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In this work, we develop and test two artificial neural networks (ANNs) to forecast streamflow in unga-
uged basins. The model inputs include time-lagged records of precipitation and temperature. In addition,
recurrent feedback loops allow the ANN streamflow estimates to be used as model inputs. Publically
available climate and US Geological Survey streamflow records from sub-basins in Northern Vermont
are used to train and test the methods. Time-series analysis of the climate-flow data provides a transfer-
able and systematic methodology to determine the appropriate number of time-lagged input data. To
predict streamflow in an ungauged basin, the recurrent ANNs are trained on climate-flow data from
one basin and used to forecast streamflow in a nearby basin with different (more representative) climate
inputs. One of the key results of this work, and the reason why time-lagged predictions of steamflow
improve forecasts, is these recurrent flow predictions are being driven by time-lagged locally-measured
climate data. The successful demonstration of these flow prediction methods with publicly available
USGS flow and NCDC climate datasets shows that the ANNs, trained on a climate-discharge record from
one basin, prove capable of predicting streamflow in a nearby basin as accurately as in the basin on which
they were trained. This suggests that the proposed methods are widely applicable, at least in the humid,
temperate climate zones shown in this work. A scaling ratio, based on a relationship between bankfull
discharge and basin drainage area, accounts for the change in drainage area from one basin to another.
Hourly streamflow predictions were superior to those using daily data for the small streams tested
due the loss of critical lag times through upscaling. The ANNs selected in this work always converge,
avoid stochastic training algorithms, and are applicable in small ungauged basins.

� 2010 Elsevier B.V. All rights reserved.
Introduction

Accurate streamflow forecasts are an important component of
watershed planning and sustainable water resource management
(Brooks et al., 2003). Streams and rivers modify their channel
and overflow their banks during flood events, sometimes inflicting
catastrophic damage to human-built infrastructure; conversely
riverine ecosystems are often most susceptible during protracted
periods of low flow (Allen, 1995). The magnitude and locality of
these extreme events can result in degraded surface water quality,
loss of agricultural lands, damaged infrastructure, and the mobili-
zation of phosphorus and sediment-related pollutants. Event fre-
quency and severity are exacerbated by climate change and
anthropogenic factors (Arnell et al., 2001). Accurate and timely
predictions of high and low flow events at any watershed location
(either gauged or ungauged) can provide stakeholders the informa-
tion required to make strategic, informed decisions.

Current methods of forecasting gauged and/or ungauged
streamflow fall into four categories: conceptual, metric, physics-
ll rights reserved.

).
based and data-driven. Conceptual models (e.g., MODHYDROLOG)
incorporate simplified conceptualizations of hydrological pro-
cesses (Chiew and McMahon, 1994). Metric models (e.g., IHACRES)
do not rely on hydrological features or processes but rather are
based on unit hydrograph theory (Jakeman et al., 1990). Physics-
based rainfall-runoff models (e.g., InHM) require considerable data
and human effort to calibrate, validate, and test but are extremely
useful in understanding the governing physics or processes (Van-
derKwaak and Loague, 2001). Because of the limited resources
associated with developing and calibrating conceptual, metric,
and physics models (Kokkonen and Jakeman, 2001), data-driven
hydrological methods have been widely adopted for forecasting
streamflow. Multiple linear regression (MLR), variations of autore-
gressive moving average (ARMA) models and artificial neural net-
works (ANNs) are commonly used methods (Wang et al., 2008).
Although these data-driven techniques often require similar data
as the aforementioned models, they require much less develop-
ment time, are useful for real-time applications, and prove capable
of accurately predicting stream flows (Govindaraju, 2000).

Despite the success of data-driven techniques, the number of
ungauged streams greatly compounds the challenges associated
with accurately forecasting streamflow. There are over 250,000
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rivers in the US, of which less than 25,000 (<10%) are gauged daily by
the USGS (Geological Survey, 2009). To accurately predict stream-
flow in an ungauged basin, streamflow observations must be
available nearby. As an example, Mohamoud (2008) combined dom-
inant landscape and climate descriptors from 29 catchments with
multiple regression to develop flow duration curves capable of fore-
casting flow in nearby ungauged basins. We were only able to find
one example of ANNs being adopted for forecasting ungauged
streamflow (Yang et al., 2007).

In this work, we develop and test a method for predicting unga-
uged streamflow using two data-driven ANNs and publicly available
climate and hydrologic data. A generalized regression neural net-
work (GRNN) and a counterpropagation network (CPN) have been
selected because the algorithms always converge, do not require sto-
chastic training, and are applicable to small ungauged basins. Recur-
rent feedback loops are added to the CPN and GRNN algorithms,
allowing future predictions to be based on time-lagged predictions
(rather than time-lagged measurements). We use predicted flow
along with locally-measured, time-lagged precipitation and temper-
ature, data as model inputs. Time-series analyses are used to deter-
mine the appropriate number of model inputs (i.e., precipitation
lagged in time). We compare the GRNN and CPN networks with tra-
ditional data-driven methods (MLR and ARMA). We also show the
importance of using correctly-scaled climate data by examining
the ANN prediction accuracies with data collected on two time scales
(daily and hourly). Climate and US Geological Survey streamflow re-
cords from sub-basins in Northern Vermont are used for training and
testing the methods. Once trained, the predicted flows may be scaled
by watershed area to allow for the prediction of streamflow in unga-
uged basins. To validate flow predictions in ungauged sub-basins,
the ANNs are trained on climate-flow data from one sub-basin and
used to forecast streamflow in a nearby sub-basin with alternate
(nearest, and therefore more representative) climate inputs. Results
reveal that predicting with climate data from nearby sub-basins pro-
duce accuracies that are not statistically different than those at-
tained when training and predicting in the same sub-basin.
Background

Using an abundance of data from government sources (e.g., US
Geological Survey and National Climatic Data Center), data-driven
methods are readily applicable and needed to model complex cli-
mate-flow relationships in all geographic regions (Walker et al.,
2003). Over the past two decades, numerous data-driven ANN
algorithms have been used for simulating and forecasting hydro-
logical applications, including feed-forward backpropagation
(FFBP) (Govindaraju and Ramachandra, 2000; Chang et al., 2002;
Connor et al., 1994), radial basis function (Kisi, 2008; Moradkhani
et al., 2004; Singh and Deo, 2007), self-organizing maps (Hsu et al.,
1995, 2002), and the adaptive neuro-fuzzy inference system
(Chang and Chen, 2001; Chang et al., 2001; Firat, 2008; Firat and
Gungor, 2008).

Despite the diversity of ANN algorithms, the multilayer percep-
trons (MLP) and the feed-forward backpropagation (FFBP) algo-
rithms are, by far, the most common (accounting for more than
90 of the published applications). Both algorithms have been used
to predict streamflow (e.g., Khalil et al., 2005; Maier and Dandy,
2000; Rajurkar et al., 2002; Zealand et al., 1999) and more recently,
the FFBP has been shown superior for predicting total sediment
load concentration when compared to total sediment transport
equations (Emrah et al., 2007), multi-linear regression (Alp and
Cigizoglu, 2007; Rajaee et al., 2009), and conventional sediment
rating curve models (Rajaee et al., 2009).

Unfortunately, the MLP and FFBP algorithms noted above: (1) re-
quire stochastic training, (2) do not always converge (e.g., become
trapped in local minima during training), and (3) are widely consid-
ered black-box approaches to hydrological modeling (Kingston
et al., 2005). These challenges make their application (or transfer-
ability to other geographic locations) difficult for users not familiar
with ANNs.

To circumvent the above challenges, we focus this research on
two ANN algorithms that guarantee convergence (i.e., find the
correct weights) and are not stochastic in nature (i.e., do not re-
quire iterative training procedures): the counterpropagation net-
work (CPN) and the generalized regression neural network
(GRNN). These algorithms have been used in a small number of
studies to forecast streamflow (Aytek et al., 2008; Chang and
Chen, 2001; Chang et al., 2001). The GRNN was found to outper-
form FFBP ANN methods when predicting daily (Cigizoglu,
2005a) and monthly streamflow (Cigizoglu, 2005b; Kisi, 2008).
However, all previous studies (32 of 33 papers referenced in this
manuscript), including those that use CPN and GRNN, use time-
lagged flow measurements as model inputs. The one notable
exception is Wang et al. (2006), who use modified FFBP ANNs
to predict streamflow with a 1–10 day lead-time. Using mea-
sured streamflow is not suitable for our application, since the
end goal is to model discharge in ungauged basins. The use of
predicted discharge and locally available measured climate data,
as model inputs, are key to successfully transferring this technol-
ogy to ungauged streams.

Other data-driven methods multiple, such as linear regression
and time series autoregressive moving average (MLR and ARMA),
have been used prevalently throughout the literature for hydro-
logical estimation applications (e.g., Chaloulakou et al. (1999),
McKerchar and Delleur (1974) and Yurekli et al. (2005)), stream-
flow forecasting (e.g., Tangborn and Rasmussen (1976), Phien
et al. (1990) and Schilling and Wolter (2005)) and to ANN model
evaluation (Hsieh et al., 2003; Adamowski, 2008; Cigizoglu,
2003; Firat, 2008). The autoregressive moving average with exog-
enous input (ARMAX) models have been extended to incorporate
precipitation data to forecast streamflow (Chang and Chen, 2001;
Hsu et al., 1995). We use MLR and ARMAX to validate the predic-
tive capabilities of our CPN and GRNN models.

Study site and available data

The Winooski River basin, located in northwestern Vermont,
USA, was selected to demonstrate these forecasting algorithms be-
cause of the amount of available data (both in space and time) cap-
turing the climate-hydrological relationship of the system. The
Winooski basin (�2700 km2) has a main branch length of
142 km, originates in the Green Mountains, and receives flow from
five major tributaries before discharging into Lake Champlain
(Fig. 1). The Mad River, Dog River, Little River, and North Branch
and main stem of the Winooski River are all monitored by US Geo-
logical Survey (USGS) stream gauging stations, while the Hunting-
ton River remains ungauged.

The Winooski basin has a continental or Hemiboreal climate
(Koppen classification Dfb), with warm, humid summers and cold
winters. The average annual precipitation is about 100 cm
(Hijmans et al., 2005). Basin land cover is largely forested in the
higher elevations, while moderate development is primarily lo-
cated in the stream valleys (Albers, 2000; Hackett, 2009). Bedrock
is primarily schist and phyllite in the mountains with Cambro-
Ordivician siliclastic rocks and carbonates to the west in the
Champlain Valley (Doolan, 1996). There is an abundance of low
permeability glacial till at elevation, with permeable and imperme-
able stratified glacial sediments in the valleys, and alluvium near
river channels. Unconsolidated cover varies widely throughout
the basin, with less material at the higher elevations and more in
the valleys.



Fig. 1. The Winooski River basin and associated US Geological Survey gauging and National Climatic Data Center weather stations.

Table 1
USGS and NCDC stations within the Winooski River Basin.

Station ID Description Elev. (m) Area (km2)

USGS 0486000 Winooski River at Montpelier 152 1028
USGS 04285500 Winooski River at Wrightsville 168 179
USGS 04288000 Mad River at Moretown 166 360
USGS 04287000 Dog River at Northfield Falls 184 197
USGS 04290500 Winooski River at Essex Jct. 56 2704
USGS 04289000 Little River at Waterbury 130 287
NCDC 431081 Burlington International Airport 101 –
NCDC 435733 Northfield 204 –
NCDC 435740 Northfield 3 430 –
NCDC 435278 Barre/Montpellier Airport 343 –
NCDC 432843 Essex Junction 104 –
NCDC 438810 Waterbury 2 134 –
NCDC 438815 Waterbury 2 SSE 232 –
NCDC 435273 Montpelier 2 162 –
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This study site has hourly and daily streamflow data at six USGS
gauging stations and climate data from nine National Climatic Data
Center (NCDC) weather stations located within the basin (Table 1).
Daily records have captured the climate-hydrologic record of the
Winooski River basin since the 1930s. Although temporal cyclicity
(including the 7 year NAO cycle) has been observed within the
Winooski River basin climate-discharge record (Hackett, 2009),
this study focuses on predictions at small enough timescales (days
to months) that the impact of such longer-term oscillations is
likely negligible.
Methods

Although more than 70 years of flow and climate data exist for
this basin, we use daily and hourly data collected only between
1996 and 2006 to train and test our models and avoid non-station-
ary issues (e.g., we assumed landuse patterns and climate did not
change significantly over this time frame). The model output is
predicted streamflow. Streamflow, Q (m3/s), is an average over
the entire day of real-time measurements. The model inputs are
time-lagged climate data consisting of daily average temperature,
T (�C) total precipitation, P (cm/day) and time-lagged estimates
of flow, Q̂ . Since not all sub-basins contain a NCDC weather station,
precipitation records associated with the nearest NCDC station are
assigned to the USGS stations. Thus, the Dog River USGS gauging
station uses the Northfield NCDC precipitation record and the
Winooski River at Wrightsville and Montpelier use the Barre/
Montpelier Airport NCDC precipitation record. Temperature data
from the Burlington International Airport were adjusted for eleva-
tion using a lapse rate of 4.1 �C per 1000 m and approximated at
the USGS stations. In addition to the daily data, hourly precipita-
tion (cm/h) and streamflow (m3/s averaged per h) data were gath-
ered for the Dog River basin for this time period.

Data-driven methods require pairs of input–output training
data to capture the non-linear, climate-flow relationships. The data
are separated into training and prediction sets. Daily and hourly
data collected between 1996 and 2006 were used to train and test
our models. The 1996–2003 data were used for model training;
while data from 2004 to 2006 were used to to make predictions
and evaluate the two forecasting methods.

It is common to develop separate ANNs over distinct hydrolog-
ical seasons to improve forecasts (Singh and Deo, 2007). Thus, we
show proof-of-concept using only summer climate-streamflow
events (where ‘‘summer” is defined as the months from May to
October). To reduce training and prediction errors (e.g., predicting
flows with missing precipitation record), dates with either missing
rainfall or precipitation events (typically days to weeks) have been
removed from the record.

Generalized regression neural network (GRNN)

Traditionally, multiple linear regression (MLR) models are
the most popular method for predicting streamflow and have
the form Q̂ ¼ a1x1 þ a2x2 þ . . .þ anxn þ e;where x1, x2, . . . , xn are
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the independent input variables (e.g., P, T and measured Q), a1,
a2, . . . , an are the regression coefficients best fit using a mini-
mum least squares error, e, between measured and predicted
streamflows, denoted Q(t) and Q̂ðtÞ respectively.

Developed as a non-linear, non-parametric extension of MLR,
the GRNN is a memory-based network capable of estimating con-
tinuous variables (Specht, 1991). A schematic of the daily stream-
flow prediction model is presented (Fig. 2) to describe the GRNN.

The GRNN consists of four nodal layers: input, pattern, summa-
tion, and output. Each layer is fully connected to the adjacent lay-
ers by a set of weights (or arcs) between nodes. It is used to regress
streamflow, Q, based on a set of input variables, x, defined by some
non-linear function Q = f(x), captured by the training data. Training
data consist of a set of input vectors, x, and corresponding output:
observed flow, Q. In this work we have I = 7 input predictor
variables, x(t) = [P(t � 1), . . . , P(t � 4), T(t � 1), Q̂ðt � 1Þ; Q̂ðt � 2Þ],
while the output is a prediction of daily streamflow. Here
t = 1 day; however, in some of the test cases we let t = 1 h.

The pattern layer has one node for each n training pattern (in-
put–output pairs). The weights on the left side of the pattern nodes
store (e.g., are set equal to) the input training vectors, x. Each node
in the pattern layer is connected to the two summation layer
nodes, S1 and S2. The weights linking the pattern layer nodes with
summation node S1 store the streamflows (Q1, Q2, . . . , Qn) for each
input–output training patterns (hence, iterative training is not per-
formed). The weights from the pattern layer nodes to summation
node S2 are set equal to 1.

Once the weights are set, the GRNN may predict Q̂ . A new input
vector for which a prediction is desired, x, is presented to the pat-
tern layer. The Euclidean distance is computed between the input
vector and all pattern weight vectors, wi0 where i = 1,2, . . . , n as:
D2

i ¼ ðwi � xÞTðwi � xÞ. The distance, D2
i , is passed to the summa-

tion layers and a prediction is computed as:

Q̂ ¼ S1

S2
¼
Pn

i¼1Q i exp � D2
i

2r2

� �
Pn

i¼1 exp � D2
i

2r2

� � ;

where r2 is a smoothing parameter. Large values of r2 smooth the
regression surface and produce estimates that approach the sample
mean; while small values produces a surface with greater chance of
discontinuity resulting in nearest neighbor estimates. Intermediate
values of r2 produce well behaved estimates that approximate the
joint probability density function of x and Q (Specht, 1991). The pre-
diction, Q̂ , is a weighted average of all stored response observations
(Q1, Q2, . . . , Qn), where each response is weighted exponentially
according to its Euclidean distance from input vector xi. For more
details refer to Specht (1991). The GRNN algorithm described in this
work was written in MatLab V. 7.4.0.287 (R2007a).
Fig. 2. Architecture for the daily streamflow GRNN with optional recurrent
(feedback) connection (dashed arrow).
We modified the traditional GRNN architecture to allow for
recurrent feedback (dashed line of Fig. 2). These recurrent connec-
tions allow recently predicted streamflows Q̂ðt � 1Þ; Q̂ðt � 2Þ; . . . to
be passed back to the input layer and used to predict Q̂ (t) during
the next time step(s). The modification involves adding the time-
lagged streamflow into the training input vector, x = [x1,
x2, . . . , xm, Q̂ (t � 1), . . .] and does not change the GRNN algorithm.
Counterpropagation network (CPN)

The relatively simple, yet powerful, counterpropagation algo-
rithm sequentially combines the Kohonen self-organizing map
and a Grossberg classification layer (Hecht-Nielsen, 1987). The
combination leverages the unsupervised clustering self-organizing
map with known output responses (a priori categories) to create a
statistical mapping between predictor and response vectors (in-
put–output pairs).

The CPN architecture consists of three nodal layers: input,
Kohonen and Grossberg (Fig. 3). All nodes in adjacent layers are
connected via weights; matrix wij, where I represents a node in
the input layer and j a node in the Kohonen layer, likewise ujk rep-
resents the weights linking the J Kohonen and K Grossberg nodes.
Like almost all supervised ANNs, the execution of the CPN is de-
fined by a training and prediction phase.

During training, the weights are iteratively adjusted to map the
set of input predictor vectors, x, to the set of associated response
vectors, Q, defined by some non-linear function Q = f(x), repre-
sented by the training data. A given input vector, x, consisting of
I variables (x1, x2, . . . , xI), is passed to the hidden layer. A similarity
metric is computed that compares the input vector with the weight
vector, wj, associated with each of the Kohonen nodes. The Koho-
nen node with the weight vector most similar to the input vector
is identified as the winning node; and the weights associated with
this winning hidden node are adjusted to be more similar to the in-
put vector by:

Dwj ¼
aðx�wjÞ; for j ¼ winning node;
0; for j – winning node;

�

where a is the Kohonen learning rate (a = 0.7 in this work). Through
a winner-take-all activation function, the winning Kohonen node
propagates zj=winner = 1 to the nodes of the Grossberg layer, while
all other Kohonen nodes pass zj–winner = 0. The network output Q̂
is computed as Q̂k ¼

PJ
j¼1ujkzj, where zj is the activation value

passed from the jth Kohonen node, ujk is the Grossberg weight con-
necting the jth Kohonen node and the kth Grossberg node and Q̂ k is
the kth component of the output vector, Q̂ . Both the predicted and
observed flow vectors are used to adjust the Grossberg weights as:
Fig. 3. Architecture of daily streamflow CPN with recurrent (feedback) connection
(dashed line).
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Duj ¼
bðQ � Q̂ Þ; for j ¼ winning node;
0; for j – winning node;

(

where b is the Grossberg learning rate (b = 0.1). This process is re-
peated for all input–output pairs, until the network has learned
the streamflow mapping defined by Q = f(x) to some user-defined
convergence criterion (in this work, a summed root-mean-square
error value <10�6).

After convergence, the network weights are fixed and the CPN
may be used for streamflow prediction. During this prediction
phase, input vectors that were not used to train the ANN are pre-
sented to the network for prediction. The number of hidden nodes
used to generate predictions may be set to one for nearest-means
classification or to three for smoother predictions (Besaw and Riz-
zo, 2007). The latter was used in this work.

Like the recurrent GRNN, the CPN has been modified to incorpo-
rate a recurrent feedback loop (dashed lines in Fig. 3) allowing
time-lagged predictions to be passed back to the network input
layer to improve future predictions.

Unlike traditional FFBP ANNs, CPN cannot be over-trained and
requires little convergence time. The algorithm was written in
MatLab V. 7.4.0.287 (R2007a). For more details refer to Besaw
and Rizzo (2007) and Rizzo and Dougherty (1994).

Time-series analysis and ARMAX model

Understanding the temporal relationships between climatic
drivers and streamflow is fundamental to the model development.
Some studies use time-series correlation analysis to determine the
temporal lag (number of time steps) between climate and flow
variables (Cigizoglu, 2005b; Kisi, 2005). Similar to Moradkhani
et al. (2004), cross-correlation analyses were used in this study
to determine the temporal relationships between precipitation,
temperature and streamflow.

Autoregressive moving average with exogenous input (ARMAX)
is a time-series modeling approach frequently used in the flow
forecasting literature for comparison with new flow prediction
methods (e.g., Adamowski, 2008). Time-series analysis found the
daily streamflow autoregressive and moving average components
to be of order 2, while the exogenous variables (precipitation and
temperature) were of orders 4 and 1, respectively (Table 2). Thus,
the ARMAX model used for comparing daily streamflow predic-
tions is:

Q̂ðtÞ ¼ a1Qðt � 1Þ þ a2Qðt � 2Þ þ
X4

i¼1

b1iPðt � iÞ þ b21Tðt � 1Þ

þ c1eðt � 1Þ þ c2eðt � 2Þ;

where Q(t) is streamflow at time t, P(t � i) is the precipitation asso-
ciated with the previous i = 1,2, . . . , 4 days, T(t � 1) is the average
temperature for one day prior, e is the model error for the previous
day (e.g., eðt � 1Þ ¼ Q̂ðt � 1Þ � Qðt � 1Þ). The best fit autoregressive
Table 2
Summary of model implementation details; all models where trained using data from 199

Model test cases Scale Tr

1. Non-recurrent MLR, ARMAX, CPN and GRNN (all seasons) Daily

2. Recurrent CPN and GRNN (summer Qs) Hourly 30
Daily

3. Recurrent CPN and GRNN (storm events only) Hourly
Daily

4. Recurrent CPN and GRNN (summer Qs in an ungauged basin) Daily

* Temperature data are available only at the daily time scale.
coefficients a1 and a2 are associated with the time-lagged stream-
flow; b1i and b21 are the exogenous coefficients associated with pre-
cipitation t � i days prior and average temperature one day prior; c1

and c2 are the moving average coefficients. The ARMAX model
parameters were found using a time-series analysis in the MatLab
V. 7.4.0.287 (R2007a) System Identification Toolbox.

Evaluation criteria

Several fundamental metrics are used to evaluate the stream-
flow forecasting methods (Krause et al., 2005). The root-mean-
square error (RMSE) evaluates how closely predictions match
observations. Values may range from 0 (perfect fit) to +1 (no fit)
based on the relative range of the data.

The coefficient of determination, r2, known as the square of the
sample correlation coefficient, ranges from 0 to 1 and describes the
amount of observed variance explained by the model. A value of 0
implies no correlation, while a value of 1 suggests that the model
can explain all of the observed variance.

The Nash–Sutcliffe coefficient of Efficiency, E, measures the
model’s ability to predict variables different from the mean and
gives the proportion of the initial variance accounted for by the
model (Nash and Sutcliffe, 1970). It is calculated as:

E ¼ 1�
PN

i¼1ðQ i � Q̂ iÞ2PN
i¼1ðQ i � �QÞ2

;

where E ranges from 1 (perfect fit) to �1. Values less than zero
indicate that the observation mean would be a better predictor than
the model.

In addition, measures of central tendency and dispersion based
on prediction residuals and evaluation of conditional bias are used
to evaluate the methods. Mean residuals significantly different
from zero often indicate a sub-optimal prediction method.

Model test cases

A total of four test cases are considered in this work (Table 2).
The GRNN smoothing parameters (r2) were determined through
trial-and-error. In all test cases, the CPN and GRNN ANNs used as
many hidden nodes as there were training patterns to guarantee
one-pass training.

Test case 1
We compare two traditional statistical methods (MLR and AR-

MAX) with the CPN and GRNN. All of the published MLR and ARMA
applications use time-lagged flow measurements as model inputs.
Although this approach is not suitable to predict flow in ungauged
basins, we provide a comparison with these traditional methods
using time-lagged measured flow inputs to show that the two pro-
posed ANNs perform as well (or better) than previously published
methods when predicting flow using measured flow data. The
models predict daily flow for the Dog River and the Winooski River
6 to 2003 and predicted over the period from 2004 to 2006.

aining patterns Prediction patterns Time-lags GRNN r2

P T Q

2922 1096 4 1 2 0.0052

,953 9612 8 24* 2 0.0013
1114 381 4 1 2 0.0089

1147 141 8 24* 2 0.0013
59 10 4 1 2 0.0089

1114 381 4 1 2 0.0089
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at Wrightsville. In this test case, P, T and measured Q are used as in-
puts and flows are forecast for all seasons. Because these predic-
tions use time-lagged measurements of streamflow, they provide
the most accurate predictive results (as opposed to the remaining
test cases that use time-lagged predictions of streamflow as inputs).

Test case 2
To explore the recurrent capabilities of the CPN and GRNN, we

again forecast streamflow in the Dog River. The purpose is twofold:
(1) to explore the predictive capabilities of the recurrent ANNs
using time-lagged predictions as inputs and (2) to demonstrate
the loss of accuracy when using upscaled (e.g., daily) recorded data
(as opposed to the raw hourly data) on small streams. We train the
recurrent ANNs on summer data from 1996 to 2003 and predict
discharge from 2004 to 2006.

Test case 3
We assess the improved performance of the recurrent ANNs

when trained on and used to forecast extreme flow events only
(e.g., storms or droughts). Specifically, we train the ANNs using nine
storm events between 1996 and 2003, and predict using the 2004
data.

Test case 4
The CPN and GRNN were trained on measured climate-flow

data from one basin (Dog River) and used to forecast streamflow
in another ungauged basin (the Winooski River at Montpelier)
using climate data from the weather station nearest Montpelier
(Barre/Montpelier Airport). To account for the increase in drainage
area from the Dog River (197 km2) to the Winooski River
(1028 km2), the ANN flow predictions were scaled by the simple
ratio of drainage areas: Qwinooski = Qdog � (Awinooski/Adog). This scaling
ratio is based on the relationship between bankfull discharge (Qbk)
and basin drainage area (A) found by Leopold et al. (1964) to be:
Qbk = eAf. Empirical studies show f to vary between 0.7 (semi-arid
regions) and 1 (humid landscapes draining small catchments)
(Vianello and D’Agostino, 2007). As a result, we use f = 1 in Leo-
pold’s equation to scale predictions from the smaller to the larger
northwestern Vermont basin.
Results and discussion

Data and correlation analysis

Time-series and cross-correlation analyses revealed temporal
dependencies between the climate-flow datasets (Fig. 4). The
cross-correlation of hourly P and Q data at increasing time steps
found the range of decorrelation to be 8 h (arrow in Fig. 4c). This
range of decorrelation represents the maximum time difference
at which P and Q are correlated. After 8 h, these two variables
are said to be independent of each other. Observation of the hydro-
graphs and hyetographs confirms a similar time lapse between
peak rainfall and peak discharge. A correlation analysis determined
a 4-day range of decorrelation for the daily P–Q data (arrow in
Fig. 4d). In addition to P–Q cross-correlations, T–Q cross-correla-
tions and Q–Q auto-correlations determined the temporal range
of decorrelation for the remaining model inputs. The results of
these analyses are summarized in column 5 of Table 2 (time-lags)
and used for all models. It is important to note the difference in
time-lags calculated using correlation analysis between the hourly
and daily data. Streamflow data, analyzed at the hourly and daily
scales, reveal that the upscaling of data to the daily timescale re-
sults in the loss of information for these small streams. Fig. 4a
and 4b show the hourly and daily Dog River hydrographs and hye-
tographs for the summer months of 2002. A single storm event
occurring in September 2002 highlights the loss of information
due to upscaling (Fig. 4e and 4f) in the Winooski watershed, where
time-lags between peak storm events and peak discharge are on
the order of 8 h to 1 day. Hourly data is needed to sufficiently cap-
ture the temporal relationships between measured P and instream
Q for our small streams. It is important to caution users that this is
a problem if the driving variables (e.g., climate data) are only avail-
able at daily time steps.

Test case 1: daily streamflow comparison of four data-driven methods
using gauged discharge

We first compare the four data-driven methods (MLR, ARMAX,
CPN and GRNN) to confirm that our coding of the two ANN method-
ologies produces error metrics and prediction accuracies similar to
those published in the literature when using measured discharge
as a model input. Since measured data are not applicable for our
end goal, we later explore predicted discharge as a model input.
The four methods use daily time-lagged P, T and measured Q to fore-
cast daily streamflow in two small Vermont sub-basins; the unreg-
ulated Dog River and dam-regulated Winooski River at Wrightsville.

We provide measures of comparison between methods in Ta-
ble 3 and Fig. 5. In the Dog River, the CPN, GRNN and MLR predic-
tion measures of central tendency (median) and dispersion are
statistically similar to that of the observed streamflow (Table 3),
as determined by the Wilcoxon-rank-sum and Brown-Forsyte tests
respectively (type I error rate a = 0.05); suggesting these estima-
tion methods are superior to ARMAX in preserving the observed
streamflow distribution. The estimated minimum and maximum
streamflows suggest that ARMAX over-smoothes the predictions.
In addition, MLR and ARMAX predict negative streamflows, an
undesirable effect resulting from linear combinations of measured
data. The CPN and GRNN residual central tendencies (median) are
closer to zero than those of MLR and ARMAX, suggesting that these
methods are less globally biased. The prediction scatter plots
(Fig. 5) show the CPN predictions to be conditionally biased (i.e.,
underpredict high flows). Although the error metrics for CPN,
GRNN and MLR are statistically similar (e.g., r2 = 0.52, E = 0.5 and
RMSE = 4.3), they are lower than those typically shown in the liter-
ature for these methods (e.g., r2 = 0.80 and E = 0.80) (Aytek et al.,
2008; Cigizoglu, 2005a). This is likely due to the very rapid hydro-
logical response of this particular basin (e.g., small basin area, nar-
row shape, steep slopes and thin, impermeable soils), and the loss
of accuracy when only upscaled model inputs exist (e.g., averaged
daily climate data).

The error metrics calculated for the Winooski River in Wrights-
ville (Table 3), suggest that all four methods produce statistically
similar streamflow estimates and distributions when compared
with the measured flow data. None of the error residuals have
measures of central tendency statistically different than zero;
and the error metrics for these four methods compare well (e.g.,
r2 = 0.79, E = 0.78 and RMSE = 2.7) to those in the literature (Aytek
et al., 2008; Cigizoglu, 2005a).

Across both watersheds, the CPN, GRNN and MLR provide the
most accurate and unbiased estimators of streamflow. There is
no statistical difference in their predictive capability given the se-
lected time-lagged inputs (P, T and Q), suggesting these methods
are equally well suited to predict streamflow in the unregulated
Dog River and the regulated Winooski River at Wrightsville. All
methods produced more accurate predictions in the regulated (less
variable flow) Winooski River sub-basin.

Test case 2: streamflow predictions using recurrent CPN and GRNN

Using time-lagged measurements of streamflow as model inputs
will always result in more accurate predictions than time-lagged



Fig. 4. Dog River hydrograph and hyetograph for the: (a) hourly and (b) daily flow and precipitation records during the summer of 2002. The cross-correlograms (c) and (d)
show the temporal relationship (time lag) between P and Q. Inset showing (e) hourly and (f) daily Q and P for an individual storm event occurring September 28th.

Table 3
Comparison of measured and predicted streamflow using CPN, GRNN, MLR and ARMAX models in the Dog River and Winooski River at Wrightsville.

Dog River (m3/s) Winooski River at Wrightsville (m3/s)

Q CPN GRNN MLR ARMAX Q CPN GRNN MLR ARMAX

Mean 4.8 4.1 4.4 4.6 3.5 5.0 4.8 4.8 4.9 4.7
Median 3.1 2.6 2.7 3.3 2.2 2.8 2.7 2.7 2.9 2.6
Mode 1.0 1.3 1.3 1.7 0.4 0.8 1.0 1.4 1.1 0.7
St. Dev. 6.0 4.4 5.0 4.9 4.8 5.8 5.2 5.1 5.2 5.6
Min 0.4 0.4 1.0 �1.1 �2.1 0.23 0.3 0.6 0.0 0.0
Max 71 55 53 61 46 25.4 24.6 26.5 25.8 26.0
R2 1 0.53 0.51 0.51 0.42 1 0.80 0.77 0.79 0.79
E 1 0.51 0.49 0.50 0.36 1 0.80 0.77 0.80 0.78
RMSE 0 4.2 4.3 4.3 4.8 0 2.6 2.8 2.6 2.7
R. Mean 0 �0.7 �0.4 �0.2 �1.3 0 �0.3 �0.2 �0.1 �0.3
R. Median 0 �0.1 0.1 0.4 �0.7 0 0.1 0.3 0.3 �0.1
R. St. Dev. 0 4.2 4.3 4.3 4.7 0 2.6 2.8 2.6 2.7
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estimates of streamflow. Thus, we expect error metrics worse than
those published in the literature (and shown in Test case 1). How-
ever, using predicted (rather than observed) flow moves us one
step closer to providing forecasts at nearby basins and/or other
locations within the river network (e.g., ungauged basins). When
using the recurrent ANNs for prediction, the algorithm must pro-
vide an initial value (or best guess) of streamflow at t = 0. In this
work, we initialize flow with either an observed value or an esti-
mate of baseflow. Both proved equally successful, primarily be-
cause the measured climate data drive the ANN streamflow
predictions.

The recurrent CPN and recurrent GRNN are used to predict
hourly and daily streamflow for the summer months from 2004
to 2006. Fig. 6 presents a subset of the data (a 90-day window in
the summer of 2004) to show time-series predictions without
compromising the figure legibility. Both recurrent ANNs capture
the streamflow trends within this time frame. However, there are
noticeable differences between the two timescales.

Error metrics at the hourly and daily timescales (Table 4) show
the hourly models to be superior. As expected, both ANNs better
capture the climate-flow relationships when trained on the hourly
data (r2 of 0.45 vs. 0.29) reflecting the basin-scale characteristics.
The Dog River basin has a very flashy response to precipitation
events. This flashiness is a function of specific basin characteristics
(e.g., small basin area, narrow shape, steep slopes and thin, imper-
meable soils).



Fig. 5. Comparison of measured and predicted streamflow using: (a) CPN, (b) GRNN, (c) MLR and (d) ARMAX models in the Dog River against theoretical quantile line. Flow
quantiles shown as (+).

Fig. 6. Time-series streamflow observations and ANN predictions at the: (a) hourly and (b) daily timescales for a 90-day window of summer 2004 using two recurrent ANNs.
The inset figures represent the qq-plots for all summer forecasts 2004–2006 at (c) hourly and (d) daily timescales.

Table 4
Hourly and daily error metrics for the CPN and GRNN summer flow predictions at the
Dog River from 2004 to 2006.

CPN GRNN

Daily Hourly Daily Hourly

R2 0.29 0.5 0.29 0.45
E 0.16 0.28 0.02 0.28
RMSE 5.5 5.2 5.9 5.5
Corr 0.53 0.7 0.53 0.67
n 381 9612 381 9612
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The upscaling of hourly data to the daily scale reduces the accu-
racy of the ANN streamflow forecasts. This is evidenced by the shift
in peak flow estimates (Fig. 6b). Different characteristic time-lags
between P and Q were identified using time-series analysis for
the daily and hourly flow – 8 h and 4 days respectively (Fig. 4c
and d). Eight hours was also the typical time lag observed when
plotting the peak rainfall and peak storm flow events. Thus, the
daily data are not capturing the 8-h temporal relationship between
P and Q; and upscaling the hourly data to the daily scale results in a
loss of prediction accuracy for both ANNs.

As on might expect, the prediction errors increase when com-
pared to predictions using measured flow as inputs (e.g., r2 and E
values of 0.5 and 0.28). Coefficients of determination and efficiency
calculated for the Dog River decrease from 0.53 to 0.29 and from
0.51 to 0.16 respectively; while RMSE increases from 4.2 to 5.2.
However, the use of recurrent feedback with estimated flow is nec-
essary to develop methods capable of forecasting flows in unga-
uged basins. Whether these forecasts are ‘‘accurate” enough,
however, depends on the user’s application.

Both the GRNN and, to a greater extent, the CPN predictions
contain conditional bias in that they tend to underpredict high
flows (Fig. 6c and d). These qq-plots compare distributions of Q̂
and Q for each ANN at each time scale. Such bias is expected
(Chang and Chen, 2001; Firat, 2008), as the majority of recorded
data (both training and prediction) consist of base flow events.
As a result, it is common in the ANN literature to improve forecasts
by creating specialized ANNs (and associated training datasets)
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that separately predict low and high flows (Rajurkar et al., 2002;
Singh and Deo, 2007).

Test case 3: extreme-event streamflow predictions using recurrent CPN
and GRNN

As a proof-of-concept, we re-trained the recurrent ANNs of Test
case 2 on nine storm events from the summer months of 1996–
2003. A comparison of the error metrics for these two specialized
storm flow-event ANNs shows much improvement (Table 5) over
the ANNs used to predict both high and low flows (Table 4) at both
timescales. The measurements and predictions of a single storm
event (October 2004) is shown in Fig. 7 to legibly demonstrate
the information lost due to unscaling hourly data to the daily
timescale.

As with all data-driven methods, ANN predictions are only as
good as the data on which they were trained. Both ANN models
show greater prediction accuracies using hourly data, further high-
lighting the importance of measurement scale. The methods pre-
sented here require training on some known (observed) set of
climate-flow data. In addition, the stationarity assumption must
hold. A good example in this work is the assumption that general
landuse patterns do not change. If the basin of interest has under-
gone extensive landuse changes, climate-flow data used for train-
ing the ANN may not be appropriate for the time period in which
predictions are needed. Through an analysis of historical aerial
photographs, (Hackett, 2009) documented the changes in land cov-
er and subsequent changes in basin discharge. This was our moti-
vation for selecting a 10 year subset of the 70 year Winooski Basin
dataset to train and test our methods.

Test case 4: predicting streamflow in ungauged basins

The recurrent CPN and GRNN models, trained using climate-
flow data from the Dog River, were used to predict streamflow in
the nearby Winooski River at Montpelier for the summer months
from 2004 to 2006; but only a 90-day window in 2004 is displayed
Table 5
Storm prediction hourly and daily error metrics for CPN and GRNN predictions at the
Dog River.

CPN GRNN

Daily Hourly Daily Hourly

R2 0.75 0.87 0.75 0.95
E 0.74 0.52 0.58 0.74
RMSE 2.20 3.81 2.81 2.82
Corr 0.87 0.93 0.87 0.97
n 10 141 10 141

Fig. 7. CPN and GRNN streamflow predictions trained only on
(Fig. 8). Both ANNs predict the general streamflow trends in re-
sponse to climate drivers. The climate-flow record from the North-
field NCDC weather station was used to train the ANNs, while the
climate record from the Barre/Montpelier Airport weather station
was used for making predictions. Cigizoglu (2003) and Kisi
(2008) have also shown that it is possible to train on one wa-
tershed and predict on another. However, they used measured flow
as an input, while here we have used estimated flow in combina-
tion with recurrent feedback connections in the CPN and GRNN.

The qq-plot of predicted and observed Q (Fig. 8b), shows the
method to scale well over a wide range of flows (between 1 and
90 m3/s). This is encouraging given the simplicity of the scaling
algorithm across different watersheds. Predicted flows were up-
scaled by the ratio of drainage areas, suggesting this method suffi-
ciently accounts for the increase in streamflow in the larger basin.
However, the ANNs overpredict measured flows greater than
90 m3/s (discharge plot above the theoretical quantile line). Two
potential solutions exist to correct for this conditional bias. The
first is to once again train the ANNs only on extreme events (e.g.,
create separate high and low flow ANNs). The second is to use a
coefficient of f less than 1 in the Leopold equation for flows above
the 90 m3/s threshold. For this particular test case, the ANNs were
trained on the climate-flow relationships from the smaller sub-ba-
sin and predictions were scaled up to a larger sub-basin; but the
ANNs could just as easily be trained on paired climate-flow data
from a larger sub-basin and predictions scaled down to a smaller
sub-basin.

For several storm events of Fig. 8, the predicted Q̂ lags behind
the observed Q. This is again due to the loss of information in
upscaling the hourly data to the daily timescale. Predictions would
be improved if the climate-flow relationships were better captured
in the data (e.g., hourly data).

Error metrics calculated over the three forecasting years (Ta-
ble 6) indicate the CPN outperforms the GRNN. Errors would have
been less had hourly data been used. There are benefits of the
GRNN model: it is a single-pass training algorithm and does not re-
quire the functional form of the regression line be specified a priori.
One disadvantage is that the GRNN does not perform well with
irrelevant inputs without major modification of Specht’s original
algorithm. Therefore, it is not a good choice with more than 5 or
6 non-redundant inputs. The CPN algorithm used in this work does
not require iterative training, while the GRNN smoothing parame-
ter, r2, must be iteratively optimized through trial-and-error. The
greater accuracy (Table 6) makes the CPN a slightly more suitable
method this for particular application – predicting streamflow in
ungauged basins.

The transfer of the CPN methodology from one basin to another,
and subsequent scaling of predicted flows by the ratio of drainage
storm events at the: (a) hourly and (b) daily timescales.



Fig. 8. Time-series streamflow observations and ANN predictions on the Winooski River at Montpelier: (a) over a 90 day forecast period (summer of 2004) and (b) qq-plots for
three summer prediction periods (2004–2006) using recurrent ANNs trained on the Dog River.

Table 6
Error metrics for the Winooski River at Montpelier flow predictions from 2004 to
2006.

CPN GRNN

R2 0.24 0.16
E 0.12 �0.35
RMSE 18.0 22.7
Corr 0.49 0.37
n 540 540
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areas, does not result in a significant loss of prediction. This is con-
tingent on the basins having similar geological and geographical
characteristics (e.g., shape, slopes, soils) as well as landuse pat-
terns. These basins were primarily forested (83% in Winooski and
85% in Dog sub-basins, respectfully) with marginal impermeable
(5% and 8%) and cleared (12% and 7%) landuse types (Hackett,
2009). Training the CPN on daily data from the Dog River and pre-
dicting in the same sub-basin resulted in a CPN r2 of 0.29, while
training on the Dog River and predicting flow on the Winooski Riv-
er at Montpelier resulted in a CPN r2 of 0.24; and whether these
forecasts are ‘‘accurate” enough depends on the user’s application.
The successful transference of the models from one basin to an-
other is primarily a function of: (1) using measured local climate
data as the driver (inputs) and (2) training the network on a suffi-
ciently large number of regional climate-flow data (e.g., flood and
low flow events) over a time period when landuse did not change
significantly.
Conclusions

Two recurrent ANN models were trained on climate-flow data
from one basin and used to make predictions with climate data
from another nearby basin. The recurrent counterpropagation net-
work (CPN) forecasts daily streamflow in the nearby, ungauged ba-
sins as accurately as in the basin on which it was trained. One of
the key results of this work, and the reason why time-lagged pre-
dictions of steamflow improve forecasts, is that the recurrent flow
predictions (used as model inputs) are driven by time-lagged lo-
cally-measured climate data. Climate data are driving the system.
This is also the reason that the models are relatively insensitive
to our initial guess of streamflow. A simple ratio, based on a rela-
tionship between bankfull discharge and basin drainage area,
was used to scale flow predictions between basins with different
drainage areas.
The two recurrent ANN models were first compared with other
traditional data-driven methods using time-lagged measured flow
data as model inputs. Error metrics show flow predictions to be
similar to those in the published literature. Using time-lagged flow
observations as inputs, as opposed to time-lagged predictions, does
produce more accurate results; however, this approach is not
applicable in ungauged basins. As a result, we focus on recurrent
methods of using time-lagged predictions of flow and measured
climate data as model inputs.

Basin characteristics (e.g., shape, slope) had an important effect
on model accuracies at different temporal scales. In this case, pre-
dictions using hourly data were more accurate than those using
daily data because important climate-flow relationships were lost
when using the upscaled daily data. Time-series analysis of the cli-
mate-flow data provided a transferable and systematic methodol-
ogy for determining appropriate number of time-lagged model
inputs. The successful demonstration of these flow prediction
methods with publically available USGS flow and NCDC climate
datasets suggests the proposed methods are applicable in humid,
temperate climate zones.

By selecting data-driven ANNs that always converge and avoid
stochastic training, these methodologies are straightforward to
execute and widely applicable to small ungauged basins. As such,
they should prove useful to watershed and water resources
management stakeholders.
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