined by:
E : y2 = x3 + A(z)x + B(z)

[Sil09, Figure 3.1]

Drinfeld Modules
Consider the rank 2 lattice
Λz = π(zA + A) ⊂ C .The associated
Drinfeld module of rank 2 is given
by

ϕz(T ) = TX + g(z)X q + ∆(z)X q2
,

the image of a ring homomorphism
ϕz : A→ C{X q} where C{X q} is
the non-commutative ring of
Fq-linear polynomials/C .
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Moduli Problems

Let Γ1 ≤ SL2(Z) and Γ ≤ GL2(A) be subgroups.

(
quotient spaces

Γ1 \ H (resp. Γ \ Ω)

)
classify↔

 families of elliptic curves
(resp. Drinfeld modules of rank 2)

which have torsion info


For example,

Γ0(N)
def
:=

{(
a b
c d

)
: c ≡ 0 (mod N)

}
corresponds to the moduli space of{

elliptic curves

Drinfeld modules of rank 2
with an N-torsion subgroup.
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Classical Modular Forms & Curves

Algebraic Modular Curve
XΓ

Deligne-Mumford
(stacky) curve

GAGA
↔

Analytic Moduli Space
Γ \ H∗

Compact Riemann
surface (orbifold)

Definition ([DS05, 1.1.2])

A map f : H → C is a modular form of weight k ∈ Z for Γ ≤ SL2(Z) if

1. f is holomorphic on H and at cusps of Γ; and

2. f (γz) = (cz + d)k f (z) for all γ =

(
a b
c d

)
∈ Γ and z ∈ H.

We know (e.g. [VZB22, Chapter 6])

M(Γ)
def
:=
⊕
k≥0

Mk(Γ)
∼−→
⊕
k≥0

H0(XΓ,Ω
1
XΓ

(∆)⊗k/2)
def
=: R(XΓ,∆),

f 7→ fdz⊗k/2

Jesse Franklin Geometry of Drinfeld Modular Forms 5 / 13



“Ingredients”

1. (Log) Stacky Curve (X ,∆) ([LRZ16, Def 2.1] and [VZB22, Ch 4])

- a “nice” scheme X/K of dimension 1, together with “fractional”
(stacky) points 1

e1
P1, . . . ,

1
er
Pr of X with ei ∈ Z≥2;

- a log divisor is some ∆ ∈ Div(X ) a sum of distinct points of X

2. (Ample) Line Bundle

- e.g. KX ∼ Ω1
X or KX + ∆

- gives an embedding of X in projective space

3. Modular forms “=” Sections - à la (f 7→ fdz⊗k/2)

4. GAGA - equivalences of categories:(
algebraic

curves and bundles

)
∼=→
(

analytic
curves and bundles

)
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Drinfeld Modular Forms & Curves

Algebraic Modular Curve
XΓ

Deligne-Mumford
(stacky) curve

rigid (stacky) GAGA
↔

Analytic Moduli Space
Γ \ (Ω ∪ P1(K ))

compact rigid analytic
stack

Definition ([Gek86, (3.1)])

Let Γ ≤ GL2(A) be a congruence subgroup. A modular form of weight
k ∈ Z≥0 and type l ∈ Z/((q − 1)Z) is a holomorphic function f : Ω→ C
such that

1. f is holomorphic on Ω and at the cusps of Γ; and

2. f (γz) = det(γ)−l(cz + d)k f (z) for all γ =

(
a b
c b

)
∈ Γ.
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Geometry of Drinfeld Modular Forms (1/3)

Let q be odd;
Let Γ ≤ GL2(A);
Let Γ2 = {γ ∈ Γ : det(γ) ∈ (F×q )2}.
Consider the cover of modular curves

XΓ2

XΓ

When we compute the log canonical
ring R(XΓ2 , 2∆) we get the following
result.

Theorem ([Fra23, 6.1])

There is an isomorphism of graded
rings

M(Γ2) ∼= R(XΓ2 ,Ω
1
XΓ2

(2∆)),

given by isomorphisms

Mk,l(Γ2)→ H0(XΓ2 ,Ω
1
XΓ2

(2∆)⊗k/2)

of form f 7→ f (dz)⊗k/2, where
k ≡ 2l (mod q − 1).
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Geometry of Drinfeld Modular Forms (2/3)

Let q be odd;
Let Γ ≤ GL2(A);
Let Γ2 = {γ ∈ Γ : det(γ) ∈ (F×q )2}.
Consider the cover of modular curves

XΓ2

XΓ

When we compare the modular forms
for Γ and Γ2 we find the following.

Theorem ([Fra23, 6.2])

We have M(Γ) ∼= M(Γ2), with

Mk,l(Γ2) = Mk,l1(Γ)⊕Mk,l2(Γ)

on each component,where l1, l2 are
the solutions to k ≡ 2l (mod q − 1).
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Geometry of Drinfeld Modular Forms (3/3)

Let q be odd;
Γ ≤ GL2(A);
Γ1 = {γ ∈ Γ : det(γ) = 1}.
Suppose that Γ1 ≤ Γ′ ≤ Γ.
Consider the cover of modular curves

XΓ′

XΓ

When we compare the modular forms
for Γ and Γ′ we find the following
generalization of [Fra23, Theorem
6.2].

Theorem ([Fra23, 6.12])

We have M(Γ) ∼= M(Γ′), and each
component Mk,l(Γ′) is some direct
sum of components Mk,l ′(Γ) for
some nontrivial l ′.
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Conclusion

Thank you!
Further details available at arXiv:2310.19623
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https://arxiv.org/abs/2310.19623
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