# High-throughput, High-resolution HLA Genotyping

Chunlin Wang Ph.D. Stanford Genome Technology Center Stanford University

### HLA Gene Structure and Diversity



J. Mol. Biol. (2003) 331, 623-641

### **Our Strategy**



### Advantage of Our Strategy

- Sequencing more exons and introns significantly increases both allele resolution and combination resolution.
- With more high-quality refer sequences, the resolution of our method increases



#### Sample Preparation and Sequencing

#### Long Range PCR (LR-PCR)

Each locus is amplified by LR-PCR covering the major, most polymorphic coding region.

#### **Random Fragmentation**

Amplification products of each sample are pooled, ligated together, fragmentated through sonication.

#### **Multiplex Sequencing**

Sonication products of each sample are ligated with sequencing adaptor of unique barcode. Barcoded fragments of several samples are pooled and size-selected. Isolation products are sequenced at both ends with Illumina sequencing platform.

#### Data analysis pipeline



#### **Central Reads Coverage**







# Detecting intron polymorphism



#### Detect a 1-bp deletion in an intron





#### Detect 5-bp insertion in an exon



>R CAGGAGGGTCCGGAGTATTGGGACGGGGAGACACGGAAAGTGAAGGCCCACTCACAGACTCACCGAGTGGACCTGGGGACCCTGCGCGGCTACTACAACC
>A CAGGAGGGTCCGGAGTATTGGGACGGGGAGACACGGAAAGTGAAGGCCCACTCACAGACTCACCGAGTGGACCTGGGGACCCTGCGCGGCTACTACAACC

G

#### Detect 8-bp insertion in an exon



\*\*\*\*

#### Projected throughput with HiSeq2000

- Required minimum coverage = 20, average coverage = 20 x 10 = 200.
- For each sample, 8 (genes per sample) x 5000 (average gene size) x 2 (diploid) x 200 (achieving mc=20) x 3 (barcode variance) x 4 (allele variance) = 192 million bp
- HiSeq2000 produces about 200 million reads or 40000 million bp per lane.
- Our experiences suggest that 80% of reads are mappable. Therefore, the multiplexing capacity per lane 40000 million bp\* 0.8 / 192 million bp = 166 samples per lane. Or 2666 samples per instrumental run (2 flow cells totaling 16 lanes).

# 8-d turnaround with MiSeq for 20 samples



## Further development

- Sequence regulatory regions such as 5'UTR and 3'UTR
- Build high-quality reference sequence database
- Target other polymorphic genes
- Test other sequencing platforms: Ion Torrent and Pacific Bioscience.

### Acknowledgement

- Stanford Genome Technology Center
  - Ron Davis
  - Michael Mindrinos
  - Sujatha Krishnakumar
  - Julie Wilhelmy
  - Farbod Babrzaeh
  - Molly Miranda

- Dept. of Microbiology and Immunology
  - Mark Davis
- Dept. of Pathology
  - Marcelo A. Fernandez-Viña