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Abstract. Increasingly, land managers seek ways to manage forests for multiple ecosystem
services and functions, yet considerable challenges exist in comparing disparate services and
balancing trade-offs among them. We applied multi-criteria decision analysis (MCDA) and
forest simulation models to simultaneously consider three objectives: (1) storing carbon, (2)
producing timber and wood products, and (3) sustaining biodiversity. We used the Forest
Vegetation Simulator (FVS) applied to 42 northern hardwood sites to simulate forest
development over 100 years and to estimate carbon storage and timber production. We
estimated biodiversity implications with occupancy models for 51 terrestrial bird species that
were linked to FVS outputs. We simulated four alternative management prescriptions that
spanned a range of harvesting intensities and forest structure retention. We found that
silvicultural approaches emphasizing less frequent harvesting and greater structural retention
could be expected to achieve the greatest net carbon storage but also produce less timber.
More intensive prescriptions would enhance biodiversity because positive responses of early
successional species exceeded negative responses of late successional species within the heavily
forested study area. The combinations of weights assigned to objectives had a large influence
on which prescriptions were scored as optimal. Overall, we found that a diversity of
silvicultural approaches is likely to be preferable to any single approach, emphasizing the need
for landscape-scale management to provide a full range of ecosystem goods and services. Our
analytical framework that combined MCDA with forest simulation modeling was a powerful
tool in understanding trade-offs among management objectives and how they can be
simultaneously accommodated.

Key words: biodiversity; carbon sequestration and storage; forest ecosystem modeling; forest planning;
multi-criteria analysis; multi-objective forest management; northern hardwood forests (USA); timber
production.

INTRODUCTION

Growing concerns about global climate change and

loss of biodiversity have intensified efforts to manage

forests for multiple ecosystem services and functions.

One critical function of forests is that they serve as large

reservoirs of carbon within the global carbon cycle

(Houghton 2007). How forests are managed can

significantly affect whether they act as net carbon

sources or sinks (Birdsey et al. 2006), and therefore

forest management practices can play an important role

in lessening the intensity of global climate change

induced by rising atmospheric CO2 concentrations.

Additionally, forests provide a diversity of important

ecosystem goods and services, including timber. Not

only do revenues from wood products provide substan-

tial direct economic benefits, they can act as powerful

incentives to sustain forests, habitats, and undeveloped

space over the long term (Fischer et al. 2006, Ruddell et

al. 2007). Moreover, forests support a large proportion

of the world’s terrestrial species (Lindenmayer and

Franklin 2002). Forest biodiversity provides humans

with important food sources, recreational and aesthetic

opportunities, and other benefits (Ehrlich and Ehrlich

1992, Daily et al. 1997).

Forest management practices vary greatly in their

effects on carbon storage and temporal dynamics

(Nunery and Keeton 2010), timber production, and

provision of habitats for biodiversity (Lindenmayer and

Franklin 2002). Challenges arise in managing these

multiple ecosystem services because of trade-offs among

the mix of services provided by a given management

practice. A practice that maximizes one objective, such

as timber production, is unlikely to simultaneously

maximize all other ecosystem services. An additional

challenge is quantifying the value of both market and
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nonmarket goods and services provided by forests

(Farley 2008), which may be expressed in disparate

units that are not readily compared.

One approach for evaluating forest management

alternatives is multi-criteria decision analysis (MCDA;

also known as multiple criteria decision support, among

other names). MCDA is a collection of formal methods

used to select a justifiable course of action that explicitly

accounts for multiple, conflicting objectives (Belton and

Stewart 2002, Mendoza and Martins 2006). One

procedure for MCDA is to begin by specifying

management objectives and to weight the objectives

based on value judgments (Fig. 1). For instance, in the

simple case of deciding which management option to

implement at a single site, a forest manager may value

carbon storage, timber income, and biodiversity equally

(with resulting weights of 0.333 for each objective), or

may value one objective at twice the level of the others

(with resulting weights of 0.50, 0.25, and 0.25). Given a

set of standardized metrics and weights for each

objective, a management prescription is assigned to the

site and the expected effects of the chosen prescription

are quantified. The quantities for the objectives are

known as the ‘‘partial utilities’’ of a management

decision and are then summed to yield the total utility

of a management decision (Fig. 1). By repeating this

process for other potential management prescriptions,

the prescription that maximizes total utility can be

identified and applied.

MCDA also allows a structured decision analysis for

cases where different forest management prescriptions

can be applied to different stands or compartments to

maximize the total utility across compartments. In this

case, a ‘‘portfolio’’ defines the management prescription

assigned to each compartment and the total utility is the

sum of utilities across compartments. For instance, if 10

compartments are available for management, the total

utility may be maximized by assigning prescription A to

compartments 1, 2, 4, 5, 8, and 9 and prescription B to

compartments 3, 6, 7, and 10. In recent years, MCDA

has been successfully applied to complex forest man-

agement scenarios (Kangas and Kangas 2005, Diaz-

Balteiro and Romero 2008), although analyses to date

have not combined the objectives of carbon storage and

timber harvest with evaluation of an extensive set of

species to represent biodiversity.

In this paper we apply MCDA to support an overall

goal of managing forests for multiple ecological services

and functions, as represented by three management

objectives: (1) storing carbon, (2) producing wood

products, and (3) sustaining biodiversity using a set of

wildlife species (Fig. 1). We tested the analysis using a

representative forest ecosystem in the northeastern

United States for a set of specific metrics over a 100-

year time period based on the output of forest

development simulation modeling. We considered four

alternative forest management prescriptions that

spanned a range of harvesting intensities and frequen-

cies. Questions we investigated included the following:

(1) To what extent can all three objectives be simulta-
neously accommodated, and what trade-offs are neces-

sary? (2) How do different management prescriptions
compare in their capacity to support individual objec-

tives and the overall goal of multifunctional forest
ecosystems? (3) What are the implications for manage-
ment of forests across multiple sites or large areas?

METHODS

Study area, sites, and field sampling

Our study investigated northern hardwood–conifer
forests in the state of Vermont, USA, which is

predominantly forested and in which Acer saccharum
(sugar maple), Fagus grandifolia (American beech),

Tsuga canadensis (eastern hemlock), and Betula allegha-
niensis (yellow birch) form the major late-successional

species. Within the study area, we measured breeding
bird biodiversity and forest characteristics at 533
randomly located sites that were predominantly forested

(including early successional forests); see Mitchell and
Donovan (2008) for an overview of sampling proce-

dures. Elevation of sites ranged from 29 to 877 m (mean
424 m) and data were collected in 2003 or 2004. At each

site, the species identity, diameter at breast height (dbh,
1.37 m height), and live/dead status were recorded for

trees at least 2.54 cm in diameter selected in a variable
radius plot with a metric 2.3-factor prism. Bird

observations consisted of three single-observer 10-
minute point counts, separated by 2-minute intervals,

conducted at each site during the breeding season. All
bird species observed within 75 m were recorded.

Our analysis involved simulating forest development
responses to a range of possible management activities.

From the 533 sites, which included a variety of forest
types and successional stages, we chose a subset of 42

sites (Appendix A; see Plate 1) representative of mature
northern hardwood composition (basal area �25 m2/ha,

quadratic mean diameter �20 cm, and elevation ,600
m). These sites contained sufficient stocking to imple-
ment forest management at the commencement of forest

simulation, which maximized the effect of management.

Forest simulation model

We used the Forest Vegetation Simulator (FVS) to

simulate forest changes at each site over 100-year model
runs in 5-year time steps and to estimate carbon (C)

storage and timber production at each time step. FVS is
a distance-independent, individual tree-based model of

forest growth designed for even- and uneven-aged stands
with simple- to mixed-species composition (Crookston

and Dixon 2005). Although many forest vegetation
simulation models are available, each with strengths and

weaknesses (Wolfslehner and Seidl 2010), we chose FVS
for its ability to simulate forest management activities
and the availability of a model variant calibrated for

northern hardwoods (Ray et al. 2009a). We used the
Northeast Variant (NE-FVS), which uses growth and
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yield equations from NE-TWIGS (Hilt and Teck 1989)

and embedded height equations and bark ratios specific

to northeastern species. We also used regeneration data

specific to the study area (Nunery and Keeton 2010).

Regional validation studies of NE-FVS have shown

adequate predictions of forest growth in northern

hardwood forests, with modeled volume predictions

within 10–15% of actual volumes (Yaussy 2000). While

the absolute numerical predictions generated by FVS

carry uncertainty, the model as used here is appropriate

for comparing relative differences among management

prescriptions (Ray et al. 2009a, Nunery and Keeton

2010). Site-specific individual tree data (species, dbh, live

or dead) and environmental characteristics (elevation,

slope, aspect) for the 42 sites served as inputs into FVS.

We implemented four alternative silvicultural pre-

scriptions in FVS to determine their relative influence on

C storage, timber production, and bird biodiversity

within and across sites (Table 1). One prescription was a

passive ‘‘no-management’’ scenario. We modeled three

active management prescriptions (Nunery and Keeton

2010) representative of silvicultural systems used com-

monly in the Northeast, but modified to encompass a

range of harvesting intensities (harvesting frequency and

structural retention). The most intensive harvesting

practice was represented by a clearcut, with complete

removal of all trees .5 cm dbh at the outset of the

simulation and again 80 years later. A shelterwood

represented greater structural retention, with the initial

harvest implemented at year 1. Under this prescription

each partial harvest was followed by an overstory

removal cut 20 years later but with retention of 6 legacy

trees/ha. An uneven-aged prescription was represented

by an individual tree selection (ITS) system, with

harvesting directed toward diameter classes with stem

densities above target levels. The model routine included

both background regeneration inputs at 10-year time

steps and pulses of postharvest regeneration modified by

treatment to reflect canopy closure differences following

Nunery and Keeton (2010).

FVS simulations produced estimates of C storage,

timber production, and forest stand structural charac-

teristics. In situ C storage was calculated based on

aboveground biomass (live and dead) estimated using

species group-specific allometric equations from Jenkins

et al. (2003). For simulations involving timber harvest-

ing, FVS also tracked C fluxes to and among wood

products pools from production to disposal using life

cycle data from Smith et al. (2006). Carbon pools

resulting from harvest, each with their own rates of

release of C to the atmosphere or flux to another C pool,

included coarse woody debris (remaining on site), wood

products burned for energy, wood products in use, and

landfilled wood and paper. FVS does not currently

estimate soil C stocks because they are highly variable

and do not respond to management actions in a uniform

manner (Hoover and Rebain 2011). FVS does track

coarse root biomass as a ratio relative to aboveground

biomass, but because other pools including soil C and

fine roots are not modeled we did not include

FIG. 1. Components of multi-criteria decision analysis (MCDA) including objectives, endpoints to measure the relative ability
of management prescriptions to achieve the objectives, weights (W, value preferences) for objectives, and calculation of total utility
(U) of a management prescription. In this study, carbon storage and timber production were estimated directly from outputs of
100-year forest growth simulations under different management prescriptions. Forest bird occupancy was estimated using
occupancy models for 51 landbird species linked to forest growth simulations. Partial utilities were calculated by rescaling measured
endpoints between 0% and 100%.
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belowground C in our estimates. Predicted timber

production was measured as the average annual volume

of merchantable timber harvest per hectare, based on

input harvest schedules and simulated tree growth. In

addition to time-step-specific outputs, we calculated

mean C storage (megagrams per hectare) and mean

timber harvest (cubic meters per hectare) for each site

under each management prescription for the simulation

period.

Bird occurrence models

We measured the capacity of forests to support

biodiversity as the likelihood of occupancy by a set of

terrestrial forest birds. Although one taxon may not

encompass the habitat needs of all species, the bird

community collectively uses a variety of forest structures

and ages and therefore is considerably more informative

than an assessment of a single species or proxy of

biodiversity. To predict how forest management prac-

tices would affect bird populations, we modeled the

relationship between FVS forest structure outputs and

occupancy (w), the probability that a site was occupied

by a species. The species set consisted of all territorial,

terrestrial birds with relatively small home ranges and

sufficient detections (.10 sites) for modeling (common

and scientific names of the 51 species are provided in

Appendix B). We implemented single-season occupancy

models (MacKenzie et al. 2002) in MARK 5.1 (White

and Burnham 1999) using data from all 533 original

sites, which allowed assessment of bird responses to a

range of vegetation conditions. For all species, two types

of predictive covariates were used (Table 2): (1) forest

structure metrics expected to influence occurrence of

birds (e.g., Hobson and Schieck 1999, MacFaden and

Capen 2002), and (2) patch and landscape metrics that

we previously demonstrated to be important to bird

occupancy (Schwenk and Donovan 2011). The latter

covariates improved occupancy estimates by accounting

for the landscape context of the simulation sites. The

four forest structure covariates were calculated from

field measurements described previously with NED-2

software (Twery et al. 2005). Basal area of live trees was

selected as a metric of how forest stand structure affects

bird occurrence. Basal area of live conifers was selected

based on numerous studies documenting the importance

of conifer trees (or their absence) to habitat selection.

Basal area of standing dead trees primarily indicated

snag availability, recognizing the importance of dead

trees to cavity-nesting, insectivorous, and other birds,

but also indicated structural development more gener-

ally. Quadratic mean diameter (QMD) of live trees,

which is the diameter of the tree of average basal area,

was selected to integrate information about both mean

diameter and tree size distribution.

The patch and landscape covariates (Table 2) reflected

landscape condition at multiple scales. A categorical

variable indicated whether the site was mid- to late-

successional forest (1) or in early-successional stages (0).

Distance to edge indicated distance to the nearest major

land cover type, such as agricultural land. Percentage

forest and road density within 1 km reflected major

human influences on the surrounding landscape includ-

ing conversion of forests and development.

Using these occupancy covariates, we generated 16

models for each species. The model set consisted of all

possible combinations of the four forest structure

covariates (including a model with no covariates). All

models included the patch and landscape occupancy

covariates. The equation for the model containing all

occupancy covariates was as follows:

logitðwÞ ¼ b0 þ b1ðbasal area of live treesÞ
þ b2ðbasal area of live treesÞ2
þ b3ðbasal area of conifersÞ
þ b4ðbasal area of conifersÞ2
þ b5ðbasal area of dead treesÞ þ b6ðQMDÞ
þ b7ðQMDÞ2 þ b8ðmature forestÞ2
þ b9ðdistance to edgeÞ
þ b10ðpercentage forest within 1 kmÞ
þ b11ðpercentage forest within 1 kmÞ2
þ b12ðroad densityÞ:

The quadratic terms, which were always paired with

their corresponding unsquared terms, allowed assess-

TABLE 1. Silvicultural prescriptions applied to 42 northern hardwood forest sites (USA) in a 100-year simulation in the Forest
Vegetation Simulator (FVS) model.

Prescription Harvesting frequency
Structural
retention Description

Clearcut high (80 years) none clearcut: 2004, 2084;
remove slash from site;
commercial thin when stand fully stocked

Shelterwood low (.100 years) medium shelterwood: 2004, residual basal area 14 m2/ha;
removal cut in 2024 of trees �15 cm diameter,

retain 6 legacy trees/ha;
leave slash on site;
commercial thin when stand fully stocked

Individual tree selection (ITS) low (30-year entry cycle) high harvest individual trees with target q-factor of 1.3;
residual basal area 19 m2/ha;
retain 12 legacy trees/ha (average diameter 41 cm)

No management none high no active management simulated
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ment of a curvilinear relationship between the covariates

and occupancy. We included quadratic terms because we

expected that for some species occupancy might be

greatest at intermediate values of basal area, QMD, or

percentage forest in the landscape. We evaluated the

importance and effect of covariates on occupancy in a

multimodel inference framework with Akaike’s Infor-

mation Criterion (AIC; Burnham and Anderson 2002),

which uses information from all models in the set to

draw statistical inferences. For each species, relative

importance of a covariate was calculated as the sum of

AIC weights for the models containing the covariate.

We considered a covariate to receive substantial support

if its relative importance was .0.5; the sum of weights

for all models ¼ 1.

Linking bird occupancy models to FVS simulations

Combining the FVS simulation outputs with the beta

coefficient values from the occupancy models allowed us

to predict occupancy for all bird species at each

simulation time step (see also Table 2). Values of basal

area and QMD were obtained from FVS for each site at

each 5-year interval. Covariate values for percentage

forest within 1 km and road density were assumed to

remain constant at each site throughout the simulation.

Clear-cut and shelterwood harvesting (but not ITS) were

assumed to affect covariate values for mature forest and

distance to edge as follows. Harvesting changed sites

from mid-/late-successional to early-successional forest

for 20 years after harvest; i.e., the categorical variable for

mature forest was ‘‘no’’ during the first four time steps

after harvest (4, 9, 14, and 19 years), and ‘‘yes’’ during all

other time steps. This time period was based on studies

showing that some early-successional bird species utilize

harvested areas at least 15–20 years after harvesting

(Keller et al. 2003, Schlossberg and King 2009). During

time steps when mature forest was no, distance to edge

was reduced to 20 m to be representative of bird

occupancy in small early-successional patches within a

larger forest matrix. We chose this distance because

harvesting in the study region generally occurs on a small

scale and because the range of distances to edge for early

successional sites recorded in our data set was small (0–

50 m, mean 18.6 m). At all other time steps the actual

value of distance to edge obtained for each site was used.

We calculated a weighted average occupancy for each

site/prescription/time step/species combination using the

top-ranked models representing �95% AIC weight for a

given species.

As an aid in presenting and interpreting results, we

grouped species into clusters with similar patterns of

occupancy, and therefore similar associations with

predictor covariates, based on the full set of 533 study

sites. For this analysis, we used Proc Distance and Proc

Cluster (SAS Institute 2008) to generate a dendrogram

of occupancy relationships based on hierarchical ag-

glomerative clustering on the species set (predicted

occupancy of each species at each site). We then

examined the dendrogram to select a small number of

species clusters.

TABLE 2. Covariates used in modeling occupancy for 51 species of landbirds in Vermont (field data collected in 2003 and 2004).

Covariates Data source
Accompanied by
quadratic term?

Data set
range�

Data set
median

Change at sites
during forest
simulations?

Forest structure variables tested in model set

Basal area of live trees,
�2.5 cm dbh (m2/ha)

field measurement yes 0.0–59.7 25.3 yes

Basal area of live conifer
trees, �2.5 cm dbh (m2/ha)

field measurement yes 0.0–50.7 2.2 yes

Basal area of standing dead
trees, �2.5 cm dbh (m2/ha)

field measurement no 0.0–18.4 2.3 yes

Quadratic mean diameter
(QMD) of live trees,
�2.5 cm dbh (cm)

field measurement yes 0.0–67.0 19.2 yes

Mature forest (or early
successional) within 25 m

field assessment no � N/A yes: forest changed
to early successional
for 19 yr following
harvest

Patch and landscape variables appearing in all models:

Distance to edge of nearest
other land cover type (m)

NLCD (2001)§
supplemented
by aerial and field
photographs

no 0–2030 150 yes: edge distance
reduced to 20 m
when mature forest
¼ ‘‘no’’

Percentage forest within 1 km NLCD 2001 yes 5.7–100 94 no
Road density within 1 km

(km/km2)
Vermont e911 roads data no 0.0–9.7 0.6 no

Notes: Variable radius plot field measurements (tree species and diameter) were used to calculate basal areas and QMD for all
533 sites used to develop occupancy models; future values of these covariates were simulated in FVS for the 42 simulation sites.

� Range of values for 533 sites used to develop occupancy models.
� Categorical: yes, no.
§ National Land Cover Database (MRLC 2001).
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Multi-criteria decision analysis

We implemented the MCDA in three parts: (1)

estimating partial utilities of objectives when a single

prescription was assigned to all sites (single-prescription
portfolio); (2) estimating the total utility under different

weighting scenarios for single-prescription portfolios;

and (3) allowing the assigned prescription to vary among
sites (multi-prescription portfolios) to identify the

combination of prescriptions that maximized total

utility. For part 1, we computed partial utilities for

carbon (C ), timber (T ), and biodiversity (B) for each
site (i ) and time step given a management prescription

( j ). We scaled the partial utilities between 0% and 100%,

such that 0 represented the lowest possible scoring and
100 represented the maximum possible scoring for any

given objective. The partial utility for C storage, UC,i,j,

was calculated as the mean annual C stored during the
100-year simulation (at site i for prescription j ), divided

by the mean annual C for the site-prescription combi-

nation with the maximum C storage (considering all
four prescriptions). Similarly, the partial utility UT,i,j for

timber production was calculated as the mean annual

volume of merchantable wood produced during the
simulation (at site i for prescription j ) divided by the

mean annual volume produced for the site and

prescription with the maximum timber production.

We calculated the corresponding partial utility for
biodiversity for each site and prescription, UB,i,j, in

several steps. After estimating average occupancy for

each bird species during the simulated time period, we
rescaled occupancy estimates so that species with greater

estimated occupancy (more common species) did not

have a disproportionate influence on the utility function.
The rescaled occupancy estimates were summed across

the 51 species:

Bi;j ¼
X51

k¼1

wi;j;k

wmax;i; j;k

where wi,j,k was the mean occupancy for an entire

simulation (site i, prescription j, species k) and wmax,i,j,k

was the maximum of these occupancy values. The final

partial utility converted the bird occupancy scores to the

0–100% scale:

UB;i;j ¼
Bi; j

Bmax;i;j

where Bmax,i,j was the maximum bird occupancy score
among all site–prescription combinations.

In part 2 of the MCDA, we estimated total utility by

including weights for management objectives while
retaining the assumption that all sites receive the same

management prescription. Weights represented prefer-

ences or values assigned to the management objectives

(wC ¼ C weight, wT ¼ timber weight, and wB ¼
biodiversity weight) under the constraint that the

weights summed to 1. We explored a full range of

weights to examine how they affected the expected

utility for the four prescriptions. For any given scenario,

the assigned weights were multiplied by the site-specific

partial utilities described in part 1. The total utility of a

management prescription j was the following linear

additive model (averaged across the 42 sites):

Uj ¼

X42

i¼1

wC 3 UC;i; j þ wT 3 UT;i; j þ wB 3 UB;i; j

42
:

In part 3 of the MCDA, we added the ability to

differentially manage sites and identify the portfolio p

that maximized the total utility across sites. The total

utility (Up) was expressed as in the previous equation,

with the addition of a choice vector to identify which

prescription j was assigned to each site. For the four

prescriptions j1!4, values were binary (0 or 1) and only

one prescription could be chosen per site for the

duration of the simulation, resulting in the following

total utility for the entire portfolio:

Up ¼

X42

i¼1

j1
j2
j3
j4

2

664

3

775

wCUC;i; j¼1 þ wTUT;i; j¼1 þ wBUB;i; j¼1

wCUC;i; j¼2 þ wTUT;i; j¼2 þ wBUB;i; j¼2

wCUC;i; j¼3 þ wTUT;i; j¼3 þ wBUB;i; j¼3

wCUC;i; j¼4 þ wTUT;i; j¼4 þ wBUB;i; j¼4

2

664

3

775

42
:

Because the partial utilities were scaled between 0%
and 100% and weights ranged from 0 to 1, Up was also

scaled between 0% and 100%.

We considered four weighting scenarios that repre-

sented a range of preferences. In one scenario the

weights for the objectives were equal; in the other three,

one objective was weighted 0.60 and two were weighted

0.20. For a weighting scenario, the portfolio with the

maximum utility was the one where each site was

assigned the prescription that maximized the utility at

that site. We identified the portfolio with maximum

utility under each weighting scenario, and tallied the

number of prescriptions of each type that had been

assigned.

RESULTS

Starting condition of forest characteristics

and bird occupancy

At the beginning of the simulation, live basal area at

the 42 sites (Appendix A) ranged from 23.0 to 50.5 m2/

ha (mean 29.6) and QMD ranged from 20.8 to 48.0 cm

(mean 28.5 cm). Percentage of live basal area composed

of conifers ranged from 0% to 54.9%, with a mean of

7.7% or 2.6 m2/ha.

All four forest structure covariates were important to

occupancy estimates for multiple species (Table 3), with

conifer basal area being important for the most species.

A variety of linear and nonlinear associations between

covariates and occupancy were apparent. For example,

the association between conifer basal area and occu-

pancy was positive for Blackburnian Warbler (Setopha-

ga fusca), negative for Veery (Catharus fuscescens), and
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intermediate (i.e., hump-shaped) for Winter Wren

(Troglodytes hiemalis). Species associations are present-

ed in Appendix B.

Simulations of changes in forest characteristics over time

Values of FVS outputs (basal area, total live

aboveground biomass, and QMD) showed considerable

fluctuation over time and substantial differences among

prescriptions (Fig. 2). Harvesting under all three active

management prescriptions resulted in substantial de-

creases in average live, conifer, and dead basal area

compared to no management. On average, live basal

area (Fig. 2a) and aboveground live biomass (Fig. 2e)

were greatest for the no-management prescription and

least for the clear-cut prescription. For the first half of

the simulation period, live conifer basal area (Fig. 2b)

was greatest for the no-management prescription, but

subsequently became greater under the ITS and clear-

cut prescriptions as a result of model regeneration

inputs. Basal area of dead trees (Fig. 2c) was consis-

tently greatest in the no-management prescription.

Temporal patterns for QMD (Fig. 2d) were stable for

the no-management prescription due to compensatory

effects of in-growth of small trees and increases in

dominant canopy tree sizes. Harvesting decreased QMD

except in the case of the shelterwood prescription, where

the initial cut resulted in an increase in mean tree

diameter, followed by a large decrease after the

subsequent overstory removal. Clear-cut QMD was

much reduced as an average over two rotations

compared to no management, as expected for even-aged

management. ITS QMD values were intermediate due to

the removal of some canopy trees at each harvest

coupled with regeneration and stem development across

a range of tree sizes.

Simulations of carbon storage and timber production

The forest simulations resulted in a clear pattern of

increasing C storage with decreasing intensity of forest

management (Fig. 3). Mean C storage for the simulation

under the no-management prescription (147.3 Mg C/ha)

was more than triple that of the clearcut prescription

(46.3 Mg C/ha). More intensive forest management

resulted in greater storage of C in wood products, but

these quantities did not make up for concomitant large

reductions in aboveground live biomass (Figs. 2f and 3).

Under the simulations, a considerable portion of

harvested biomass did not become part of wood

products, including wood that remained on site (where

it decomposed), was discarded during processing (bark

and limbs), or was burned for energy. The decline in C

stored in wood products over time (Fig. 2f ) reflected

relatively short half-lives (,15 yr) projected for certain

products, such as wooden pallets and railroad ties. ITS

most closely approached the no-management prescrip-

tion, with mean C storage (112.6 Mg C/ha) 76.4% of the

no-management prescription, of which 12.5% (14.1 Mg

C/ha) constituted long-term storage in harvested wood

products. No management and lower intensity manage-

ment had higher recruitment rates for snags, which led

to an increase in the downed log C pool over time.

Annual timber production and volume removals were

greatest in the clearcut prescription (2.5 6 0.068 m3/ha,

mean and SE for 42 sites), with less harvested in the ITS

(2.0 6 0.084 m3/ha) and shelterwood prescriptions (1.5

6 0.075 m3/ha). The no-management prescription did

not include harvests.

Simulations of changes in bird occupancy over time

Changes in forest covariates (Fig. 2), plus accompa-

nying changes to distance to edge following harvests,

resulted in changes in predicted bird occupancy over

time within management prescriptions and differences

among management prescriptions (Fig. 4). We grouped

the species into five clusters with similar patterns of

occupancy (cluster assignments for all species are

presented in Appendix B). Species in cluster 1 (which

we termed ‘‘edge and early successional species’’), such

TABLE 3. Summary of influence of covariate values that varied during forest simulations on occupancy for 51 bird species.

Occupancy covariates

Average
relative variable

importance

No. species,
most important

variable

No. species for which
relative variable
importance . 0.5

Nature of covariate relationship,
no. species for which

relative variable importance . 0.5

þ \ � [

Basal area of live conifers 0.55 21 25 11 7 5 2
Basal area of live trees 0.42 12 18 2 4 11 1
QMD 0.39 11 14 1 10 0 3
Basal area of standing dead trees 0.40 7 12 2 10

Occupancy covariates included in all models (variable importance not calculated)

Mature forest 31� 12
Distance to edge 20 39

Notes: Key to abbreviation: þ, positive relationship or maximum occupancy at large covariate values; \, intermediate (hump-
shaped) relationship;�, negative relationship; [, U-shaped (minimum occupancy at intermediate covariate values). Only covariates
with an accompanying quadratic term could result in \ or [ relationships. Relative variable importance (range 0–1) is the sum of
the AIC weights for each model in a set that contains a given covariate; it is an indicator of the strength of overall support for the
covariate among the full model set for a species.

� Includes seven species not detected at early successional sites and for which covariate value therefore was not estimable.
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as Song Sparrow (Melospiza melodia), showed substan-

tial increases in occupancy when sites were in an early

successional state (Fig. 4a, b). They also were associated

with relatively unforested landscapes. Cluster 2 species

(‘‘species of intermediate forest landscapes’’), such as

Veery, tended to occur most frequently in landscapes

with an intermediate percentage of forest within 1 km

and were not particularly sensitive to local forest

management. Cluster 3 species (‘‘forest interior spe-

cies’’), such as Black-throated Green Warbler (Setopha-

ga virens), decreased in occurrence following intensive

harvesting and were more likely to occupy sites with

greater values of percentage forest within 1 km. Like

forest interior species, species of cluster 4 (‘‘coniferous

forest’’) were associated with highly forested landscapes,

but occupancy was greater in forests with higher conifer

basal areas. In general, Blackburnian Warbler and other

coniferous forest species did not respond as negatively to

harvesting as forest interior species. Cluster 5 species

tended to occur near edges and in early successional sites

within landscapes that otherwise were predominantly

forested, so we termed them ‘‘early successional/forest

FIG. 2. Results of 100-year simulations (2004–2104) of forest growth under four forest management prescriptions, averaged
across 42 northern hardwoods forest sites: (a) basal area of live trees, (b) basal area of live conifer trees, (c) basal area of standing
dead trees, (d) quadratic mean tree diameter (QMD), (e) total live aboveground biomass, and (f ) carbon stored in harvested wood
products (wood is not harvested in the no-management prescription).
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matrix species.’’ Chestnut-sided Warbler (Setophaga

pensylvanica) is representative of this cluster.

Considering all species collectively, the most substan-

tial changes over time occurred in the clearcut prescrip-

tion, reflecting its intensive harvest regime (Fig. 4a). For

20 years following clearcuts, occupancy predictions for

early successional species (clusters 1 and 5) increased

while they decreased for forest interior species. Increas-

ing basal area of conifers as regeneration proceeded

positively affected coniferous forest species until the

second clearcut. In the shelterwood prescription (Fig.

4b), early-successional and forest interior species exhib-

ited similar responses to harvesting as in the clearcut

prescription, except that fluctuations were more muted

and of longer duration, reflecting the less intensive

harvest regime implemented over a longer time period.

By maintaining greater stand structural complexity as

measured by vegetation covariates, the ITS prescription

(Fig. 4c) resulted in occupancy patterns similar to the

no-management prescription (Fig. 4d). For both of these

prescriptions, occupancy of early-successional species

was suppressed relative to the more intensive prescrip-

tions and was much more stable over time. Conversely,

forest interior and coniferous forest species were

associated with more mature forests and collectively

showed greater occupancy under the ITS and no-

management prescriptions.

FIG. 3. Predicted carbon stocks (mean 6 SE), including
stocks stored in harvested wood products, under different
management prescriptions applied to 42 northern hardwood
forest sites (average for 100-year simulations).

FIG. 4. Average predicted occupancy summed for all 51 forest birds species, grouped in clusters, for the four management
prescriptions: (a) clearcut with short harvest interval (clearcuts in 2004 and 2084), (b) shelterwood with long harvest interval
(partial harvest in 2004, removal cut in 2024), (c) individual tree selection, 30-year entry cycle, and (d) no management.
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Multi-criteria decision analysis

In part 1 of the MCDA, where portfolios consisted of
a single prescription assigned to all sites, the partial

utilities for an objective were clearly related to manage-

ment prescription (Fig. 5). The no-management pre-

scription utility was greatest for C storage but least for
timber production and biodiversity; the clearcut pre-

scription utility had the reverse pattern. Although the

ITS prescription utility was not the greatest for any

objective, it was consistently high for all objectives (Fig.
5).

Sites varied more in estimated annual timber produc-

tion, given the same management prescription, than they

did for C storage or biodiversity (Table 4). Timber
production was especially variable for the shelterwood

prescription, with the most productive site estimated to

yield greater than three times the volume of the least

productive site. C storage and biodiversity values varied
across sites by less than a factor of 2 when all sites

received the same prescription.

In the part 2 of the MCDA, we identified the

prescription that maximized total utility when all sites
received the same prescription and when weighting

factors were applied to the three objectives. Which

prescription maximized total utility depended on the

assigned weights (Fig. 6). If the C storage weight was �
0.3, the clearcut prescription had the greatest total

utility. The no-management prescription generally

ranked highest when the C storage weight was .0.3

and the timber weight was ,0.1 to 0.2. Selection

harvesting (ITS) had the greatest utility for the

remaining combinations of values. The no-management

and clearcut prescriptions varied strongly depending on

the assigned weights, with total relative utilities ranging

from 0 (for no management if timber weight¼ 1.0) and

0.3 (for clearcut if C weight ¼ 1.0) to 1. The ITS

prescription frequently was the second-ranked prescrip-

tion and consistently had a high total relative utility that

was 75–80% of the maximum possible utility. The

shelterwood prescription was never the highest ranked

prescription.

In the case where sites could be managed differentially

(MCDA part 3), multi-prescription portfolios achieved

higher total utilities than single-prescription portfolios

under the combinations of weights we investigated (Fig.

7). The dominant prescription when optimizing alloca-

tion was consistent with the pattern observed for single-

prescription portfolios (Figs. 6 and 7). Although multi-

portfolio prescriptions were favored, in all cases the

utility of at least one single-prescription portfolio nearly

equaled the maximum utility (Fig. 7). In fact, utility of

the all-ITS portfolio was �90% of the maximum utility

for all weights we tested. The all-clearcut portfolio also

attained 90% or more of the maximum utility whenever

the weight for C storage was �0.33. On the other hand,

the all-shelterwood portfolio utility did not exceed 90%
of maximum utility for any weighting scenario, and

none of the maximum utility portfolios included shelter-

wood prescriptions. When weights for C storage were

large, the utility of the portfolio exclusively consisting of

FIG. 5. Expected utilities for carbon storage, timber production, and bird occupancy based on averages for 100-year
simulations when all 42 sites received the same prescription. Prescription utilities are scaled relative to each other such that the
prescription with the maximum utility for an endpoint is assigned 100% utility. ITS is individual tree selection. Biodiversity utilities
presume small-scale forest treatments within predominantly forested landscapes.
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no management nearly equaled the maximum possible

utility.

DISCUSSION

Our findings offer new insights for sustainable forest

management, demonstrating the utility of analytical

approaches that combine forest simulation modeling

with MCDA. These approaches have great potential for

evaluating trade-offs among multiple management

objectives. The framework we present can be readily

modified to incorporate (1) alternative models or (2)

additional modules to consider factors such as natural

disturbance and climate change. Previous researchers

have noted the usefulness of MCDA (Kangas and

Kangas 2005, Wolfslehner and Seidl 2010), but ours is

the first to integrate carbon and timber objectives with

biodiversity objectives represented by a large set of bird

species. An emerging theme from our study was that

variation in the effects of management prescriptions, site

characteristics, and weights placed on management

objectives meant that no single management approach

had the greatest utility in all circumstances. Therefore, a

diversity of silvicultural approaches is likely to be

preferable and simultaneously accommodating all three

objectives requires compromises among them. Providing

a full range of ecosystem goods and services requires

holistic, landscape-scale management in which a diver-

sity of silvicultural and conservation approaches are

applied in tandem (Lindenmayer and Franklin 2002,

Keeton 2007).

With the recent expansion of both voluntary and

compliance carbon market systems, demand is increas-

ing for forest carbon management approaches that can

be integrated with other objectives, including timber,

non-timber forest products, wildlife, water, aesthetics,

and recreation (Jackson et al. 2005, Ray et al. 2009b).

Our analysis framework demonstrated an intuitively

understandable approach to integrating these objectives.

Our findings are consistent with a number of recent

studies showing that either no management or silvicul-

tural approaches emphasizing less frequent harvesting

and greater structural retention result in the greatest net

carbon storage (Harmon and Marks 2002, Seidl et al.

2007, Swanson 2009, Nunery and Keeton 2010). Our

simulations indicated that considerable carbon can be

stored in wood products, but because of losses of wood

FIG. 6. Management prescriptions with the
highest relative utilities given all possible combi-
nations of values (weights) assigned to the
objectives of carbon storage, timber production,
and biodiversity. For example, the illustrated
point occurs at a carbon storage weight of 0.1, a
timber production weight of 0.4, and a biodiver-
sity weight of 0.5. Given this combination of
weights, the clearcut management prescription
has the highest total utility.

TABLE 4. Comparison of site variability among 42 sites for C storage, timber production, and bird occurrence (annual averages for
100-year simulation, summarized for cases when all sites received the same prescription).

Prescription

C storage (Mg/ha) Timber production (m3/ha)
Probability of occupancy

(sum of 51 species)

Mean SD CV� Mean SD CV� Mean SD CV�

Clearcut 46 6 12 2.5 0.44 18 13.7 0.78 6
Shelterwood 86 11 12 1.4 0.47 33 12.4 0.72 6
ITS 113 9 8 2.0 0.55 28 12.1 1.02 8
No management 147 16 11 0� 11.7 0.93 8

� Coefficient of variation ([standard deviation/mean] 3 100; %).
� The no-management prescription did not entail timber harvests.
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during production processes, the relatively short (e.g., 1–

50 years) life cycle of many wood products (Smith et al.

2006), and decay following eventual disposal, the wood

products pool (under intensive wood management) is

insufficient to compensate for carbon storage in less

intensively managed forests. Our findings also indicated

that the less timber harvested, the greater the total (in

situ þ wood products) amount of carbon likely to be

stored over the long term as an annual average. But the

results also clearly showed that there are intermediate

approaches, particularly when silvicultural prescriptions

are coordinated across multiple sites, that could be

employed to yield a mix of carbon storage and timber

production. Most likely applied forest carbon manage-

ment will involve some combination of more and less

intensive silvicultural approaches depending on the

economic incentives offered by carbon markets and the

overall management objectives of a given landowner

(Ryan et al. 2010, Keeton et al. 2011).

We should point out that our conclusions on carbon

implications depend upon the approaches and assump-

tions we used, including timing of harvests and fate of

wood products. Two considerations with potential to

modify our conclusions are soil carbon and substitution

of wood for more fossil-fuel-intensive alternatives

(termed ‘‘substitution effects’’). Soil carbon represents

a significant C pool in forests, but responses of soil C to

management are highly variable and uncertain, and

consequently are not tracked by FVS (Hoover and

Rebain 2011). Some studies have found that intensive

management can result in large losses of soil C, whereas

others have reported much more modest effects; the

intensity of soil scarification, the methods of harvesting

and site preparation, and soil type are important in

determining soil C fluxes (Yanai et al. 2003, Jandl et al.

2007, Nave et al. 2010). If our analyses had assumed that

harvesting induced substantial losses of soil C, then the

differences in C storage among the management

prescriptions we examined would have been even more

pronounced. By contrast, consideration of substitution

effects might have had the opposite effect. Some studies

that have incorporated assumptions about the offset of

emissions achieved by replacing more energy-intensive

building materials with wood have concluded that

intensified harvesting can reduce net emissions (Perez-

Garcia et al. 2005, Eriksson et al. 2007). Given the host

of factors necessary for a comprehensive life cycle

analysis, such as carbon emissions in harvesting and

FIG. 7. Utilities for portfolios given four combinations of weights (a, b, c, d) for the objectives of carbon storage, timber
production, and biodiversity. In each panel, the bar to the left of the vertical dashed line represents the portfolio that maximizes
total utility (total utility¼ 100%), allowing for sites to be assigned different management prescriptions (segment heights represent
the number of sites assigned to each prescription; ITS, individual tree selection). The four bars on the right of each panel represent
portfolios consisting of all sites assigned the same management prescription, with bar heights equal to total utility as a percentage of
the maximum total utility.
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transporting wood and cradle-to-grave carbon implica-

tions of alternatives, we did not attempt to incorporate

substitution effects into our analysis. Both soil carbon

and substitution effects can be readily incorporated into

MCDA, however, if adequate data are available.

Our study is one of the first to link projection of future

forest condition to empirically derived models of wildlife

occurrence in the context of multifunctional forest

management. It therefore establishes a useful framework

for future analyses applicable where diversity of species

and natural communities are to be considered, as is

required for the U.S. National Forest System. Most

prior multi-objective studies, including the few studies

that have simultaneously considered carbon storage,

timber production, and biodiversity (e.g., Seely et al.

2004, Fürstenau et al. 2007, Briceño-Elizondo et al.

2008), have represented biodiversity by a few species or

by indirect proxies of biodiversity (such as density of

deadwood). By assessing the probability of occupancy

for multiple species simultaneously, our framework

presents an alternative to analytical approaches heavily

dependent on indicator species for assessing biodiversity.

We found that bird species responded most strongly

to the more intensive harvesting practices (clearcut,

shelterwood prescriptions). Given the heavily forested

landscape in which sites were located and the small

patch size of harvests, the predicted positive response of

species following intensive harvesting tended to be of a

greater magnitude than the negative response of species

most common under late successional conditions. The

net result was that more intensive prescriptions received

larger biodiversity utility values. Results would differ for

large clearcuts or fragmented landscapes. The patterns

of predicted bird occurrence we observed were generally

consistent with studies that have examined how birds

respond to silvicultural practices in the northeastern

United States (Thompson and Capen 1988, Germaine et

al. 1997, Hagan et al. 1997, Costello et al. 2000, Keller et

al. 2003, Goodale et al. 2009). Dense stands of seedlings

and saplings with low basal area and QMD, which are

characteristic of initial years following harvests in an

even-aged system, provide high quality habitat for birds

that forage on the ground and in low foliage (Keller et

al. 2003). Examples of such species from our study are

Common Yellowthroat (Geothlypis trichas; cluster 1)

and White-throated Sparrow (Zonotrichia albicollis;

cluster 5). More mature or less intensively managed

stands, which have greater basal area and QMD than

recently harvested even-aged systems, offer new niches

and greater vertical complexity for species that use

upper canopy foliage, bark, and cavities, but provide

fewer resources for species of low foliage (Keller et al.

2003). Red-eyed Vireo (Vireo olivaceus; cluster 3) and

Brown Creeper (Certhia americana; cluster 4) are

examples of species from our study characteristic of

more mature and complex forests. Species less sensitive

to management appeared to use a wide range of forest

types or occur more frequently in forests of intermediate

PLATE 1. Example of one of 42 northern hardwood forest sites used in simulation of forest management and comparison of
predicted future ecosystem services. A white measuring tape used in field sampling is visible in the lower central portion of the
image. Photo credit: Charley Eiseman.
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age and structure, such as Black-capped Chickadee

(Poecile atricapillus; cluster 2).

Because the rank order of partial utilities for the four

silvicultural prescriptions differed for the three manage-

ment objectives, the weights assigned to the objectives

strongly influenced which prescriptions and portfolios

were scored as optimal. Of the three objectives, timber

production exhibited the greatest differences among

prescription partial utilities (especially given the lack of

harvesting under the no-management prescription). By

contrast, prescriptions were most similar in their partial

utilities for the biodiversity objective. The similarities were

not due to a lack of effect of silvicultural prescriptions on

individual species, but rather because reductions in

occurrence in some species tended to be counterbalanced

by increases in other species. A relatively equal assignment

of weights among objectives allowed a diversity of

prescription allocations to approach the optimal solution,

whereas heavy weighting on a particular objective tended

to favor prescriptions on extreme ends of the harvesting

intensity spectrum. Similar patterns have been reported in

other multi-objective studies. For example, Fürstenau et

al. (2007) found that when stakeholders strongly favor a

particular objective (as in the case of forest owners

preferring timber income), the optimal management

strategy represents one extreme end of the intensity

spectrum (intensively managed pine stands).

In addition to identifying optimal management

solutions, another application of the MCDA methodol-

ogy is in better understanding trade-offs among both

objectives and prescriptions. This application is valuable

because many landowners own and manage their forests

for multiple objectives (Butler et al. 2007). Users can

systematically alter weights for objectives, and observe

the gains and losses in utility for each objective. For

example, an extreme weighting on carbon storage results

in assignment of all sites to no management and hence a

complete absence of timber production (given our

simulation assumptions). A less extreme weighting on

carbon storage results in a mixed portfolio of ITS and

no-management sites, which has both high carbon

storage and some timber production. Similarly, an

extreme weighting on timber production results in

intensive management and limited carbon storage,

whereas a more moderate weighting results in greater

carbon storage with little loss in timber production.

Thus, we found that relatively equitable assignment of

weights prevents extreme trade-offs among objectives

and allows moderate to high utility to be realized for each

objective.

While the MCDA methodology we present is flexible

enough to apply in many contexts, we should point out

several considerations in interpreting and applying the

results of this analysis both within and beyond the study

region. First, for several reasons managers may wish to

place a greater value on late-successional, more struc-

turally complex forests than reflected in this analysis.

Such forests may provide services including watershed

protection, riparian function, soil retention, genetic

resources, and aesthetic experiences that we did not

consider (de Groot et al. 2002, Keeton et al. 2007). They

may also harbor species of conservation concern not

found in simpler or younger forests (Fischer et al. 2006).

Such considerations can readily be addressed within the

MCDA framework. Second, landscape context matters

(Fischer et al. 2006, Kupfer et al. 2006). Our focal study

sites were located in a mostly unfragmented forested

landscape, which has important implications for the

biodiversity results. In such landscapes, our findings that

moderate levels of harvesting may have beneficial effects

on biodiversity appear reasonable because adverse

effects to forest interior species are not expected to be

large (Rodewald and Yahner 2001, Thompson et al.

2002). They also are consistent with arguments that early

successional species are of high conservation concern in

eastern North America and can benefit from regenera-

tion induced by silvicultural practices (Hunter et al.

2001, DeGraaf and Yamasaki 2003). However, our

findings are unlikely to translate well to landscapes

where forests are already substantially fragmented. In

such landscapes, populations of late successional species

may be under stress due to lack of habitat and increased

risks from edge predators and nest parasites (Donovan et

al. 1995, Fischer and Lindenmayer 2007). A final

consideration involves uncertainty, which is inherent in

multi-criteria analyses involving models of future condi-

tions (Wolfslehner and Seidl 2010). The uncertainty most

readily addressed is the current and future preferences of

forest management stakeholders, because our analyses

presented results involving a spectrum of weights for

objectives. More difficult to quantify are uncertainties

related to the FVS model and bird occurrence models.

Recognizing that we did not undertake a formal model

uncertainty analysis, we caution readers not to assume

that small differences between portfolios of silvicultural

prescriptions are conclusive evidence of superiority of

one portfolio or prescription over another.

ACKNOWLEDGMENTS

We thank N. Charney, T. Collingwood, R. DeMots, C.
Eiseman, A. Gregor, S Harris, K. Manaras, J. Panek, S.
Wilson, and T. Yuta for conducting field surveys. We also
appreciate assistance from C. Bettigole, E. Buford, R. Long, B.
Mitchell, and J. O’Neil-Dunne and the many landowners who
granted access to their property. D. Capen, D. King, and two
anonymous reviewers offered helpful comments on the manu-
script. Funding was provided by the USDA Northeastern
States Research Cooperative, the McIntire-Stennis Cooperative
Forestry Program, and the USGS Vermont Cooperative Fish
and Wildlife Research Unit. Use of trade-names in this article
does not imply endorsement by the federal government. The
Vermont Cooperative Fish and Wildlife Research Unit is
jointly supported by the U.S. Geological Survey, the University
of Vermont, the Vermont Department of Fish and Wildlife, and
the Wildlife Management Institute.

LITERATURE CITED

Belton, V., and T. S. Stewart. 2002. Multiple criteria decision
analysis: an integrated approach. Kluwer Academic, Nor-
well, Massachusetts, USA.

July 2012 1625FOREST CARBON, TIMBER, AND BIODIVERSITY



Birdsey, R., K. Pregitzer, and A. Lucier. 2006. Forest carbon
management in the United States: 1600–2100. Journal of
Environmental Quality 35:1461–1469.
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SUPPLEMENTAL MATERIAL

Appendix A

Characteristics of 42 northern hardwood forest sites used in simulation modeling (Ecological Archives A022-085-A1).

Appendix B

Bird species and model results for species used in occupancy estimation (Ecological Archives A022-085-A2).
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