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Incorporation of Spinal Flexibility Measurements Into
Finite Element Analysis

Mack G. Gardner-Morse!, Jeffrey P, Laible?, and
Ian A. F. Stokes!

This technical note demonstrates two methods of incor-
porating the experimental stiffness of spinal motion segments
into a finite element analysis of the spine. The first method is
to incorporate the experimental data directly as a stiffness
matrix. The second method approximates the experimental
data as a beam element.

General Stiffness Matrix Representation

Several investigators [1, 4-7, 9, 11, 12, 14] have experimen-
tally determined flexibility coefficients of human in-
tervertebral motion segments. Generally, the center of the up-
per vertebral body was used as the reference point for the ex-
perimental axis system, and the lower vertebra was fixed. The
experimental data form a 6 X 6 stiffness matrix for motion of
the free (moving) end of the motion segment. The matrix
relates the six degrees of freedom (three translations and three
rotations) of the free vertebra to the forces and moments act-
ing on it. These matrices make it possible to quantify the
“coupling’® within motion segments {16].

Panjabi et al. {7] published complete thoracic motion seg-
ment 6 x 6 flexibility matrices and the corresponding stiffness
matrices obtained by inversion. There was a small difference
in the flexibility matrices for the positive and negative direc-
tions of loading (flexion versus extension, etc.). The diagonal
values in these matrices were compared with those in other
published reports for both thoracic and lumbar motion
segments [1, 4, 5, 6, 11]. The flexibilities agreed within an
order of magnitude.

To incorporate these measurements into a finite element
model requires the fixed end stiffness for the two vertebral
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centers and also the relative stiffness between the two vertebral
centers. This results in a full 12x 12 stiffness matrix relating
the six degrees of freedom and the forces and moments at each
vertebral center. A 12 x 12 stiffness matrix is generated from a
6% 6 stiffness matrix by invoking equilibrium (12, 15]. In
matrix notation, the equilibrium condition gives

= T
Kl:.\'\: “L12x6K6x6L 6x 12

where L depends on the distance between the ends of the mo-
tion segments and the particular coordinate system used. Us-
ing Panjabi et al. {7] coordinate system (X-left, Y-vertical, and
Z-forwards) L is

A -1 12%6

where I is a 6x 6 identity submatrix, —Iis a 3x 3 negative
identity submatrix, and A is the following 3 X3 submatrix

0 0 -=X
A=]0 0 0
A0 0

where A is the distance between the vertebral centers.

The proper length A to use in the transformation should be
the actual distance between the centers of the vertebral bodies.
Since the published flexibility and stiffness data were obtained
with an immobilized lower vertebra, the position of the jower
“node’” is unknown. Varying the value of this distance A
changes some of the matrix elements. Using the assumption
that the relative stiffness of the motion segment should be in-
dependent of which vertebra is ‘‘free,”” a length A can be deter
mined by minimizing the differences between the apparent
stiffness of the two nodes. Two diagonal elements and four
off-diagonal elements in the 6 X 6 matrix of the opposite node
are dependent on A. The difference between these clements
and the corresponding elements of the experimentally deter-
mined 6 X 6 matrix was minimized by using least squares. For
the Panjabi et al. [7] negative load stiffness matrix, this
resulted in an effective length of 30.4 mm. This length is
similar in magnitude to the distance between centers of adja-
cent thoracic vertebrae.

In actual motion segments, the effective length may not be
constant because of the nonlinear stiffness and large
displacements effects. The length is also approximate because
of measurement errors and the experimental assumptions used
to determine the stiffness values.

The Panjabi et al. [7] negative load stiffness matrix was
selected to illustrate the calculation of a 12 x 12 matrix. With
the corresponding length A =30.4 mm, the equilibrium condi-
tion yields the following 12X 12 symmetrical stiffness matrix
(units of N, mm, and rad)
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0.011 0 0 0 0.062 0.164 | —0.011 0 0 0 -0.062 0.171
0 0.124 -0.002 -0.073 0 0 f 0 -0.124 0.002 0.134 0 0
0 -0.002 0.010 —0.156 0 0 f 0 0.002 -0.010 —0.148 0 0
0 -0.073 —0.156 18.600 0 0 ! 0 0.073  0.156 —13.85 0 0
0.062 0 0 0 14.500 0.200 | —0.062 0 0 0 —-14.50 1.687
0.164 0 0 0 0.200 19.700 | —0.164 0 0 0 -0.200 —14.71
K=IO4X —————————————————————————————————————————————————— b e e e
-0.011 0 0 0 —-0.062 -0.164 | 0.011 0 0 0 0.062 -0.171
0 -0.124 0.002 0.073 0 0 | 0 0.124 -0.002 —-0.134 0 0
0 0.002 -0.010 0.136 0 0 | 0 -0.002 0010 0.148 0 0
0 0.134 -0.148 —13.85 0 0 | 0 -0.134 0.148 18.370 0 0
—-0.062 0 0 0 —14.50 -0.200 1 0.062 0 0 0 14.500 —1.687
0.171 0 0 0 1.687 —14.71 | -0.171 0 0 0 -1.687  19.909

The absolute magnitudes in the top left 6 X 6 are the Panjabi
et al. [7] values. However, the absolute magnitudes in the
lower right 6 X 6 (corresponding to performing the experiment
upside-down) are somewhat different, despite the minimiza-
tion of these differences. The sign differences in the off-
diagonal terms in the submatrices are due to the axes conven-
tion. The values in the two submatrices would be identical if
the motion segments were symmetric. A tapered beam is an ex-
ample of a structure with different 66 submatrices. Its
deflections and rotations are different at each end for the same
magnitude of forces or moments.

In using experimental data in a finite element model, the
model is only valid under the assumptions used to obtain the
data. The motion segment stiffness is nonlinear. The reported
linear stiffnesses is either from 1) the stiffness at a point on the
curve (tangent stiffness), or 2) a line between two points on the
curve (secant stiffness), or 3) the stiffness from a relatively
linear portion of the curve. Several experimental variables can
affect the reported stiffness. Preconditioning the motion
segments [2, 7], testing with a preload (8, 11}, and inclusion of
large displacements effects [4] are examples. Assumptions
about the form of the matrix also affect the reported results.
Conservation of energy requires a symmetric matrix. The
assumption of geometric symmetry in the motion segment
about the sagittal plane results in additional zero terms in the
matrix {7].

The experimental matrices only describe the flexibility (or
stiffness) between the two vertebral bodies. The matrices do
not include the geometric and anatomical detail of motion
segments (disk, facet joints, ligaments, etc.). While the forces
acting at the vertebral centers of the motion segment can be
calculated, the forces and stresses in individual spinal com-
ponents of the motion segment are not available. Using the
forces acting on the motion segments, the corresponding
stresses are obtainable from an additional model having the
required geometric and anatomic detail.

Stokes and Laible {13] report on spinal modeling using Pan-
jabi et al. [7] experimental data as stiffness matrices in a finite
element model. The 6x6 experimental data was first
transformed into a 12 X 12 stiffness matrix. The length used in
the equilibrium transformation was determined by the lengths
in the finite eclement model. Then, the 12X 12 stiffness
matrices were rotated by a matrix transformation from the
stiffness matrix coordinate system to the global finite element
coordinate system.

Equivalent Beam Model

An alternative way to represent the motion segment is by
selecting a beam model that fits the experimental data.
Although the equivalent beam may not be able to fit exactly all
the terms in the experimental matrix, a close approximation is
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possible. A shear beam [10] can exactly match the diagonal
terms of any experimental 6 X6 stiffness matrix. The off-
diagonals associated with beam bending may also closely
approximate the corresponding experimental off-diagonals.
Advantages of this method is that the stiffness matrix is no
longer dependent on the element length (element length may
differ from experimental length) and beam elements are easily
incorporated into finite element analysis packages. The ten
nonzero elements of the 6 X 6 matrix for one free node contain
eight variables, but yield only six independent equations for a
shear beam of fixed length. The variables of a shear beam
representing experimental data can be calculated after ar-
bitrarily choosing the modulus of elasticity and Poisson’s
ratio. A shear beam approximation to Panjabi et al. [7]
negative load stiffness matrix usin§ a length of 30.4 mm, a
modulus of elasticity of 120N/mm? and a Poisson’s ratio of
0.2, yields the following area properties: area =314.6mm?,
shefly area along X-axis=70.47mm?, shear area along Z-
axis=63.92mm?, inertia about X-axis=41,309mm?, inertia
about Z-axis=43,512mm*, and torsional cons-
tant = 88,286mm?*. The 6 x 6 portion of the 12 X 12 shear beam
stiffness corresponding to the experimental matrix is shown
below (units of N, mm, and rad)

0.011 0 0 0 0 0.167
0 0.124 0 0 0 0
Kgxg=10% X 0 0 0.010 —0.152 0 0
0 0 -0.152 18.600 0 0
0 0 0 0 14500 O
0.167 0 0 0 0 19.700
While the beam element will produce displacements

corresponding to the experimental motion segment data, any
stress output is unrelated to stresses generated in a motion
segmernt.

A shear beam with offsets of the shear axis from the neutral
axis [15] is a more general model which can approximate some
of the other off-diagonal terms. The z offset is determined by
using a parallel axes transformation (15) to displace the z axis
to minimize the sum of squares of the off-diagonal terms. The
assumption of bilateral symmetry about the sagittal plane
precludes an offset along the x axis. Dimnet et al. (3] provide a
method for performing this minimization. For the Panjabi et
al. [7] negative load matrix, this resulted in an offset of
z=0.8mm. Since the shear area and inertia are related, an
iterative solution is required to obtain these properties. The
necessary area properties to approximate Panjabi et al. [7]
negative load matrix (Z,fe = 0.8mm) are the same as for the
shear beam without offsets; except, shear area along Z-
axis = 63.93mm?, inertia about X-axis =41,105mm?*, and tor-
sional constant =88,242mm*. Showing only the correspond-
ing 6 x 6 yields (units of N, mm, and rad)

Transactions of the ASME




PR

1

0.011 0 0 0 0.009 0.167
0 0.124 0 -0.100 0 0
Ky = 10% % 0 0 0.010 -0.152 0 0
0 -0.100 -0.152 18.600 0 0

0.009 0 0 0 14500 0.135

0.167 0 0 0  0.135 15.700

The matrix elements are negligibly different from those in
the simple shear beam in this case because of the small offset
(Zoiiee = 0.8mm). The small offset is probably within the ex-
perimental error for specifying the origin of axes. Other
possible beam models include a curved beam model which has
additional off-diagonal terms. Since the simpler shear beam
fits the data reasonably well and some of the off-diagonal
terms may be within experimental error [11], more general
beam models were not pursued.

The stiffness matrices and equivalent shear beams were
tested in finite element models of a spine under lateral bending
moments. There was little difference between the behavior of
the two representations. Apparently, this was because the ef-
fects of the initial geometry predominated over constitutive
effects.

These methods provide a way to simplify a model formula-
tion by using experimental data to provide the flexibility (or
stiffness) properties of a model component, in this case the
spinal motion segment.
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