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Data-Driven Cluster Reinforcement and Visualization in
Sparsely-Matched Self-Organizing Maps

Narine Manukyan, Margaret J. Eppstein, and Donna M. Rizzo

Abstract— A self-organizing map (SOM) is a self-organized
projection of high-dimensional data onto a typically
2-dimensional (2-D) feature map, wherein vector similarity is
implicitly translated into topological closeness in the 2-D projec-
tion. However, when there are more neurons than input patterns,
it can be challenging to interpret the results, due to diffuse cluster
boundaries and limitations of current methods for displaying
interneuron distances. In this brief, we introduce a new cluster
reinforcement (CR) phase for sparsely-matched SOMs. The CR
phase amplifies within-cluster similarity in an unsupervised, data-
driven manner. Discontinuities in the resulting map correspond
to between-cluster distances and are stored in a boundary (B)
matrix. We describe a new hierarchical visualization of cluster
boundaries displayed directly on feature maps, which requires no
further clustering beyond what was implicitly accomplished dur-
ing self-organization in SOM training. We use a synthetic bench-
mark problem and previously published microbial community
profile data to demonstrate the benefits of the proposed methods.

Index Terms— Boundary matrix (B-matrix), cluster
reinforcement, cluster visualization, self-organizing map
(SOM), unified distance matrix (U-matrix).

I. INTRODUCTION

Finding patterns in vast multidimensional data sets can
be difficult and time-consuming, especially when there are
nonlinear relationships between multiple dimensions in the
data. The biologically inspired self-organizing map (SOM)
algorithm proposed by Kohonen [1], [2] can be used to
organize high-dimensional data and enable users to identify
both linear and nonlinear relationships between vectors in the
data. Briefly, an SOM comprises a grid of so-called “neurons”
(weight vectors). Input pattern vectors are compared to these
neurons one at a time in random order; for each input vector,
the closest neuron is identified (commonly called the “best
matching unit,” or BMU). Neuron values are then updated
(trained) to be more similar to each input pattern, in such a
way that updates are larger for neurons topologically closer to
the BMU. This process is repeated for a number of iterations
and the size of the “neighborhood” around the winning neuron
shrinks with successive iterations. In this way, the neuron
weights self-organize (phase I) and then converge (phase II),
so that topologically close neurons have more similar weights
than more distant neurons. Since its introduction twenty years
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ago, the SOM algorithm has proven useful in a variety of appli-
cation domains. However, extracting meaningful information
about relationships between input patterns from trained SOMs
can be challenging.

In densely-matched SOMs (i.e., where most neurons are the
BMUs of multiple input patterns), hierarchical agglomerative
clustering algorithms can exploit the information embedded
in the topological organization of the BMUs during cluster-
ing of the input data (e.g., [3], [4]). However, using more
neurons than inputs can be desirable in some applications
because this preserves more subtle information about rela-
tionships between the individual input patterns (e.g., [5],
[6]). In sparsely-matched SOMs, unique BMUs are trained to
closely match individual input patterns, while the intervening
nonmatched neurons are trained to interpolate between the
topologically nearest BMUs. The resulting diffuse bound-
aries between BMUs complicate the determination of clus-
tering patterns that are implicitly embedded in the SOM
topology.

Interneuron distances have traditionally been used for SOM
visualization (e.g., [7]–[9]). For example, the “unified distance
matrix” (U -matrix) [10], [11] is often used to visualize the
SOM output (e.g., [5], [6], [12], [13]). However, U -matrix
visualization can be insufficient for identifying clusters in
sparsely-matched SOMs that have diffuse cluster boundaries.

We propose: 1) a new cluster reinforcement (CR) phase, to
be applied after the self-organization and convergence phases
of the SOM, that advances cluster separation in sparsely-
matched SOMs by strengthening cluster boundaries in a data-
driven manner and 2) a new boundary (B) matrix visualization
technique for displaying the resulting sharpened boundaries
directly onto feature maps. Together, these two advances
permit hierarchical visualization of the self-organized clusters
already trained into the SOM topology, without performing
any additional clustering per se.

This brief is organized as follows. In Section II, we describe
the proposed CR phase. In Section III, we explain how
to visualize the reinforced inter-cluster distances using the
proposed B-matrix. In Section IV, we demonstrate the new
approaches on the classic animal benchmark problem [14],
and show why agglomerative image segmentation [15] is not
sufficient. Finally, in Section V, we use previously published
microbial community profile data [5], [16] to demonstrate how
the proposed methods facilitate automatic identification and
visualization of clusters in real-world high-dimensional data
with complex relationships.

II. CR PHASE

After the self-organization and convergence phases of train-
ing a sparsely-matched SOM, the resulting map forms a
relatively smooth multidimensional interpolation between sep-
arated BMUs. This gradual change in neuron values across
the map can make it difficult to clearly visualize cluster
boundaries and to accurately characterize inter-cluster dis-
tances. Thus, we propose an additional CR phase. This
cluster sharpening proceeds in an unsupervised data-driven
manner, without prior knowledge of the domain or of the

Algorithm 1 Pseudo-code for the CR phase, to be run as
a post-processing phase after the SOM

FU NCT I O N C = C R(X , W, σ0, tmax, [p])
Input: X , W , σ0, tmax, [p]
Output: C
C = W ;1

σ = σ0;2

for t = 1 to tmax do3

for j = 0 to N − 1 do4

c j = 0;5

for i = 0 to L − 1 do6

for j = 0 to N − 1 do7

h = ex p − Xi −C j
2

2σ 2 σ ;8

C j = C j + h(Xi − C j ). × [p];9

for j = 0 to N − 1 do10

C j = C j + C j ;11

σ = σ0 ex p − t
tmax

;12

number of clusters to be identified. Unlike the first two
SOM phases, in which iterative asynchronous updates are
performed within topological neighborhoods surrounding each
BMU in the grid, the CR phase iteratively performs syn-
chronous updates within neighborhoods determined by dis-
tances between input vectors and all neurons in the map.
The CR phase reduces within-cluster differences by updating
all neurons to more closely match the input vectors they
are already most similar to, and thus sharpens boundaries
between clusters. Discontinuities in the resulting map can then
be interpreted as between-cluster distances, facilitating subse-
quent identification and visualization of boundaries between
existing self-organized clusters, without necessarily doing any
clustering per se.

Pseudo-code for the CR phase is shown in Algorithm 1,
where the inputs are X (the list of L input vectors that are indi-
vidually denoted as Xi , each with M features), W (the SOM
weight map previously trained on X , comprising N neurons
each of length M), σ0 (a user-defined control parameter), and,
optionally, p (a vector of M importance weights corresponding
to the different features in each input vector). The output map
C is initialized from the trained SOM input map W and then
trained for a prespecified number of timesteps tmax. For each
training iteration (lines 3–12), we loop through all L input
vectors (line 6) and all N neurons (line 7), calculate the neigh-
borhood update weight h for the neuron (line 8), and calculate
and accumulate neuron vector updates in �C j (line 9). (The
use of optional feature importance weights p in line 9 of the
CR update parallels the weighted SOM update described in
[5]; the operator “.×” indicates element-by-element multipli-
cation.) After the update vectors for all N neurons and all L
input patterns have been accumulated, we apply these updates
synchronously (lines 10–11). The use of synchronous updates
ensures consistent performance and makes randomization of
the applied input patterns unnecessary.
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A distinguishing feature of CR updates, relative to SOM
updates, is that the strength of neuron membership in a CR
update neighborhood (h, line 8) is based on the Euclid-
ean distance between the values of the input vector and
the neuron (||Xi − C j ||), in contrast to the standard SOM
neighborhood membership, which is based on the topological
distance in the grid between the neuron and the BMU of
the input vector. Because the input to the CR phase is the
SOM-trained map, there is no need for further topologi-
cal organization. Rather, the CR phase updates neurons to
be more similar to input vectors they are already similar
to, with individual features updated by different amounts
based on the feature-specific differences between the input
vector and the neuron’s weight vector (Xi − C j ) (line 9).
The result is that the map is altered away from one that
smoothly interpolates between BMUs into one with step-
wise discontinuities between the self-organized clusters of
BMUs.

In the standard SOM, separate decreasing control parame-
ters are required for the neighborhood size and the learning
rate. However, in the CR phase, the exponentially decreasing
parameter σ (line 12) performs double duty as the standard
deviation of the Gaussian neighborhood kernel (i.e., determin-
ing the width of the Gaussian function) and as the learning rate
(i.e., determining the height of the Gaussian function, which
scales the maximum size of the update), since both of these
are based on the same measure of distances between vector
values. Thus, the only user-specified control parameter for the
CR phase is σ0. In general, we have found that tmax = 150
gives robust results (although for relatively higher σ0 this many
iterations may not be required). If the goal is to sharpen the
boundaries between existing adjacent self-organized clusters,
without performing any additional clustering, one should use
as low a value of σ0 as possible to achieve sharp boundaries.
A good heuristic is to initialize σ0 to one tenth of the
maximum Euclidean distance between neurons in W ; if cluster
boundaries remain too diffuse [e.g., as visualized later in
Fig. 4(c)], one can slowly increase the value of σ0 until
the boundaries sharpen [e.g., as visualized later in Fig. 4(f)].
Alternatively, one can tune σ0 to higher values to perform
agglomerative clustering. It is possible this may prove to
be an effective means of clustering SOMs, even if densely-
matched, although this has yet to be explored and is not the
approach we are advocating in this brief. The time complexity
of each iteration of the CR phase is O(L M N), the same as
for the SOM; however, fewer iterations are required for the
CR phase.

III. CLUSTER BOUNDARY VISUALIZATION

The magnitudes of interneuron discontinuities in the cluster-
reinforced map C can be interpreted as degrees-of-separation
between adjacent clusters of similar BMUs in the SOM.
In the following, we assume the topology of the N neurons
in C is arranged in a square (n × n, where n = √

(N)) grid
(the approach is easily generalized to rectangular or hexagonal
grids). We then compute distances between adjacent neurons

Fig. 1. Correspondence between the elements of B (squares) and W (black
dots).

and store them in a B-matrix of size 2n × 2n, as follows:

Bi, j (W ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

NaN even(i), even( j)

Dist
(
Wk,l , Wv,l

)
odd(i), even( j)

Dist
(
Wk,l , Wk,q

)
even(i), odd( j)

mean

(
Dist

(
Wk,l , Wv,q

)

Dist
(
Wv,l, Wk,q

)
)

odd(i), odd( j)

(1)

where

k = floor(i/2) and l = floor( j/2)

v = mod(k + 1, n) and q = mod(l + 1, n)

even(i) =
{

True, if i is an even number
False, otherwise

odd(i) = ¬even(i).

Equation (1) assumes that matrix indexing runs from 0 to
2n − 1, floor(x) rounds down to the nearest integer, and
mod (x, y) is x modulo y. B is defined here to be toroidal,
although it can be easily modified to a 2n − 1 × 2n − 1
nontoroidal matrix, if desired. Any vector distance metric Dist
may be used; we employ Euclidean distances.

The elements of the B-matrix with two even indices (Fig. 1,
shaded squares) correspond to the n ×n neurons in W (Fig. 1,
black dots) and remain unused, indicated in (1) by not a
number (NaN). The remaining elements of B (Fig. 1, open
squares), referred to as B-values, contain distances between
adjacent elements of W : those shown on horizontal lines
contain the distances between horizontally adjacent elements
of W ; those on vertical lines contain the distances between
vertically adjacent elements of W ; those shown on crossing
diagonal lines contain the mean of the distances between
diagonally adjacent elements of W .

It is important to note the similarities and differences
between the 2n×2n B-matrix and the n×n U -matrix. Neither
B nor U are clustering methods per se; they simply record
interneuron distances. Each element of U is calculated as the
average distance from the corresponding neuron in W to its
eight topologically nearest neighbors in a rectangular SOM
grid [10]. This averaging can sometimes obscure individual
interneuron distances and make cluster boundaries difficult to
identify. Exactly the same number of interneuron distances
must be computed for the B-matrix as for the U -matrix.
However, because the B-matrix is larger, more of these are
stored separately, and thus the B-matrix retains more informa-
tion about interneuron distances than the U -matrix of averaged
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distances. We note that some SOM visualization packages
already permit the display of nonaveraged interneuron dis-
tances (e.g., [17]), but without prior cluster sharpening these
can be of limited usefulness in determining cluster boundaries
in sparsely-matched SOMs. To our knowledge, such distances
have not been displayed using grid lines of varying thicknesses
on component planes, as we suggest below.

It is difficult to simultaneously visualize the U -matrix and
a component plane of W on the same graph, since these
matrices are the same size. Although one can overlay a contour
plot of the U -matrix on a heat map of a component plane,
it can be difficult to identify cluster boundaries from such
a contour plot [as illustrated later in Fig. 4(d)]. In contrast,
because the B-matrix is 2n × 2n and the N = n2 elements
of B that directly correspond to the neurons of W remained
unused, one can overlay a heat map of a component plane
of W with a simultaneous display of the B-values shown as
grid lines drawn between the neuron component values of W .
By optionally limiting the display of grid lines for B-values
above a tunable user-specified minimum value θ , and making
the widths of the displayed grid lines proportional to the
B-values, one can hierarchically visualize the different levels
of clustering already embedded in the SOM, without actually
performing any clustering. This is in contrast to agglomerative
clustering methods, including image segmentation algorithms,
that require computationally intensive merging of adjacent
neurons for user-specified levels of clustering. The visualiza-
tion techniques discussed in this section are illustrated and
compared in the following sections.

IV. BENCHMARK APPLICATION: ANIMAL DATA SET

In this section, we demonstrate the CR phase and B-matrix
visualization on the classic SOM benchmark problem in which
16 species of animals self-organize based on the similarity of
13 binary features [14]. After SOM training using a 20 × 20
nontoroidal rectangular grid, sparsely-matched neuron values
for each component plane form a continuous surface that
smoothly interpolate between the BMUs, as illustrated in
Fig. 2(a) for the component plane “has feathers.” After the
CR phase, using σ0 = 0.15 (about one fifth of the maximum
Euclidean distance in W of 0.75), the boundary between
birds (high plateau) and mammals (low plateau) forms a
sharp discontinuity Fig. 2(b). We have elected to display an
SOM for the animal benchmark that was trained without first
normalizing the input vectors, to make the component planes
easier to interpret. However, the results were not qualitatively
different when we normalized first.

In Fig. 3(a), the thicknesses of the grid lines are proportional
to B-values representing interneuron distances in the cluster-
reinforced C map (showing only those distances above θ =
1.75), superimposed on top of a heat map for the same
“has feathers” component plane in the trained SOM, with
the locations of the animal BMUs indicated. The thickest
grid lines in Fig. 3(a) separate the two large natural clusters
comprising the birds and the mammals (with a mean Silhouette
value s [18] of 0.44 for these two clusters). The thinner
grid line in Fig. 3(a) indicates there is a slightly less well-
defined third subcluster of mammals comprising the ungulates

(a) (b)

Fig. 2. Results on animal data. (a) “Has feathers” component plane after
SOM training. (b) Same component plane after the CR phase. BMUs for birds
are located in the region of the high plateau, whereas those for mammals are
located in the low plateau.

horse
zebra lion wolf 

cow  tiger dog  

fox  
eagle

hen  

dove cat  
hawk 
owl  

goose duck 

(a) (b)

horse
zebra lion wolf 

cow  tiger dog  

fox 
eagle

hen  

dove 
cat  

hawk 
owl  

goose duck 

Fig. 3. Results on animal data. (a) Thicknesses of the grid lines correspond to
B-values of interneuron distances in the C matrix (θ = 1.75), superimposed
on the “has feathers” component plane of W for the animals benchmark.
(b) Grid lines indicate the boundaries of a three-cluster image segmentation,
using statistical region merging [15].

(mean(s) = 0.43 for these three clusters). For comparison,
we show the results of applying a state-of-the-art image
segmentation algorithm, statistical region merging [15], that
uses a user-defined control parameter to specify the level of
clustering. A three-cluster segmentation (Fig. 3(b), mean(s) =
0.27) shows that the mammals have been classified into two
disjoint clusters, and the duck has been erroneously grouped
with one of the mammal groups (sduck = −0.46). With a two-
cluster segmentation the rightmost cluster boundary shown in
Fig. 3(b) is eliminated, thus lumping the birds with half of the
mammals (resulting in four negative Silhouette values).

The reason that image segmentation does not reliably work
to cluster BMUs in sparsely-matched trained SOMs is because
these approaches assume (correctly, for actual images) that the
image is the data, and clustering is performed by repeatedly
averaging similar (at most 3-D) values of adjacent pixels of the
image. However, a trained SOM is different from an image in
that neurons typically have many more than three dimensions,
and different neurons encode different amounts of information
from the actual input data X . The higher the dimensions (M) in
the input neurons, the more information that is likely to be lost
when values of adjacent neurons are averaged, because dis-
similar dimensions are averaged to the same degree as similar
dimensions. And since the actual input data X are not utilized
during the image segmentation process, the information in the
map becomes further and further removed from the input data
values as segmentation proceeds. In contrast, the CR phase
updates all neurons to become closer to the actual input data
X and updates each dimension by different amounts, depend-
ing on their similarity to the input data. Consequently, the
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information encoded in C becomes closer and closer to the
input data as the CR phase proceeds. After the CR phase has
converted the continuously interpolated W map into the piece-
wise discontinuous C map that respects all of the input data
X , one can perform hierarchical visualization of the disconti-
nuities with the B-matrix, as illustrated in the next section.

It is worth noting that image segmentation of C pro-
duces much better clustering than image segmentation of W ;
however, it still does not necessarily achieve the optimal
clusters for a given level of clustering, requires additional
computation for agglomeration of neurons, and requires the
user to prespecify the degree of clustering.

V. EXAMPLE APPLICATION: CLUSTERING MICROBIAL

DATA AROUND A LANDFILL

In order to explore how microbial communities may act
as indicators for the gradient of contamination in groundwa-
ter, Pearce et al. [5] rigorously compared several clustering
approaches of microbial community profile data from 22
monitoring wells around the leaking Schuyler Falls Land-
fill in Clinton, NY [Fig. 4(a)]. The authors preprocessed
the 209 measured microbial variables using both para-
metric and nonparametric (using a Spearman’s rank cor-
relation matrix) principal component analysis (PCA) to
reduce the feature set to the top 21 principal compo-
nents (PCs), which together explained 100% of the vari-
ance. They then compared hierarchical, K-means, SOM,
and weighted SOM clustering approaches on these data,
and assessed the validity of the resulting clusters using an
F-statistic [5] based on a nonparametric MANOVA [19]. In
their detailed analysis, the nonparametric PCA followed by
the weighted SOM was shown to be the most appropriate
clustering method for this data set (which violates parametric
assumptions of independence, normality, and equal variance),
and provided the best overall match to the independent expert
classifications given in [16] that were based on detailed
hydrochemistry data. Specifically, in the nonparametric SOM,
the L = 22 vectors of M = 21 normalized Spearman rank PC
values were used to train a 20 × 20 nontoroidal rectangular
SOM, where updates for each component plane were weighted
by the percent variance explained by the corresponding PCs.
Results of this sparsely-matched SOM were visualized using
a heat map of the similarly weighted nontoroidal U -matrix,
superimposed with visually-approximated, hand-drawn cluster
boundary lines. In the remainder of this section, we show
how the CR phase and B-matrix automate the detection and
visualization of the cluster hierarchy already embedded in this
trained SOM. The reader is referred to [5] to see how the
clusters resulting from this SOM compare to those of the other
clustering methods.

In Fig. 4(b) we show a heat map of the U -matrix computed
from the trained W matrix (this is the same data as shown in
[5, Fig. 3(a)], but without the hand-drawn cluster boundaries),
and in Fig. 4(d) we superimpose a contour map of this
U -matrix over a heat map of the first component plane of W
(corresponding to the first PC). It is difficult to make out which
wells cluster together from either of these visualizations,

especially near the edges of the map. We applied the proposed
CR phase (using σ0 = 0.29, approximately one eighth of
the maximum interneuron Euclidean distance in W of 2.26)
to the trained weight matrix W from [5]. To be consistent
with [5], we used a weighted Euclidean distance metric and
weighted CR updates, where the importance weight vector p
in Algorithm 1 was set to the percent variance explained by
each of the 21 PCs, and a nontoroidal grid. A heat map of the
B-matrix computed from the resulting cluster-reinforced C
map is shown in Fig. 4(f), where one can readily identify
clusters at various levels of separation, based on the intensity
of the color. For comparison, we show the B-matrix computed
directly from W in Fig. 4(c) showing that prior to the CR
phase the boundaries between clusters are quite diffuse. After
the CR phase, the U -matrix visualization is also improved
[Fig. 4(e)], although clusters are still not as clearly defined as
with the B-matrix [Fig. 4(f)]. In Fig. 4(b)–(f), the numbered
dots indicate the locations of the BMUs in W , for each of
the PC input vectors for the 22 numbered wells in Fig. 4(a).

Viewing all of the interneuron distances stored in the
B-matrix as a heat map [Fig. 4(f)] shows the varying degrees-
of-separation in the natural clustering hierarchy embedded in
the SOM. To interactively display only specific levels in this
cluster hierarchy, one could brighten or darken the associated
colormap. Alternatively, hierarchical visualization of clusters
can be shown on top of the heat maps of component planes,
as previously suggested, by superimposing grid lines with
thickness proportional to B-values above a user-specified
minimum display threshold θ . We illustrate this approach
on the first component plane of W , for minimum display
thresholds θ of 0.92, 0.88, and 0.60, respectively, showing
two, three, and eight clusters of wells [Fig. 5(a)–(c)].
The cluster membership for the two-cluster visualization
[Fig. 5(a)] corresponds to wells identified as contaminated
and noncontaminated, and shows that wells near the fringe
of the contamination plume are more similar to contaminated
wells than to uncontaminated wells [see Fig. 4(a)]. The cluster
membership for the three-cluster visualization [Fig. 5(b)]
corresponds to the most contaminated wells, wells near the
fringe of the contamination plume, and uncontaminated wells
[see Fig. 4(a)]. These two- and three-cluster memberships are
identical to the best clusterings found in [5], and are consistent
with the hydrochemistry-determined classification given in
[16]. Both the nonparametric F-statistic (from [5]) and the Sil-
houette values (where the normalized input data are weighted
by p prior to computing these cluster validation metrics)
indicate that this data are more appropriately clustered into
three groups (F = 10.47, mean(s) = 0.43, all s > 0) than into
to two groups (F = 8.08, mean(s) = 0.27, min(s) = −0.15).
As the display threshold θ is lowered further, the fringe
cluster rapidly breaks apart into individual wells [Fig. 5(c)],
reflecting the fact that these wells have the most heterogeneity
in microbial profiles [16] and reinforcing the conclusion in
[5] (based on the F-statistic for several clustering methods)
that more than three clusters are probably not meaningful
for this data. Although one could use a cluster validation
metric, such as the F-statistic or mean Silhouette value, to
determine where to optimally set θ , this example illustrates
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Fig. 4. Results on landfill data. (a) Locations of the numbered wells (colored dots) relative to the landfill (gray square) and plume of contamination (contour
plot) estimated from conductivity measurements, collected from surface electromagnetic surveys (EM-34) and interpolated using the method of ordinary
kriging. The wells are color-coded to show the three clusters of Fig. 5(b), where dark red indicates the most contaminated wells, orange indicates fringe wells,
and yellow indicates uncontaminated wells. (b) Heat map of the U -matrix computed from W . (c) Heat map of the B-matrix computed from W . (d) First
component plane of W overlain with a three-level contour plot of the U -matrix computed from W (contours at U -values of 0.34, 0.23, and 0.12). (e) Heat
map of the U -matrix computed from C . (f) Heat map of the B-matrix computed from C .
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Fig. 5. Results on landfill data. (a)–(c) Heat maps of the first component
plane of W . The thicknesses of the grid lines correspond to B-values
computed from the interneuron distances in C (as in Fig. 4). B-values are
only displayed above minimum distance threshold levels of (a) θ = 0.92,
(b) θ = 0.88, and (c) θ = 0.60.

that interactive visualization of B-values above different
thresholds can be informative even at levels of nonoptimal
clustering. Visualizing the remaining 20 component planes of
W overlain with the B-matrix as grid lines reveals additional
sources of within- and between-cluster heterogeneity,
although space does not permit us to show them here.

VI. CONCLUSION

SOMs have proven to be useful tools for clustering and
visualization of high-dimensional data. Nevertheless, it was
often challenging to identify clusters in sparsely-matched
feature maps, where neuron interpolation between BMUs
can result in diffuse cluster boundaries. In this brief, we

introduced an additional CR phase, to be run after the
SOM self-organizing and convergence phases, for sharpening
boundaries between existing self-organized clusters of BMUs.
This cluster sharpening proceeds in an unsupervised data-
driven manner, without prior knowledge of the domain or
of the number of clusters to be identified. By iteratively
performing synchronous updates within neighborhoods based
on distances between input vectors and all neurons in the
map, the CR phase reduces within-cluster differences, and
thus sharpens boundaries between clusters. Discontinuities in
the resulting map can then be interpreted as between-cluster
distances using the proposed B-matrix. The B-matrix can be
directly displayed on the heat maps of component planes using
grid lines with thicknesses corresponding to the distances
between adjacent clusters in the SOM. By thresholding the
lower bound of the displayed lines, one obtains hierarchical
control of the visual level of cluster resolution, without
having to further cluster the data beyond what was already
accomplished by the self-organization during SOM training.
The proposed methods were demonstrated using the classic
13-D binary-valued animal SOM benchmark problem and a
21-D real-valued microbial profile data set. MATLAB code
for the proposed methods is provided online [20].
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