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Abstract

The objectives of this study were to obtain linearized stiffness matrices, and assess the linearity and hysteresis of the motion

segments of the human lumbar spine under physiological conditions of axial preload and fluid environment. Also, the stiffness

matrices were expressed in the form of an ‘equivalent’ structure that would give insights into the structural behavior of the spine.

Mechanical properties of human cadaveric lumbar L2-3 and L4-5 spinal motion segments were measured in six degrees of freedom

by recording forces when each of six principal displacements was applied. Each specimen was tested with axial compressive preloads

of 0, 250 and 500N. The displacements were four slow cycles of 70.5mm in anterior–posterior and lateral displacements,
70.35mm axial displacement, 71.5� lateral rotation and 71� flexion-extension and torsional rotations. There were significant
increases with magnitude of preload in the stiffness, hysteresis area (but not loss coefficient) and the linearity of the load-

displacement relationship. The mean values of the diagonal and primary off-diagonal stiffness terms for intact motion segments

increased significantly relative to values with no preload by an average factor of 1.71 and 2.11 with 250 and 500N preload,

respectively (all eight tests po0:01). Half of the stiffness terms were greater at L4-5 than L2-3 at higher preloads. The linearized
stiffness matrices at each preload magnitude were expressed as an equivalent structure consisting of a truss and a beam with a rigid

posterior offset, whose geometrical properties varied with preload. These stiffness properties can be used in structural analyses of the

lumbar spine.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanical function of the spine is the summa-
tion of the behavior of its individual motion segments,
where a motion segment is a structural unit of the spine
consisting of two vertebrae and the intervening soft
tissues (Fig. 1). Motion segment behavior is a key
component of biomechanical analyses of the spine,
including analyses of spinal loading (Stokes and
Gardner-Morse, 2001), dynamics of injury (Kasra
et al., 1992; Pankoke et al., 2001), spinal stability
(Bergmark, 1989; Cholewicki and McGill, 1996; Gard-
ner-Morse et al., 1995; Gardner-Morse and Stokes,
1998), and simulations of surgery (Aubin et al., 2003;
Stokes and Gardner-Morse, 1993).
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Isolated tests of motion segment behavior in indivi-
dual degrees of freedom provide information that is
specific to those degrees of freedom and cannot be
generalized to three-dimensional analyses because of the
interaction between degrees of freedom, called ‘cou-
pling’ (Panjabi et al., 1976). A 6� 6 stiffness or
flexibility matrix is needed to describe how forces
displace a vertebra relative to its fixed neighbor (Panjabi
et al., 1976).
In general a 6� 6 stiffness matrix has 36 terms. The

number of independent stiffness matrix terms is reduced
to 21 by consideration of matrix symmetry required by
conservation of energy if the material properties are
linear. Matrix symmetry results in complementary
pairing of off-diagonal terms hence k12 ¼ k21; etc., in
Fig. 2. Sagittal plane symmetry requires that nine of the
21 terms are zero (terms for forces expected to be zero
for displacements within the sagittal plane, e.g. no
lateral force associated with axial compression, hence
k13 and k31 ¼ 0; etc.). This leaves 12 nonzero stiffness
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Fig. 2. Terms in the motion segment stiffness matrix. The six diagonal

terms are those stiffness terms that relate forces or moments to the co-

linear displacements or rotations. There is symmetry about the

diagonal of the off-diagonal terms (in the shaded area), hence

k53=k35, etc. The un-marked terms are expected to be zero based on

sagittal plane motion segment symmetry. The terms k35 and k26
(marked by squares) are those identified by Goel (1987) as ‘‘primary’’

off-diagonal terms. The other three circled off-diagonal terms are

associated with an antero-posterior offset of the structural axis from

the vertebral body centers. The dashed circle identifies the coupling

term (axial compression, anterior shear) that was found not to be

significantly different from zero. Degrees of freedom 1–3 correspond to

translations, and 4–6 correspond to rotations, with the sequence

indicated in Fig. 1.

Fig. 1. Motion segment considered as a 2-node element. Nodes are at

vertebral body centers. The axis numbering convention follows that

normally used in finite element analyses. The lower vertebra was

constrained during the tests while displacements were applied to the

upper vertebra.
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terms (Fig. 2). Goel (1987) defined a simplified stiffness
matrix for the motion segment with six diagonal terms
(relating co-linear displacements or rotations) and two
‘‘primary’’ off-diagonal terms, assuming that the motion
segment had beam-like behavior. The two primary off-
diagonal terms relate the anterior–posterior (A–P) shear
forces to the applied flexion-extension rotations (or the
complementary flexion-extension moments to A–P shear
displacements) and lateral shear forces with lateral
bending rotations (or the complementary lateral bend-
ing moments to lateral shear displacements). This beam-
like behavior requires that the motions segment’s axis
system be aligned with its structural axis.
Since the motion segment has two vertebrae, each
having six degrees of freedom, it requires a 12� 12
stiffness matrix. This matrix can be derived from the
6� 6 matrix for one vertebral center moving relative to a
fixed adjacent vertebra, by using the principle of force
equilibrium, compatible with the specified distance
between the two vertebral centers (Gardner-Morse
et al., 1990).
A shear beam with a rigid A–P offset was proposed by

Gardner-Morse et al. (1990) as an approximate repre-
sentation of an experimental stiffness matrix. This
‘equivalent’ beam has seven independent parameters,
compared with up to 12 terms in the experimental
stiffness matrix (Fig. 2). In this paper we propose an
extension of that method, that also includes a truss
element, thus permitting a closer approximation to the
experimental data.
There are several limitations of the existing human

motion segment experimental stiffness data, such that
they probably do not accurately represent in vivo
behavior. Most reported data do not include all six
degrees of freedom (Berkson et al., 1979; Nachemson
et al., 1979; Schultz et al., 1979), were obtained without
physiological levels of axial compression and were
performed with the specimen not surrounded by
physiological isotonic fluid (e.g. Panjabi et al., 1976).
Physiological axial compressive preload is known to
increase stiffness by a factor of two or more (Edwards
et al., 1987; Janevic et al., 1991; Gardner-Morse
and Stokes, 2003) and may reduce the amount of
load-displacement nonlinearity (Janevic et al., 1991;
Gardner-Morse and Stokes, 2003). Discs in a physio-
logical saline bath have greater hydration than discs
that are just exposed to saline spray and wrap
(Pflaster et al., 1997), and this increased hydration
affects the disc biomechanics (Race et al., 2000;
Costi et al., 2002). The increased hydration may also
increase the repeatability of the load-displacement
behavior with slow cyclic loading (Gardner-Morse and
Stokes, 2003).
This paper reports the stiffness matrix and other

properties of human lumbar motion segments tested
with slow-rates of displacement, to obtain the quasi-
static stiffness response of the motion segments, and
with small displacements, to approximate the assump-
tion of linear load-displacement behavior.
The purposes of the study were:

1. Quantify the effects of 0, 250 and 500N axial
compressive preload on the motion segment stiffness
matrix, and on the hysteresis and linearity of the
load-displacement relationship. The effect of preload
was determined for intact motion segments and in
isolated intervertebral discs.

2. Examine whether the stiffness matrix terms corre-
lated with physical dimensions of the motion
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segments, and compare the behavior of L2-3 and L4-
5 segments.

3. Analyze the derived stiffness matrices at the three
magnitudes of axial compressive preload to obtain
the geometrical properties of an equivalent structure
that included a truss and a beam element with a rigid
posterior offset.
Fig. 3. Sagittal plane view of a structure consisting of a shear beam

with rigid offsets and a truss and that was used to represent the

empirically determined lumbar motion segment stiffness at each

preload level. Properties: modulus E ¼ 1000N/mm2, Poisson’s ratio
v ¼ 0:49; distance between vertebral centers=36.27mm; At=truss

area, Ab=beam axial area, AS2 and AS3=beam shear areas, J; I22 and

I33=beam 2nd moments of area, d=rigid offset.
2. Methods

The load-displacement behavior of eight human
lumbar motion segments (L2-3 and L4-5 from each of
four human females, aged 17, 21, 52 and 58 years) was
recorded directly in six degrees of freedom (6-DOF) by a
Stewart platform (i.e. a ‘hexapod’ robot) (Stokes et al.,
2002). These motion segments were dissected from
human spines that had been stored at �80�C. Each
specimen was radiographed and no evidence of anato-
mical abnormality or gross degeneration was observed.
Some osteophytes were observed on the older speci-
mens. Prior to testing, each specimen was thawed,
embedded in end-fittings using PMMA, and radio-
graphed to identify the position of the vertebral body
centers that in turn defined the axis-system for testing as
described in Stokes et al. (2002). During testing,
specimens were immersed in an isotonic saline bath to
simulate the physiological environment. The bath was
cooled to approximately 4�C to minimize tissue changes
over the period of testing.
Each test was performed with axial compressive

preloads of 0, 250 and 500N applied in a varied
sequence. The non-zero preload magnitudes represent
spinal loading during standing and sitting (Andersson
et al., 1984). The specimen was allowed to equilibrate
with each preload for at least 3 h before the load-
displacement tests. Six tests (three pure translations and
three pure rotations) were sequentially performed with
four sawtooth-waveform cycles of 87 s in each displace-
ment direction. The applied displacements and resulting
forces were recorded at 1Hz. The displacements were
70.5mm in the A–P and lateral directions, 70.35mm
in the axial direction, 71.5� in lateral bending rotation
and 71� in flexion-extension and torsional rotations.
These magnitudes of displacement were selected to be
compatible with the linearizing assumptions made in
subsequent analyses and were about 20% of the
reported physiological range of segmental motion
(Marras et al., 1995). After testing each intact specimen,
the facets and ligaments (posterior elements) were
removed and the tests were repeated.
The size of each disc (lateral width, antero-posterior

width and disc height) and the distance between
vertebral body centers was measured from radiographs,
with compensation for radiographic magnification.
The 36 independent terms of the 6� 6 stiffness matrix
and six force offset terms were estimated using a least-
squares fit to the experimental data by the method
reported in Stokes et al. (2002). The off-diagonal matrix
terms were averaged to make the matrix symmetric.
The linearity of each load-displacement relationship

was measured by subtracting the linear regression
coefficient of determination (R2) and the pure error
estimate from unity (Gardner-Morse and Stokes, 2003).
The hysteresis area was calculated as the enclosed area
of each cycle averaged over the second and third cycles
in the load-displacement recording. These two cycles
were used to avoid discontinuities that could be present
at the start of the first and the end of the fourth cycles.
Additionally, the loss coefficient (a measure of hysteresis
with strain) for the diagonal degrees of freedom was
evaluated as:

Z ¼
Wd

pkx2max
;

where Z is the dimensionless loss coefficient, Wd is the
hysteresis area, k is the stiffness and xmax is the
maximum displacement (Thomson, 1972).
The eight geometrical properties of the equivalent

structure consisting of a truss and a shear beam with a
rigid posterior offset as illustrated in Fig. 3 were
calculated using a nonlinear least squares to minimize
the sum of squared differences between the equivalent
structure stiffness and the experimental stiffness terms,
divided by the experimental stiffness terms. The non-
linear least squares was performed using the leastsq

routine in Matlab (The MathWorks, Inc., Natick, MA,
USA). The length of the truss and the beam were
assigned a value equal to the mean measured distance
between vertebral body centers (36.27mm) and the
material properties were assigned arbitrary values:
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modulus E ¼ 1000N/mm2 and Poisson’s ratio n ¼ 0:49:
The eight equivalent structure geometrical properties
were calculated for the mean stiffness matrices at each
preload.
Statistical methods were applied to determine:

1. Correlations of the diagonal terms of the stiffness
matrix with specimen dimensions (by linear regres-
sion analysis);

2. Level differences between L2-3 and L4-5 (by
repeated-measures ANOVAs);

3. Stiffness matrix terms that were significantly different
from zero (by two-sided t-tests);

4. Differences with axial compressive preload magni-
tude in the diagonal and primary off-diagonal (as
defined by Goel, 1987) stiffness terms. These effects
were analyzed using repeated-measures ANOVAs.
Significant preload effects were further analyzed with
linear and quadratic contrasts.

Additionally, preload effects on the linearity, hyster-
esis area and the loss coefficient of the load-displace-
ment relationships were examined.
3. Results

Experimental values of all the stiffness matrix terms
that were expected to be zero (based on motion segment
symmetry) were not significantly different from zero.
Additionally, the axial/A–P shear coupling term (k12 in
Fig. 2) was not significantly different from zero. This left
six diagonal and five off-diagonal independent terms for
consideration (Fig. 2). Increased axial compressive
preloads produced progressively increased stiffness
(Table 1) as found previously for porcine motion
segments (Stokes and Gardner-Morse, 2003). The mean
values of the diagonal and primary off-diagonal stiffness
terms for intact motion segments increased significantly
relative to values with no preload by an average factor
of 1.71 and 2.11 with 250 and 500N preload,
respectively (all eight tests po0:01). Preload had the
greatest effect on axial stiffness with factors of 3.88 and
5.53 with 250 and 500N compression, respectively
(Table 1). The linear trend of increasing stiffness with
preload was highly significant (po0:01). The increase in
stiffness with preload was observed to be greater for the
preload increase from 0 to 250N than for the preload
increase from 250 to 500N, but statistically the
quadratic trend was only significant for A–P shear and
primary off-diagonal stiffnesses.
There were no consistent correlations between stiff-

ness values and the linear dimensions of the specimens,
although the correlation coefficients were observed to be
predominantly negative (i.e. larger specimens were less
stiff). The average dimensions of the specimens were
36.3mm (33.0–39.8mm) between vertebral centers;
45.5mm (41.2–58.1mm) disc lateral width, 32.5mm
(30.0–34.7mm) A–P width and 8.9mm (6.4–10.3mm)
disc height.
While there were no significant difference by anato-

mical level (L2-3 compared with L4-5) with zero
preload, some terms were significantly different at 250
and 500N preload (Table 1). At 250N preload, 5 of the
11 significant terms were different between the two
anatomical levels. At 500N preload, one additional term
was different by level. These significant differences by
level ranged from 10.3% to 50.1%.
Removal of the posterior elements (facets and

ligaments) significantly decreased all of the stiffness
terms except for axial stiffness, at all levels of axial
compressive preload (Table 2). The mean stiffness of the
diagonal terms (excluding axial stiffness) was 21%, 28%
and 32% of the intact stiffness at 0, 250 and 500N
preload, respectively. The largest decrease in stiffness
with removal of the facets was in torsion—the stiffness
of the disc alone was 9%, 14% and 16% of the intact
motion segment torsional stiffness with 0, 250 and 500N
preload, respectively. For the disc-only specimens, all
eight stiffness terms increased significantly by an average
factor of 2.50 and 3.48 with 250 and 500N axial
compressive preload, respectively (po0:01). There were
no significant level differences for the diagonal and
primary off-diagonal terms in the isolated discs at any of
the preloads.
The linearity of load-displacement relationships was

characterized by R2 values in the range 0.868–0.999.
When R2 values were averaged for the eight (diagonal
and primary off-diagonal) terms in the stiffness matrix,
the mean R2 increased with axial compression in intact
motion segments (mean R2 ¼ 0:934; 0.953 and 0.958 at
0, 250 and 500N preload, respectively). The same effect
was observed in isolated discs (mean R2 ¼ 0:949; 0.981
and 0.987 at 0, 250 and 500N preload, respectively). The
increase was significant for A–P and lateral shear
relationships, and the A–P shear/flexion-extension off-
diagonal load-displacement relationship in the intact
motion segments. The increase was significant for the
flexion-extension, axial torsion and the A–P shear/
flexion-extension off-diagonal load-displacement rela-
tionships in the isolated discs.
The hysteresis appeared to be very consistent between

consecutive displacement cycles (see Fig. 4). The mean
hysteresis areas for intact motion segments increased
significantly by 1.31 and 1.67 with 250 and 500N axial
compressive preload, respectively. Further, there were
significant correlations between hysteresis area and
stiffness, as reported previously for porcine motion
segments (Gardner-Morse and Stokes, 2003). However,
when the hysteresis was expressed as loss coefficient (i.e.
divided by the maximum strain energy) the effect of
preload was not evident. The mean values of the loss
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Table 2

Diagonal and primary off-diagonal stiffness matrix terms of isolated discs, expressed as a percent of the stiffness of intact motion segments

Preload (N) k11 (%) k22 (%) k33 (%) k44 (%) k55 (%) k66 (%) k35 (%) k26 (%)

0 92.5712.0 23.076.3 22.574.3 8.672.2 30.276.8 20.876.5 20.374.6 19.575.4
250 100.675.1 30.673.7 31.573.6 13.771.8 43.379.6 20.772.8 33.274.8 25.773.7
500 104.973.9 34.573.3 35.672.9 16.471.7 49.678.9 25.774.1 38.174.0 34.175.7

Values given are the mean7SE for all eight motion segments.

Table 1

Stiffness7SE of intact motion segments with 0, 250 and 500N axial compressive preload

Level D1 D2 D3 D4 D5 D6

Axial compressive preload at 0 N (mean of L2-3 and L4-5)

F1 438792 �13707519
F2 251742 65107969
F3 332764 11,00072000 �696071100
F4 564,000789,000 �235,000738,200
F5 (Symmetric) 174,000720,500
F6 241,000733,100

Axial compressive preload at 250 N

F1 L2-3 1700767a �428071130a

L4-5

F2 L2-3 346763 834071240
L4-5 389776 10,20071790

F3 L2-3 447768a 12,10071740a �93607971a

L4-5

F4 L2-3 668,0007144,000 �250,000734,200a

L4-5 744,0007137,000
F5 L2-3 (Symmetric) 211,000717,900

L4-5 301,000729,900
F6 L2-3 266,000733,000

L4-5 467,000780,500

Axial compressive preload at 500 N

F1 L2-3 24207158a �518071940a

L4-5

F2 L2-3 397768 900071330
L4-5 473778 11,10072160

F3 L2-3 523773a 13,40071890a �10,40071760
L4-5 �11,60071250

F4 L2-3 734,0007170,000 �272,000733,500a

L4-5 832,0007129,000
F5 L2-3 (Symmetric) 236,000712,900

L4-5 377,000744,800
F6 L2-3 287,000727,000

L4-5 575,0007137,000

Units are N, mm and rad. D1 through D3 are translations and D4 through D6 are rotations in the sequence indicated in Figs. 1 and 2. Similarly, F1
through F3 are the three forces and F4 through F6 are the three torques. Stiffness values are tabulated in the format of the stiffness matrix for the

upper vertebra center relative to the fixed lower vertebra. Where values for L2-3 and L4-5 were significantly different, separate values are given.

Note: There were no level differences with 0N preload.
aNot significantly different by lumbar level and is a mean of L2-3 and L4-5.
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coefficient for the six diagonal terms for intact motion
segments (averaged over specimens and preloads) were
0.104, 0.123, 0.091, 0.125, 0.112 and 0.123.
In intact motion segments, it was observed that there

was an apparently bilinear load-displacement relation-
ship about zero displacement for flexion-extension, A–P
shear and axial displacement (Fig. 4). The average ratios
of the larger to the smaller of the stiffness values for
compression-tension, P–A shear and extension-flexion
were 2.70, 2.40 and 3.11. These directional differences
were observed at all three levels of preload, although
they became slightly smaller with increased preload.
This bilinear behavior was not evident in isolated discs
for A–P shear and flexion-extension (Fig. 4). The
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Fig. 4. A–P forces produced by A–P displacements with 0, 250 and 500N axial preload for four cycles of ‘sawtooth’ displacement for an intact

motion segment (left) and isolated disc (right). The bilinear behavior (directional differences) evident in the intact motion segments was also observed

for other displacements in the sagittal plane (axial displacement and flexion-extension). Note the repeatability over the cycles and the increase in

stiffness with preload.

Table 3

Geometrical properties of the ‘equivalent structure’ (Fig. 3) that approximate the motion segment stiffness matrices at each preload, but not broken

down by anatomical level

Compression

preload (N)

Truss axial

area, At
(mm2)

Beam axial

area, Ab,

(mm2)

Beam A–P

shear area,

As2 (mm
2)

Beam

lateral

shear area,

As3 (mm
2)

Beam torsional

constant, J

(mm4)

Beam lateral

inertia, I22

(mm4)

Beam flexion-

extension inertia,

I33 (mm
4)

Beam rigid

offset, d
(mm)

0 14.39 1.484 45.00 115.73 18141 2103.0 3663.6 33.47

250 55.97 5.785 74.59 108.99 39153 3597.2 4161.1 26.85

500 80.21 7.425 82.61 120.08 45996 4463.4 5143.9 25.29
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directional differences in stiffness for A–P shear and
flexion-extension were less in isolated discs than in intact
motion segments in 23 of 24 cases (8 motion segments at
three levels of preload).
The equivalent structure (Fig. 3) matched four

diagonal and one off-diagonal stiffness terms exactly.
The differences between the remaining stiffness terms
were between �12.4% and 25.3% at 0N preload,
between �11.8% and 22.7% at 250N preload and
between �9.5% and 15.4% at 500N preload. The
equivalent structure parameters having the greatest
differences at differing preloads were the truss area
(At) (increase of 5.6 times from 0 to 500N preload), the
axial area of the beam (Ab) (increase of 5.0 times from 0
to 500N preload), and the torsional constant (J)
(increase of 2.5 times from 0 to 500N preload)
(Table 3). The beam posterior rigid offset (d) was
relatively constant (25–34mm) at differing preloads.
The least-squares method did not reliably calculate best
fit parameters of the equivalent structure for the
individual anatomical levels (L2-3 and L4-5), hence
values in Table 3 correspond to the pooled data from
both anatomical levels.
When the stiffness matrices of the isolated disc were

examined, all three matrix terms associated with a
sagittal plane offset were not significantly different from
zero for L2-3 and only the lateral shear/torsion coupling
term for L4-5 was significantly different from zero at all
of the preloads. This was expected, since the structural
axis of the disc alone was expected to be more closely
aligned with the vertebral centers.
4. Discussion

The load-displacement behavior of human lumbar
motion segments was found to depend on the magnitude
of the axial compressive preload. Preload increased the
stiffness, linearity of the load-displacement behavior,
and hysteresis area, but not loss coefficient. These
findings indicate that motion segment stiffness, linearity
and hysteresis measured without preloads underestimate
the in vivo values in all degrees of freedom. These effects
were present in both intact motion segments and in
isolated intervertebral discs. The stiffness values and
changes with axial compressive preload found in this
study were similar to previous studies (Edwards et al.,
1987; Janevic et al., 1991; Gardner-Morse and Stokes,
2003). The increase in hysteresis with preload was
similar to that found in porcine motion segments
(Gardner-Morse and Stokes, 2003). However, this effect
of preload was not evident in the loss coefficient. Loss
coefficient is the hysteresis area normalized by the
maximum strain energy. Because of the fluid shifts that
occurred when specimens equilibrated to changes in
preload, both the water content (and volume) of the
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disc, as well as its loading state may have produced the
observed changes in mechanical behavior.
All of the motion segment stiffness matrix terms that

were expected to be zero as a result of sagittal plane
symmetry had empirical values not significantly differ-
ent from zero. Additionally, the stiffness term associated
with coupling between axial compression and A–P shear
was not significantly different from zero. The significant
terms in the experimental stiffness matrices correspond
to non-zero terms in the stiffness matrix of a beam with
a rigid posterior offset. For the stiffness terms that
differed between the two anatomical levels with 250 and
500N preloads, L4-5 was stiffer than L2-3. Since these
differences were not significant in the isolated discs,
these differences were attributed to the posterior
elements. No correlations of motion segment stiffnesses
with physical dimensions were found, as was also
reported by Berkson et al. (1979).
The equivalent structure consisting of a truss and a

shear beam with a rigid posterior offset was found to be
an accurate representation of the linearized stiffness
matrix under the tested conditions of slow and small
displacements. When the stiffness matrices of the
‘equivalent’ structures were calculated, the terms were
within 70.57SD of the measured stiffness means. This
structure provides insights into the physical behavior of
the motion segment. While many properties showed
large changes with increasing preload, it was notable
that the rigid offset d was almost constant with
increasing preload. In intact motion segments the rigid
offset d represents a posterior displacement (relative to
the vertebral center) of the effective structural axis of the
motion segment. It was not evident for disc-only
specimens, hence it was attributed to the posterior
elements. The addition of a truss allows the equivalent
structure to match the coupling between axial displace-
ment/force and flexion-extension moment/rotation ex-
actly (k16 in Fig. 2). Gardner-Morse et al. (1990) found
that a shear beam without offsets was a good match to
the thoracic flexibility matrices in Panjabi et al. (1976),
suggesting that the posterior elements have a greater
effect in lumbar than in thoracic motion segments.
All of the motion segment stiffnesses except for the

axial stiffness decreased with the removal of posterior
elements. A large decrease in torsional stiffness with the
removal of the posterior elements, and lesser decreases
in lateral bending and flexion and extension stiffness
have been reported previously, but using greater ranges
of motion than used here (Schultz et al., 1979; Stokes,
1988; Posner et al., 1982).
The observed differences in stiffness between flexion-

extension and A–P shear were compatible with the
expected stiffening effects of facet joint engagement and
these differences were not observed after facet removal.
The nonlinear behavior in compression-tension did not
change with the removal of the posterior elements, so it
was presumably due to the disc. Panjabi et al. (1976)
presented two stiffness matrices, one for positive and
one for negative displacements. This approach defines
the diagonal stiffness terms for both displacement
directions, but does not include all permutations of the
off-diagonal terms for differing displacement directions.
The main limitation of this approach to represent the

motion segment as a stiffness matrix was that it required
an assumption of linear load-displacement behavior.
The high R2 values suggest that this is a reasonable
assumption over the range of displacements tested here.
The displacement rate used in these tests was slow, to
simulate quasi-static loadings. The apparent stiffness is
expected to increase at faster displacement rates. The
low temperature (B4�C) may have increased the
measured stiffness relative to physiological values.
The linearized stiffness matrices at each preload

magnitude can be used in structural analyses of the
lumbar spine. Alternatively, these stiffness matrices can
be expressed as an equivalent structure consisting of a
truss and a beam with a rigid posterior offset, with
cross-sectional properties that vary with preload. These
equivalent structures can be employed in structural
spinal analyses, and the changes in spinal stiffness with
preload can be used to update spinal stiffness properties
as shown in Stokes and Gardner-Morse (2003).
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