# Determination of sediment phosphorus concentrations in St. Albans Bay, Lake Champlain: Assessment of internal loading and seasonal variations of phosphorus sediment-water column cycling

Final Report

#### 09-30-2005

By Gregory Druschel, Aaron Hartmann, Rachel Lomonaco, and Ken Oldrid University of Vermont Department of Geology 180 Colchester Avenue Burlington, VT 05405

> Prepared for Vermont Agency of Natural Resources 103 South Main St. Waterbury, Vermont 05671

## TABLE OF CONTENTS:

| List of Tables                                               | 4  |
|--------------------------------------------------------------|----|
| List of Figures                                              | 5  |
| Acknowledgements                                             | 7  |
| SECTION 1 – EXECUTIVE SUMMARY                                | 8  |
| SECTION 2 – INTRODUCTION                                     | 11 |
| 2.1. Problem description at St. Albans Bay                   | 11 |
| 2.2. Phosphorus mobility associated with redox processes and | 11 |
| mineralogy changes                                           |    |
| 2.3. Summary of previous work on nutrients in St. Albans Bay | 14 |
| SECTION 3 - STUDY DESCRIPTION                                | 14 |
| 3.1. Goals of this study                                     | 14 |
| 3.2. Description of study sites                              | 15 |
| 3.3. Description of analytical techniques                    | 16 |
| SECTION 4 - SEASONAL MEASUREMENTS OF PHOSPHORUS,             | 20 |
| IRON, MANGANESE                                              |    |
| 4.1. Electrochemical                                         | 20 |
| 4.2. Weather data                                            | 22 |
| 4.3. Overlying water chemistry data                          | 23 |
| 4.4 Sediment extractions                                     | 25 |
| 4.5. Statistical analysis                                    | 31 |
| SECTION 5 – ST. ALBANS BAY SEDIMENT SAMPLING AND             | 33 |
| ASSESSMENT OF PHOSPHORUS LOAD                                |    |
| 5.1. Sediment extractions                                    | 33 |
| 5.2. Potentially bioavailable inorganic phosphorus           | 34 |
| 5.3. Statistical analysis                                    | 36 |
| 5.4. Historical profile information                          | 37 |
| 5.5. Historical comparison of basin samples                  | 39 |
| SECTION 6 - SUMMARY AND CONCLUSIONS                          | 43 |
| SECTION 7 – REFERENCES                                       | 45 |

APPENDIX A – TABULATED SEASONAL DATA APPENDIX B – TABULATED BASIN DATA APPENDIX C – TABULATED HISTORICAL COMPARISONS APPENDIX D – RAW DATA COMPILATION

# LIST OF TABLES

| Table 1 – GPS logged locations of all sampling sites                              |
|-----------------------------------------------------------------------------------|
| Table 2 – Sediment extraction methods                                             |
| Table 3 – Water column data                                                       |
| Table 4 – Mean Total Phosphorus data, Station 40, for 1992-2003 and 200423        |
| Table 5 – Averaged data for Fe, Mn, P extracted from seasonal cores               |
| Table 6 – Correlation coefficients for ascorbic acid extracted P with Mn and Fe30 |
| Table 7 – Averages, minimums, maximums for cores study sections                   |
| Table 8 – Total phosphorus load calculations                                      |
| Table 9 – Correlation coefficients for all basin samples P-Mn and P-Fe            |

## LIST OF FIGURES

| Figure 1 – Depiction of processes governing a redox front11                                              |
|----------------------------------------------------------------------------------------------------------|
| Figure 2 – Map of St. Albans Bay with sampling sites14                                                   |
| Figure 3 – Selected porewater profiles from voltammetric analysis                                        |
| Figure 4 – Weather data from May 1 through September 30, 200420                                          |
| Figure 5 – Phosphorus in waters of St. Albans Bay, 2004 sampling by DEC24                                |
| Figure 6 – P and Fe concentrations (Ascorbic acid extractions) for seasonal samples25                    |
| Figure 7 – P, Mn, and Fe concentrations (HCl extractions) for seasonal samples25                         |
| Figure 8 - P concentrations (NaOH extractions) for seasonal samples26                                    |
| Figure 9 – P concentrations (HCl extractions) for top 2 cm of seasonal samples26                         |
| Figure 10 – Profiles for Fe, Mn, P concentrations (Ascorbic acid and NaOH extracted) of seasonal samples |
| Figure 11 - Profiles for Fe, Mn, P concentrations (HCl and NaOH extracted) of seasonal samples           |
| Figure 12 – Seasonal Fe concentrations plotted with Chlorophyll-A data29                                 |
| Figure 13 – Seasonal Mn concentrations plotted with Chlorophyll-A data29                                 |
| Figure 14 – Profile of averaged total Fe, Mn, and P data for basin samples                               |

| Figure 15 – Generalized sediment profile diagram |   |
|--------------------------------------------------|---|
| Figure 16 – Comparison diagram 2004 – 19924      | 1 |
| Figure 17 – Comparison diagram 2004 – 19824      | 1 |
| Figure 18 – Comparison diagram 1982 – 199242     | 2 |

#### ACKNOWLEDGEMENTS

GKD would like to acknowledge the openness, inquisitiveness, and dedication of the people of St. Albans, VT who have pressed to better understand the water quality issues in St. Albans Bay. The St. Albans Area Watershed Association and Dan Lindley, town Administrator of St. Albans, are especially recognized for their support of this project. We gratefully acknowledge the assistance of the Vermont Department of Environmental Conservation for assisting with the collection of the 43 basin-wide cores as well as collecting additional samples and providing data from Site 40 in St. Albans Bay. The author acknowledges the assistance of several students who played a significant role in sample collection and testing for this project: Aaron Hartmann, who has headed the seasonal aspect of this project; Rachel Lomonaco, Greg Lorenson, and Deb Schulman who assisted with sample collection and voltammetric measurements, and Ken Oldrid, who tirelessly worked in the fall processing sample extractions. Finally, GKD wishes to thank Eric Smeltzer (VT DEC), Mary Watzin (UVM), Jack Drake (UVM), Andrea Lini (UVM), and Paul Bierman (UVM) for their time towards discussions on a number of issues related to this project.

#### **SECTION 1 – EXECUTIVE SUMMARY**

This study was undertaken to determine the current quantity of phosphorus in the sediments of St. Albans Bay, Vermont, USA, and to address the role of seasonal variations related to changing redox conditions and mineralization on phosphorus cycling and mobility in those sediments.

43 separate cores were collected in the first week of August, 2004 with the assistance of the Vermont Department of Environmental Conservation to assess the overall concentration and spatial distribution of phosphorus, iron, and manganese in the sediments of St. Albans Bay. These cores were sectioned into 0-1, 1-2, 2-3, 3-4, 4-5, 5-8, and 8-12 cm aliquots and their porosity, organic content, soluble reactive phosphorus (NH<sub>4</sub>Cl extracted), mineralizable phosphorus (NaOH extracted), residual inorganic phosphorus (HCl extracted), acid-extractable iron and manganese (HCl extracted), amorphous Fe and manganese (ascorbic acid extracted), reactive phosphorus (ascorbic acid extracted), and total iron, manganese, and phosphorus (aqua regia extracted) determined. Statistical analysis of the data indicates that the mobility of phosphorus is tied to the mobility of iron and manganese, especially in the top 2 cm of sediment. The total amount of phosphorus tied up in the bay is significant; in the top 10 cm there are approximately 1200 tons of phosphorus associated with amorphous iron and manganese oxyhydroxide minerals, and over 4000 tons of total phosphorus. An original purpose of the study was to compare phosphorus concentrations in cores collected during 2004 with cores sampled by previous studies in 1982 and 1992. However, comparison to previous studies in a direct, quantitative fashion was determined to be inappropriate due to problems with how sampling results would be influenced by redox front positions and to potential mobility of phosphorus collected by the various studies at different points in time during the summer season, potential problems with analytical procedures in older reports not comparable to newer, more accurate methods employed here, spatial heterogeneities in the system, and indeterminate sedimentation rates for different parts of the bay.

A total of 10 separate sampling excursions were undertaken between late May and early October of 2004 in order to gather data to determine the seasonal changes in redox chemistry within the top few centimeters of sediments using *in situ* electrochemical methods to investigate porewater iron, manganese, sulfur, and oxygen chemistry. Sediment core samples were additionally sectioned and analyzed to determine the distribution of iron, manganese and phosphorus for a comparative study looking at the relative mobility of these elements over this time period. It is well known that Fe and Mn oxyhydroxide minerals strongly sorb phosphorus to their surfaces (Shenker et al., 2005; van der Zee et al., 2003; Roden and Edmonds, 1997).

When these minerals are reduced due to conditions in the sediments becoming more anoxic, the sorbed phosphorus can be released into adjacent porewaters where it may diffuse and potentially reach the overlying water column - where it would serve as a nutrient source, potentially driving algal activity. Electrochemical results show that the comparatively colder and windier conditions of summer 2004 kept iron oxyhydroxide minerals in surficial sediments of the inner bay from being reduced, but that manganese oxyhydroxide minerals were completely reduced up to the sediment-water interface and soluble Mn was observed in the water column. This observation is coupled with statistical analysis of the sediment core chemistry from our seasonal site which suggests that phosphorus mobility is strongly correlated with changes in iron and manganese mineralization. While manganese minerals can release significant Mn into the porewater and overlying water columns, the continued presence of oxidized iron oxyhydroxides through the summer should have effectively contained any significant phosphorus released from manganese oxyhydroxide minerals. However, in summers where conditions may select for more reducing conditions to drive iron reduction (generally higher temperatures, less turbulence from wind shear, and greater photosynthetic activity), or in parts of the bay where conditions select for greater anoxia, the redox front may move well into the water column, transform a more significant proportion of oxidized iron and manganese oxyhydroxide minerals, and release substantial phosphorus into the overlying water column.

In summary, the results of this study indicate that there remains a substantial reservoir of phosphorus in the sediments of St. Albans Bay which is mobile within the sediment column due to changing redox front positions and associated changes in iron and manganese mineralization. This sediment reservoir has the potential to contribute phosphorus to the water in the bay for a long period of time into the future; flux of sediment into the overlying water column will be at least partly based on highly reducing events which may vary considerably in space and time.

#### **2. INTRODUCTION**

2.1. Problem description: St. Albans Bay: Sediment-bound phosphorus of St. Albans Bay has been a problematic source of phosphorus driving seasonal algal blooms and eutrophication of an important water body for many years (Smeltzer, 2003). This internal load of phosphorus in the sediments has been the subject of several studies attempting to characterize the total amounts held in the sediments as well as the rate and mechanism(s) of release to the water column (Ackerly, 1983; Martin et al., 1994; Smeltzer et al., 1994; Cornwell and Owens, 1999). Martin et al. (1994) used the results of their field work, compared to those done 12 years prior by Ackerly, to develop a predictive model for the rate at which phosphorus would naturally be removed from the sediments through a combination of exchange out of the sediment and mass transport into the larger Lake Champlain system. This projected self-cleaning effect has not proven to be accurate, in that phosphorus concentrations in the bays and the occurrence of algal blooms has not decreased as projected (Smeltzer, 2003). In light of this, we have undertaken this study to both assess current P levels in the sediments of St. Albans Bay and to investigate seasonal variations in redox properties and P levels in those sediments to better understand the driving forces behind P mobility in this environment.

2.2. Phosphorus mobility associated with redox processes and mineralogy changes. The competition between  $O_2$  entrainment into the water column (a function of both photosynthesis and wind creating turbulence and increased  $O_2$  mixing of the water column; Langmuir, 1997) and depletion as a result of primary productivity and interaction with reduced species governs where the redox front in the sediment will be at any particular time (Figure 1). This redox front describes where there is a transition from oxic conditions (presence of significant  $O_2$ ) to anoxic conditions (no  $O_2$  and the presence of reduced forms of iron, manganese, and/or sulfur).



Figure 1 - Depiction of processes governing oxygen penetration into sediments

It has been shown, at Rehoboth Bay in southern Delaware, that seasonal variations in redox character of sediments can promote substantial P release from sediments into the overlying water column (Rozan et al., 2002). This release was shown to depend on the reduction of ferric oxyhydroxide minerals which display a strong affinity for phosphorus (Krom and Berner, 1981; Rozan et al., 2002). Ackerly (1983) specifically noted that a significant fraction of phosphorus species are most likely sorbed to iron oxyhydroxide minerals in the sediments of St. Albans Bay. The redox changes associated with the transformation of iron-bearing minerals in sediments is thought to be driven by microbial activity and the consumption of organic matter to drive anoxia (Kostka and Luther, 1995). While this may be associated with increased senescence in some environments (Rozan et al., 2002), the presence of excess organic material is all that is required to drive heterotrophic microbial activity (Brock and Madigan, 1991). Increased temperature may substantially increase the rate at which microorganisms are able to utilize organic material as a metabolic substrate coupled to oxygen reduction, thereby increasing the level of anoxia. In an environment with no lack of organic material, the temperature alone may thus be a critical factor in driving significant changes of iron mineralogy which then may drive P release from the sediment to the overlying water column. Seasonal algal bloom activity thus may suggest a seasonal influence of phosphorus input to the St. Albans Bay watershed tied to changing redox front positions through the summer season.

Observation of these changing redox states in water and sediments requires careful consideration of the tools and techniques used in assessing speciation changes for oxygen, iron, sulfur, and manganese in the sediments and overlying water. It is commonly accepted that redox disequilibrium is commonplace and results in erroneous measurements of redox state with platinum ORP electrodes (Grenthe et al., 1992). Oxygen probes are only sensitive to dissolved oxygen and do not work well in suboxic environments or in sediments. Microelectrodes have been developed which are able to measure  $O_2$ ,  $H_2O_2$ ,  $Fe^{3+}$ ,  $Fe^{2+}$ ,  $H_2S$ ,  $HS^-$ ,  $S_2O_3^{2-}$ ,  $Mn^{2+}$ ,  $Cu^{2+}$ , and many other species *in situ* and in real time (Brendel and Luther, 1995; Luther et al., 1999; Luther et al., 2003; Druschel et al., 2003). These tools have been used in Lake Champlain to assess the dynamics of redox speciation and their effect on porewater pH and pCO<sub>2</sub> concentrations (Cai et al., 2002). Rozan et al. (2002) combined the use of Au-amalgam microelectrodes with sediment sampling and porewater extraction techniques to correlate the spatial changes in Fe porewater speciation with changing sediment and porewater P concentrations over time in Rehoboth Bay, Delaware.

2.3. Summary of previous work done in St. Albans Bay: The eutrophic conditions and flux of nutrients into St. Albans Bay has seen considerable attention in the past 25 years. Ackerly's 1983 M.S. thesis was among the first reports on the phosphorus load contained in the sediments of the bay. Ackerly found that increased phosphorus loading was reflected in profiled gradients controlled by a combination of anthropogenic loading and "microzone retention". He hypothesized that the iron oxide fraction in the sediment did not reflect trends with respect to HCI-extracted P, but did note several relationships of P extracted other ways (NH<sub>4</sub>Cl and NaOH extracted) that suggest absorption to mineral grains, including iron-rich organic muds. Ackerly's report was followed up with the 1994 report from Martin et al., which repeated Ackerly's sampling locations and extraction methods. Martin et al. found that there was substantially less phosphorus in the sediments of St. Albans Bay measured in 1992 than there was in 1982. This conclusion noted that P loading to the bay had dropped off significantly with upgrades to

the St. Albans Waste Water Treatment Facility (WWTF) and the closure of the Hood Dairy facility in 1986 and 1983, respectively. The response of the bay sediments was subsequently modeled and the results extrapolated to predict that mean P levels in the water column would drop to beneath the water quality goal of 17  $\mu$ g/l by 1995. A report by Smeltzer et al. (1994) looked more closely at modeling the loading and cycling of P in the sediments of St. Albans Bay and modeled definitive links between sediment P release and redox processes affected by temperature and wind. Cornwall and Owens (1999 and HydroQual, Inc. 1999) next did a detailed study of a number of areas in Lake Champlain, including St. Albans Bay, to look at processes of eutrophication and sediment P cycling. Field studies (Cornwell and Owens 1999) noted higher rates of soluble P release rates from the sediments associated with both microbial metabolic activity (noting specifically metal oxide reduction leading to high soluble Fe and Mn concentrations). Modeling exercises (HydroQual, Inc. 1999) were able to reproduce P dynamics in many areas of the lake except in low oxygen environments such as St. Albans Bay. A lay monitoring program at St. Albans Bay (Picotte 2002) and the monitoring program supported by the Lake Champlain Basin program (DEC report 2004) have helped to create a database of water column P concentrations

#### **3. STUDY DESCRIPTION**

3.1 Goals of this study: The goals of this study were twofold:

a. Assess the amount of phosphorus which is currently present in the sediments of St. Albans Bay, and compare current amounts with levels measured during previous studies conducted in 1982 and 1992, <u>if appropriate</u>.

b. Investigate seasonal changes in redox properties (the position of the redox front, Figure 1) and determine if they may be linked to possible ways in which phosphorus in the sediments may be made available to organisms in the water column.

Comparison with previous studies (Ackerly, 1983 and Martin et al., 1994) is only possible and appropriate if the overall amount of seasonal variation is negligible; i.e., if there is any reason to think that P levels in the sediment may be variable due to conditions that are not repeatable (like weather) then determining changes in P content of the bay is not possible with any accuracy. Assessment of the phosphorus concentrations present in the bay sediments combined with advances in understanding how phosphorus may behave in the system will be of greater use to the community.

*3.2. Description of Study Sites*: 43 study sites in the inner, middle, and outer regions of St. Albans Bay and the Stevens Brook wetland area were sampled in the first week of August, 2004 (Figure 2 for map, Table 1 for specific locations catalogued by Global Positioning System).



Figure 2 - Map showing study sites sampled in August 2004

| Site | Lattitude  | Longitude  |
|------|------------|------------|
| 1    | N44 47.400 | W73 09.733 |
| 2    | N44 48.150 | W73 09.067 |
| 3    | N44 48.517 | W73 08.900 |
| 4    | N44 47.733 | W73 08.833 |
| 5    | N44 46.621 | W73 10.535 |
| 6    | N44 46.598 | W73 10.155 |
| 7    | N44 46.386 | W73 09.837 |
| 8    | N44 47.150 | W73 09.683 |
| 9    | N44 46.900 | W73 09.450 |
| 10   | N44 47.367 | W73 10.117 |
| 11   | N44 47.647 | W73 09.820 |
| 12   | N44 47.467 | W73 09.383 |
| 13   | N44 47.317 | W73 09.033 |
| 14   | N44 47.633 | W73 09.167 |
| 15   | N44 47.933 | W73 08.683 |
| 16   | N44 48.350 | W73 09.033 |
| 17   | N44 49.200 | W73 08.800 |
| 18   | N44 49.100 | W73 08.850 |
| 19   | N44 48.883 | W73 08.800 |
| 20   | N44 48.683 | W73 09.067 |
| 21   | N44 48.617 | W73 09.050 |

Table 1 - GPS located positions of study sites sampled in August 2004

| Site | Lattitude  | Longitude  |
|------|------------|------------|
| 24   | N44 47.967 | W73 09.317 |
| 25   | N44 48.133 | W73 08.817 |
| 26   | N44 47.150 | W73 08.883 |
| 27   | N44 46.100 | W73 10.683 |
| 28   | N44 49.317 | W73 08.750 |
| 29   | N44 49.250 | W73 08.467 |
| 30   | N44 49.217 | W73 08.700 |
| 31   | N44 48.967 | W73 08.767 |
| 32   | N44 49.000 | W73 08.650 |
| 33   | N44 48.817 | W73 08.817 |
| 34   | N44 48.783 | W73 09.017 |
| 35   | N44 48.350 | W73 09.167 |
| 36   | N44 48.333 | W73 08.767 |
| 37   | N44 47.800 | W73 08.483 |
| 38   | N44 47.967 | W73 09.017 |
| 39   | N44 47.817 | W73 09.183 |
| 40   | N44 47.817 | W73 09.517 |
| 41   | N44 47.517 | W73 08.733 |
| 42   | N44 47.167 | W73 10.083 |
| 43   | N44 47.000 | W73 10.383 |
| 44   | N44 46.233 | W73 10.083 |
| 45   | N44 46.400 | W73 10.883 |

The study sites were reached using Vermont Department of Environmental Conservation boats and the assistance of Pete Stangel during this sampling period. A seasonal site was chosen close to site 16 and sampled over the course of the summer (between 06/23/04 and 10/07/04), accessed using a University of Vermont Department of Geology canoe outfitted with an outrigger system. At least 2 duplicate cores were taken for each trip to the seasonal site. The seasonal site was selected as a site whose position and depth were likely to be strongly affected by the competing processes which govern the position of the redox front (see Figure 1).

#### 3.3. Description of analytical techniques:

*Core Sampling*. Sediment cores were collected in positions described above with a KB3 type (or Glew) gravity core sampler using a plastic liner tube 2.5" in diameter. The

sampler was rigged to take cores in water up to 100 ft depth, using a brass messenger to trigger the seal and lead weights to drive the coring device into the sediment. Following collection, the ends of the core tube were sealed with end caps and stored upright in a cooler at approximate ambient bottom temperatures. The seasonal cores were brought back to the lab and extruded under Ultra High Purity (UHP) Nitrogen flow using a piston assembly attached to a stationary frame and sectioned as the cores emerge from the top at 0-1, 1-2, 2-3, 3-4, 4-5, 5-8, and 8-12 cm intervals using a PTFE coated spatula. The 43 sediment cores collected in August were extruded immediately after collection on site (either on the boat or on shore) using identical techniques but without applied UHP nitrogen. Sediment sections were collected in screw-top plastic tubes and stored for analyses.

*In situ electrochemistry*. For the 2 seasonal sites we utilized Au-amalgam microelectrodes prepared after the methods outlined in Brendel and Luther (1995) and Luther et al. (2003). Briefly, 100 µm diameter gold wire was soldered to a shielded cable and encased inside a drawn glass tube filled with WestMarine epoxy. The tip was polished with a succession of diamond grits and plated with a thin film of mercury, which was then amalgamated by applying a 9V potential vs. a platinum wire in 1 N NaOH. The electrode was calibrated for  $O_2$ ,  $Fe^{2+}$ ,  $Mn^{2+}$ , and  $H_2S$  in the lab. A Pt counter electrode and Ag/AgCl reference electrode are used in conjunction with the Au-amalgam working electrode, which is lowered through the water and sediment in the sampled core using an automated micromanipulator system (DLK-MAN1) integrated with the potentiostat (DLK-60) and computer controller which drives the electrochemical analyses. Voltammetric assessment of O<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, Fe<sup>2+</sup>, Fe<sup>3+</sup>, FeS<sub>(aq)</sub>, H<sub>2</sub>S, HS-, S<sub>x</sub>O<sub>v</sub><sup>n-</sup>,  $Mn^{2+}$  was accomplished over 100  $\mu$ m increments through the sediment-water interface and extending through the top 3-4 cm of sediment, depending on the physical limitations of driving the electrode through variably compacted sediment and the complete detection of the redox properties which define the redox front. Measurements were made in real time, using cyclic voltammetry measurements starting with an initial potential of -0.1Vheld for 2 seconds, then scanned between -0.1V and -1.8V vs. Ag/AgCl at a rate of 1V/second.

Sediment Extractions. Sectioned sediment samples were processed and P extracted using techniques identical to those used by Martin et al. (1994), except for total P extractions for reasons described below. In summary, each sample sediment fraction was weighed wet, dried at 105°C for at least 48 hours, cooled in a dessicator and reweighed, then ground with a ceramic mortar and pestle, sieved through a #140 sieve, and repartitioned into fractions for extraction. Another aliquot of the sediment was ashed at 380°C to determine total organic content. Each dried sample was split into 0.25-0.5 g sections and placed in 15ml tubes. One set up samples went through a sequential extraction, first reacting on a rotator for at least 30 minutes with 1 N ammonium chloride (NH<sub>4</sub>Cl), the supernatant collected and stored for analysis, and the solid then rinsed with 0.1 M KCl. The same solid sample was then reacted with 1 M sodium hydroxide (NaOH) for at least 18 hours (again kept agitated by placing a sealed tube on a rotator), the supernatant collected and stored for analysis, and the solid then rinsed with 0.1 M KCl. The same solid sample was then reacted with 0.5 M HCl for at least 8 hours (again kept agitated by placing a sealed tube on a rotator), the supernatant collected and stored for analysis, and the solid then rinsed with 0.1 M KCl. This sequential extraction scheme ideally extracts the soluble reactive P with the NH<sub>4</sub>Cl, mineralizable P with NaOH, and finally residual P with HCl. The Fe and Mn will be very minimally extracted using the NH<sub>4</sub>Cl or NaOH extractions, and acid-soluble fractions will be extracted with HCl. Another aliquot of dried sediment was reacted with an Ascorbic Acid solution (made using 10 g sodium citrate and 10 g sodium bicarbonate in 200 ml nitrogen-purged water, to which 4 g of ascorbic acid is slowly added) for at least 24 hours (kept agitated by placing a sealed tube on a rotator) before the supernatant was collected and stored for analysis. The ascorbic acid extraction liberates reactive phosphorus in addition to amorphous iron and manganese. A final aliquot of dried sediment samples underwent an aqua regia digestion at 85°C for at least 1 hour to dissolve all fractions containing P, Fe, and Mn. Aqua Regia recovers total phosphorous, iron, and Manganese in sediment samples. This method was tested for P, Fe, and Mn analysis against perchloric acid (85%), HCl-HNO<sub>3</sub>-H<sub>2</sub>O<sub>2</sub> (Aqua regia with 1% H<sub>2</sub>O<sub>2</sub> addition), and nitric acid (18 M) digestion methods (both hot and cold) and showed the greatest recovery and linearity of additions corresponding to the range of values for these sediments. Table 2 summarizes the sediment extraction techniques that were employed for both the large single sampling and the seasonal samples. We did not use perchloric acid digestion for total P per the Martin et al. (1994) study because in developing extraction and analytical procedures, we had better recovery and fewer sample matrix interference effects using Aqua Regia extractions analyzed by ICP-OES when compared to perchloric and nitric acid extractions. While these differences in extraction methods may well be cause for some differences between the past and previous studies, analytical techniques that were different likely contribute more significantly to any differences between samples taken in 1992 or 1982 (as described in extractant analysis section below). These extraction and analytical differences are likely a small component of why there might be differences between samples collected in different years (1982, 1992, 2004).

| Parameter                 | Extraction Method                   | Reference              |  |  |  |
|---------------------------|-------------------------------------|------------------------|--|--|--|
| Total P                   | HNO <sub>3</sub> - HCl digestion at | EPA 3050B              |  |  |  |
|                           | 85°C                                |                        |  |  |  |
| Soluble reactive P        | 1 N NH <sub>4</sub> Cl              | Williams et al. (1967) |  |  |  |
| Mineralizable P           | 1 N NaOH                            | Jackson (1970)         |  |  |  |
| Residual inorganic P      | 0.5 N HCl                           | Williams et al. (1967) |  |  |  |
| Organic Matter            | Ignition at 380°C                   | Ackerly (1983)         |  |  |  |
| Reactive P <sup>1</sup>   | Ascorbic acid                       | Anschutz et al. (1998) |  |  |  |
| Amorphous Fe <sup>2</sup> |                                     |                        |  |  |  |
| Total Fe                  | HNO <sub>3</sub> - HCl digestion at | EPA 3050B              |  |  |  |
|                           | 85°C                                |                        |  |  |  |
| Total Mn                  | HNO <sub>3</sub> - HCl digestion at | EPA 3050B              |  |  |  |
|                           | 85°C                                |                        |  |  |  |
| Acid-extractable Fe       | 0.5 N HCl                           | Williams et al. (1967) |  |  |  |
| and Mn                    |                                     |                        |  |  |  |

#### Table 2 – Sediment extraction methods and appropriate references

 $^{1}$  – Martin et al. (1994), called this P in extracts and digests

 $^{2}$  – Applied to seasonal samples and selected subset of other samples.

*Extractant Analyses*: Original plans to analyze phosphorus using ion chromatography and colorimetric methods proved unfeasible due to the high concentrations of Fe in these sediments which serve to interfere with the flow of eluent in ion chromatography and interfere with color development in colorimetric methods. Phosphorus, iron, and manganese for extractant samples were measured with Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) using a HY-Joriba Optima 2C ICP-OES housed in the Department of Geology at the University of Vermont. Methods were developed as part of this work to analyze these elements in aqua regia, ascorbic acid, and HCl matrices, and P in NH<sub>4</sub>Cl and NaOH matrices. The samples were generally diluted by 1:10 to 1:20 in water or matrix solution and placed in 15 ml falcon tubes in an autosampler rack. The samples were aspirated into the plasma flame (at 10,000°C) where they are completely ionized, and the emission spectra collected using a monochromator high resolution spectrophotometer. Emission lines were selected from a battery of different possibilities for appropriate detection limit, linear response range, and minimal interferences; lines used were: Fe 259.940, Mn 257.610, and P at 178.610 or 178.229. Each analysis was done in triplicate with a check standard run every 10 samples to assess instrument drift and determine baseline for quality control. Sample concentrations were always insured to be within the linear, constrained ranges of the standards employed, and the mixed standards were matrix matched to ensure accurate determinations of each element. All check standards were checked to be within 5% of their calibrated value, any deviation from this and samples were re-run after calibration and a check of all optics.

# SECTION 4 - SEASONAL MEASUREMENTS OF PHOSPHORUS, IRON, MANGANESE

*4.1 Seasonal sampling results*: Seasonal samples of St. Albans Bay sediments from our selected study site were analyzed by voltammetry and the redox front position was observed to change over the course of the summer (Figure 3). The data points for each of

the points in each profile represented in figure 3 is determined from the voltammetry analyses. Each profile depicts the concentration of oxygen, manganese (in  $Mn^{2+}$  form), iron (as ferrous,  $Fe^{2+}$ , or ferric,  $Fe^{3+}$  forms of iron), and iron sulfide clusters (which are the predominantly observed chemical form of soluble reduced sulfur in these sediments) as a measurement in nA, the current associated with each chemical species which reacts at the electrode which is directly proportional to concentration. Profiles depict oxygen  $(O_2)$  depletion near the sediment/water interface (marked as 0 depth on these profiles), a consequence of primarily biological activity which utilizes oxygen as an electron acceptor and the copious organic matter in the sediments as substrate. When this oxygen is consumed, bacterial species which can utilize alternate electron acceptors (essentially breathing oxidized forms of manganese, iron, and sulfur for example) with organic matter (as food) for metabolic energy are likely active in these sediments. The presence of reduced manganese, iron, and sulfur in the sediments (seen as the increase of reduced Fe, Mn, or FeS with greater depth in Fig. 3 profiles) indicates the presence and activity of these organisms. The abiotic reactions which could generate these chemical species at conditions similar to St.Albans Bay sediments are very slow. Note that these reactions directly, or at least indirectly, cause dissolution or transformation of iron or manganese oxyhydroxide minerals in these types of systems, and that where oxyhydroxide mineral transformation is going on at any time is defined by the position of redox fronts in the sediment profiles such as those presented in Figure 3.

Analyses indicate that even in the first electrochemically measured core on 06-23-04, the sediments were anoxic very close to the sediment-water interface. Following this, manganese reduction became more prevalent, with manganese reduction going through the top of the sediment water interface in the samples from 07-26-04. While iron and sulfate reduction were observed to occur in the porewaters from these sediments, notably getting as high as 9 mm from the sediment-water interface in mid-August, at no time in our sampling did either process breach the sediment-water interface. The apparent role of manganese reduction in the sediments observed in the course of the summer caused us to alter some of the original analysis plans to focus more on Mn relationships with respect to phosphate levels as opposed to evaluating the role of iron sulfide mineralization.



Figure 3 - Profiles of porewater chemistry from voltammetric analysis of selected seasonal cores

4.2. *Weather data*: Given the potential importance of wind and temperature on the positioning of the redox fronts in these systems (Figure 1) we have compiled weather

data from the closest monitoring station available (Burlington Airport). Data from summer 2004, over the time span we sampled sites in Saint Albans Bay, are graphed in Figure 4. Average and maximum daily temperatures are plotted as well as average daily windspeeds. The summer was generally colder and had a greater number of windy days than average, conditions that would affect the redox front in a manner which would keep more of the sediment oxic as opposed to anoxic (refer to Figure 1).



Figure 4 – Graph of weather data collected May 1 through September 30, 2004 at Burlington International Airport. Temperature is in degrees Fahrenheit and windspeed is in miles per hour.

*4.3. Overlying water chemistry data.* Water samples collected through the course of the summer by Pete Stangel (VT DEC) at the approximate location of the seasonal site are tabulated in Table 3. Table 4 shows a comparison of the averaged monthly data from 2004 with the averages from the period 1992-2004 (data from the VT DEC long-term monitoring program). Figure 5 plots the total phosphorous from this location and the total P data collected and analyzed by the VT DEC at Station 40, part of the long-term monitoring program database

(http://www.anr.state.vt.us/dec/waterq/cfm/champlain/lp\_longterm-lakes.cfm), for the 2004 season. The apparent disconnect between significant shifts in sediment redox front positions and overlying water chemistry at station 40 is likely due to a combination of undefined P fluxes from the sediment and possibly that activity in the sediment below station 40 may be different from the seasonal spot where the sediments were collected for this study. A seeming spike in total P concentrations measured at the seasonal station which is above the averages for station 40 suggests that the flux of P from sediments may have significant spatial and temporal constraints, i.e., different locations at different times may exhibit very different P flux out of the sediment. These points require detailed study of the specific flux of P out of the sediment in different locations, which was not a topic specifically covered by the experiments or data in this study.

|                    | 07/19/04 | 07/26/04 | 09/16/04 | 09/30/04 | 10/19/04 |
|--------------------|----------|----------|----------|----------|----------|
| DO                 | 7.5      | 8.4      |          | 8.7      | 9.8      |
| TN                 | 0.37     | 0.44     | 0.53     | 0.4      | 0.39     |
| TP ( <b>ng</b> /l) | 30       | 43       | 51       | 30       | 30       |
| Ca                 | 16.7     | 19.1     | 20.9     | 18       | 19.1     |
| Fe                 | 0.12     | 0.115    | 0.244    | 0.181    | 0.126    |
| K                  | 1.63     | 1.97     | 2.2      | 1.86     | 1.85     |
| Mg                 | 3.65     | 4.15     | 4.38     | 3.96     | 4.02     |
| Na                 | 6.3      | 8.2      | 8.01     | 7.03     | 7.41     |

Table 3 - Water column data for seasonal site from VT DEC (Pete Stangel, pers. comm.), concentrations are in mg/l except as noted for total phosphorus (TP).

|       | Mean TP (mg/l) |       |  |  |  |  |  |  |  |
|-------|----------------|-------|--|--|--|--|--|--|--|
| Month | 1992-2003      | 2004  |  |  |  |  |  |  |  |
| Apr   | 0.019          |       |  |  |  |  |  |  |  |
| May   | 0.023          | 0.023 |  |  |  |  |  |  |  |
| Jun   | 0.027          | 0.029 |  |  |  |  |  |  |  |
| Jul   | 0.028          | 0.029 |  |  |  |  |  |  |  |
| Aug   | 0.030          | 0.027 |  |  |  |  |  |  |  |
| Sep   | 0.031          | 0.034 |  |  |  |  |  |  |  |
| Oct   | 0.024          | 0.024 |  |  |  |  |  |  |  |

Table 4 – Compilation of average values for St.Albans Bay waters (VT DEC Station 40) showing no significant differences for 2004 compared to the past years since 1992.



Figure 5 – Water column phosphorus at Station 40 and selected samples also taken above the seasonal sampling site used in this study. (Data from Pete Stangel, VT DEC, pers. Comm.)

4.4 Sediment extraction data, seasonal: Sediment sections from seasonal samples taken 5/27/04, 06/23/04, 7/7/04, 07-19-04, 07/26/04, 08/05/04, 08/12/04, 08/18/04, 09/13/04, and 10/07/04 were extracted with sequential HCI-NaOH and Ascorbic acid. Tabulated analytical results for each of these extractions are in Appendix A. Summary plots of these datasets in time are found in Figures 6-9. Replicate cores were fully analyzed for a number of these dates; while internal check standards and triplicate measurements of each sample indicate little error in the measurements, there is substantial heterogeneity in different cores collected the same day at locations no more than 10 meters apart (Figure 7). Appendix A-2 tabulates the seasonal extraction data by section, averages for these depths across the season are in Table 5. Plotted as profiles, Figures 10 and 11, relationships between phosphorus concentrations and the Fe and Mn becomes clear, especially for the samples extracted with Ascorbic Acid, which should selectively solubilize the Fe and Mn oxyhydroxide minerals in the sediment and any P that may be associated with it.



Figure 6- Ascorbic Acid extraction results for seasonal samples



Figure 7 - HCl extr acted results for seasonal samples



Figure 8 - NaOH extracted results for seasonal samples



Figure 9 - HCl extracted results for seasonal samples in top 2 cm sections

|         | HC       | l extracti | ons      | NaOH     | Ascorbic Acid extractions |          |          |  |  |
|---------|----------|------------|----------|----------|---------------------------|----------|----------|--|--|
|         | µg/g sed | µg/g sed   | µg/g sed | µg/g sed | µg/g sed                  | µg/g sed | µg/g sed |  |  |
| depth   | Fe       | Mn         | Р        | Р        | Fe                        | Mn       | Р        |  |  |
| 0-1 cm  | 4081     | 111        | 519      | 269      | 2517                      | 211      | 296      |  |  |
| 1-2 cm  | 3906     | 77         | 528      | 219      | 2242                      | 139      | 237      |  |  |
| 2-3 cm  | 3633     | 62         | 519      | 210      | 1995                      | 106      | 196      |  |  |
| 3-4 cm  | 3737     | 61         | 506      | 201      | 2029                      | 102      | 192      |  |  |
| 4-5 cm  | 3563     | 61         | 520      | 196      | 1859                      | 93       | 179      |  |  |
| 5-6 cm  | 3285     | 61         | 531      | 181      | 1907                      | 99       | 178      |  |  |
| 6-8 cm  | 3475     | 63         | 536      | 178      | 1679                      | 85       | 167      |  |  |
| 8-10 cm | 3335     | 55         | 508      | 157      | 1573                      | 79       | 156      |  |  |

Table 5 – Averaged values for Fe, Mn, and P extracted from 10 seasonal cores.



Figure 10 – Profile of averages for seasonal site from ascorbic acid extractions



Comparing how iron, manganese, and phosphorus concentrations in the top of the sediment column changes over time, compared to how chlorophyll-A (which generally correlates with algal densities) in the water column changes over time may be another test of whether there were any discernible links between P mobilized from the sediments and algal densities in summer 2004. Direct statistical comparison of these datasets is not appropriate, however, as the degree of heterogeneity in the sediments would be quite different from any spatial heterogeneity in the water column. We can estimate any trends only in the broadest sense, and plots of these data for Fe and Mn extracted from the top centimeter can be found in Figures 12 and 13. While there appears to be some inverse relationships between Chlorophyll-A and Mn, little relationship exists between Chlorophyll-A and Fe. We concentrate on the top of the sediment column because the activity of oxides at the top will be critical to the release of potentially bioavailable phosphorus into the water column. This trend reflects the importance of Mn redox changes through the course of summer 2004, changes which were observed to occur in the pore water analyses (Section 4.1).



Figure 12 – Plotted iron concentrations extracted with HCL and Ascorbic acid from seasonal samples with Chlorophyll-A data (Pete Stangel, VT DEC, pers. Comm..)



Figure 13 – Plotted manganese concentrations extracted with HCL and Ascorbic acid from seasonal samples with Chlorophyll-A data (Pete Stangel, VT DEC, pers. Comm..)

4.5. Statistical analysis of seasonal data: One of the primary questions this study seeks to address regards the driving forces which may affect phosphorus mobility in the sediments of St. Albans Bay. Particularly the role of FeOOH and MnOOH minerals and their ability to sorb orthophosphate ions from solution will be impacted by the position of the redox front which may thus have significant impacts on P mobility due to the reduction and dissolution of those minerals. The correlation between P and Mn and/ or Fe is therefore critical in starting to determine if this process may be an important factor in the remobilization and essential cycling of phosphorus between the sediment and overlying water column. Appendix A-3 contains a tabulation relating Mn, Fe, and P for samples extracted with ascorbic acid or hydrochloric acid. The tables present Pearson correlation coefficients (a number between 0 and 1 indicates none to perfect correlation, respectively while a number between 0 to -1 indicates none to perfect inverse correlation) and Pvalues (which is a statistical test of the significance of the correlation, if the P-value is less than 0.050, the correlation is significant; if the P-value is greater than 0.050, there is insufficient proof to statistically support the relationship). Table 6 lists Pearson correlation coefficients between reactive phosphorus and amorphous manganese or iron for depth intervals measured on seasonal samples through the 2004 sampling season. All P-values for these samples were below 0.050, indicating a statistically significant and strong correlation between these elements in time. Similar data for hydrochloric acid extracted P, Mn, and Fe have P-values in excess of 0.050, indicating that there is no statistically significant correlation to be made between those elements when extracted with HCl.

|         | Ascorbic Acid |       |  |  |  |  |  |  |
|---------|---------------|-------|--|--|--|--|--|--|
| Depth   | P-Fe          | P-Mn  |  |  |  |  |  |  |
| 0-1 cm  | 0.863         | 0.894 |  |  |  |  |  |  |
| 1-2 cm  | 0.933         | 0.921 |  |  |  |  |  |  |
| 2-3 cm  | 0.829         | 0.567 |  |  |  |  |  |  |
| 3-4 cm  | 0.604         | 0.559 |  |  |  |  |  |  |
| 4-5 cm  | 0.732         | 0.777 |  |  |  |  |  |  |
| 5-6 cm  | 0.889         | 0.895 |  |  |  |  |  |  |
| 6-8 cm  | 0.866         | 0.804 |  |  |  |  |  |  |
| 8-10 cm | 0.894         | 0.876 |  |  |  |  |  |  |

 Table 6 – Pearson correlation coefficients for ascorbic acid extrac ted reactive phosphorus with amorphous iron and manganese.

The statistical analysis of seasonal sediment samples indicates that the mobility of phosphorus within the sediment is closely tied to both iron and manganese. Significant differences in how P is related to Fe and Mn depending on how the elements were extracted further suggest that the mobility of P is tied to forms of manganese and iron that are specifically solubilized by Ascorbic acid, namely iron and manganese oxyhydroxide minerals. Combined with the electrochemistry data showing that redox fronts in this system do change over time, these results show that changes in the iron and manganese oxyhydroxide minerals are an important driving force in the mobility of phosphorus within the sediments of St. Albans Bay.

*Phosphorus Mobility*: The arguments above show definitely that seasonal phosphorus mobility is at least partly governed by changes in iron and manganese oxyhydroxide mineralization within the sediment. This study does not specifically address the release of phosphorus from the sediment into the overlying water column, though establishing the mechanism by which phosphorus may be mobilized is a necessary step in properly determining the flux of P in and out of the sediments of St. Albans Bay. In light of this finding, it is likely that any release of phosphorus into the overlying water column would require that mineral transformation should consume all available sites where any mobilized phosphorus could stick on its way out of the sediment and into the water column. Put another way, because reduction of iron and manganese occurs lower in the sediment (see profiles, figure 3) the last oxyhydroxide minerals to be dissolved would be at the top, nearest the sediment/water interface. As phosphorus released lower in the sediment column diffuses upwards, if it encounters an iron and manganese oxyhydroxide mineral which has spare space for another phosphorus ion, it will stick there. Only when that phosphorus can diffuse through the top sediments to the overlying water column without encountering an iron and manganese oxyhydroxide mineral WITH available sorption sites (i.e., there can be iron and manganese oxyhydroxide minerals present but if they are 'full' of P and no more can stick, the free P won't be affected) will that phosphorus continue to diffuse into the water column. This scenario may result in significant flux of P over short time frames, an episodic event when the sediment is most reduced (where the balance of oxygen penetration and oxygen consumption is pushed

well into the water column, after Figure 1). The only P flux measurements taken for St. Albans Bay (Cornwell and Owens, 1999) did not take this into account and thus are not representative of how significant reservoirs of P may be mobilized into the water column in St. Albans Bay (a point which the authors were cognizant to point out in Cornwell and Owens, 1999).

# SECTION 5 – ST. ALBANS BAY SEDIMENT SAMPLING AND ASSESSMENT OF PHOSPHORUS LOAD

5.1. Bay-wide samples sediment extraction: Results of the analysis of extractions from the 43 core samples collected in early August are tabulated in Appendix B-1. Sample concentrations in general vary over 3 orders of magnitude bay-wide and can display significant heterogeneity mineralogically and chemically over short intervals. Soluble reactive phosphorus (NH<sub>4</sub>Cl extracted) has a minimum measured value of 0.2  $\mu$ g/g sediment to a maximum of 177  $\mu$ g/g sediment and an average of 14  $\mu$ g/g sediment. Mineralizable phosphorus (NaOH extracted) averages  $363 \mu g/g$  sediment, with a minimum of 2  $\mu$ g/g sediment, and a maximum of 2292  $\mu$ g/g sediment. Residual phosphorus (HCl extracted) averages 358  $\mu$ g/g sediment, with a minimum of 2  $\mu$ g/g sediment, and a maximum of 2413  $\mu$ g/g sediment. Reactive phosphorus (ascorbic acid extracted) averages 372  $\mu$ g/g sediment, with a minimum of 9  $\mu$ g/g sediment, and a maximum of 1880  $\mu$ g/g sediment. Total phosphorus (Aqua Regia extracted) averages 3400  $\mu$ g/g sediment, with a minimum of 493  $\mu$ g/g sediment, and a maximum of 4432  $\mu g/g$  sediment. When normalized to the sediment mass in each sampled section, the average phosphorus is 3000  $\mu$ g/g sediment. Table 7 gives averages with minimum/maximum values broken down by region of the bay: Inner Bay (IB), Middle Bay (MB), Outer Bay (OB), and the Stevens Brook Wetland area (SBW). The Stevens Brook wetland area contains the highest total, reactive, and mineralizable phosphorus values in the area on average.

|          |     |          |                    | Totals |            |           | Sequer | tial Ext | raction | >   | >    |        |         |      |
|----------|-----|----------|--------------------|--------|------------|-----------|--------|----------|---------|-----|------|--------|---------|------|
|          |     |          |                    | Aqua I | Regia Ez   | xtraction | NH4Cl  | NaOH     |         | HCI |      | Ascorb | ic Acid |      |
|          |     | Donocity | Organic<br>Content | Ба     | Mn         | р         | р      | Р        | Fo      | Mn  | р    | Fo     | Mn      | р    |
| 01100000 | тр  | 550/     | 4.2                | 22002  | 704        | 1204      | 12     | 280      | 5066    | 92  | 400  | 2425   | 207     | 272  |
| average  |     | 6004     | 4.2                | 32003  | 794<br>945 | 1394      | 10     | 260      | 5421    | 126 | 227  | 3433   | 207     | 212  |
|          | ND  | 65%      | 4.1                | 59069  | 045        | 14/4      | 10     | 205      | 3421    | 120 | 337  | 3020   | 200     | 203  |
|          | OB  | 65%      | 4.3                | 52864  | 2394       | 2058      | 18     | 567      | 8586    | 302 | 221  | 8188   | 1238    | 717  |
|          | SBW | 52%      | 7.8                | 31343  | 797        | 2293      | 29     | 950      | 3044    | 46  | 213  | 2684   | 132     | 907  |
|          |     |          |                    |        |            |           |        |          |         |     |      |        |         |      |
| maximum  | IB  | 75%      | 35                 | 63438  | 2445       | 3195      | 177    | 627      | 37361   | 440 | 2413 | 7303   | 565     | 579  |
|          | MB  | 77%      | 7.6                | 81945  | 3017       | 2868      | 23     | 751      | 11945   | 641 | 617  | 9171   | 1049    | 719  |
|          | OB  | 76%      | 6.6                | 68526  | 7654       | 3881      | 32     | 835      | 10783   | 920 | 291  | 12873  | 3605    | 1713 |
|          | SBW | 75%      | 26                 | 52515  | 2438       | 4432      | 69     | 2292     | 8461    | 122 | 416  | 5232   | 211     | 1880 |
|          |     |          |                    |        |            |           |        |          |         |     |      |        |         |      |
| minimum  | IB  | 15%      | 0.2                | 5497   | 48         | 493       | 2.8    | 18       | 534     | 15  | 134  | 372    | 20      | 23   |
|          | MB  | 21%      | 0.7                | 7487   | 16         | 525       | 0.2    | 36       | 481     | 9   | 126  | 207    | 18      | 9    |
|          | OB  | 21%      | 1.0                | 35096  | 628        | 1101      | 4      | 247      | 5442    | 118 | 143  | 4520   | 444     | 344  |
|          | SBW | 24%      | 2.5                | 10681  | 130        | 667       | 8      | 229      | 118     | 7   | 2    | 881    | 47      | 274  |

Table 7 - Tabulated averages, minimums, and maximum values for each region of St. Albans Bay;IB=Inner Bay, MB=Middle Bay, OB=Outer Bay, SBW=Stevens Brook Wetland.

5.2. Potentially bioavailable inorganic phosphorus: Considering the area of the bay, the total amount of reactive phosphorus that may be bioavailable is dependent on how much of the sediment is potentially exchangeable with the overlying water column. From the electrochemical data (Figure 3) collected in summer 2004 (this study), the top few cm are certainly active with respect to potential P mobilization and escape as soluble phosphorus into the water column. There are a number of ideas concerning what forms phosphorus would be present in that may be bioavailable (Martin et al., 1994 expressed bioavailable phosphorus as the total of NH<sub>4</sub>Cl and NaOH extracted phosphorus for instance). Given that we are thinking about phosphorus that may be mobilized/immobilized by redox processes governing iron oxyhydroxide minerals, the most appropriate data to use may be the ascorbic acid extracted fraction. To determine how much phosphorus may potentially be released through remineralization in the sediments due to anoxia we must make some inferences from the available electrochemical data about how much sediment may be potentially vulnerable to recycling into the water column through the action of changing redox front position in time. We must keep in mind when looking at the electrochemical data from summer 2004 (Figure 3) that while porewater fluctuations in Mn, Fe, and S speciation were observed at 3-4 cm depth, this summer was a cooler and windier summer (Figure 4) – summers prior or in the future will produce different mineralization

conditions, governed by the balance of processes that determines redox front position at any time (Figure 1).

If we assume that the top 4 cm of sediment are potentially active with respect to redox changes and potential remineralization which would release phosphorus, that the porosity of that material is, on average, 60%, there are approximately 300 metric tons of phosphorus in the bay which may be reworked and at least partially released into the overlying water column as a result of increased anoxia in the sediments, and 1000 tons of total phosphorus (Table 8). This amount of phosphorus increases to over 700 tons of reactive P and 2400 tons of total P if we assume the reactive depth is 10 cm, as Cornwell and Owens modeled (1999). Considering that current estimates of phosphorus loading into the bay (from both point and nonpoint sources) is approximately 8 metric tons per year (from the Lake Champlain Phosphorus TMDL, VT DEC and NYS DEC 2002), and sedimentation rates are approximately 0.15 cm per year (Cornwell and Owens, 1999) the top 4 cm should have accumulated approximately 200 tons of total phosphorus (in the past 27 years, though this number is likely low as it does start to span the time before significant improvements were made to the waste treatment facility, but it also assumes that the majority of sediment discharge stays in the bay). Sedimentation rates likely do not account for the high porosity in the top few centimeters and are likely off by as much as 50% given compaction seen even in only the top 12 cm of these materials. Another P component which would affect the total P amounts would be derived from any naturally occurring phosphorus that would be contained in the sediment as different mineralized, sorbed, or organic forms associated with the sediment's geologic origin. Assessment of this 'background' P for these materials was outside the scope of this study, and would require much deeper cores to look at a significant record which would include preindustrial or settlement activity samples. Outside of this geologic reservoir, the phosphorus currently in the system likely also represents an historical reservoir of anthropogenically loaded P which has been reworked and mobilized through redox processes to be concentrated towards the water interface.

|     | Reactive<br>P, <b>ng</b> /g<br>sediment | Area, m <sup>2</sup> | reactive<br>depth, m | volume<br>sediment,<br>m <sup>3</sup> | volume<br>sediment,<br>cm <sup>3</sup> | mass<br>sediment,<br>g | mass<br>sediment,<br>dry | Reactive<br>P, <b>ng</b> | Reactive<br>P, tons |
|-----|-----------------------------------------|----------------------|----------------------|---------------------------------------|----------------------------------------|------------------------|--------------------------|--------------------------|---------------------|
| IB  | 272                                     | 2.59E+06             | 0.04                 | 1.03E+05                              | 1.0E+11                                | 2.6E+11                | 1.0E+11                  | 2.81E+13                 | 28                  |
| MB  | 263                                     | 4.33E+06             | 0.04                 | 1.73E+05                              | 1.7E+11                                | 4.3E+11                | 1.7E+11                  | 4.56E+13                 | 46                  |
| OB  | 717                                     | 7.03E+06             | 0.04                 | 2.81E+05                              | 2.8E+11                                | 7.0E+11                | 2.8E+11                  | 2.02E+14                 | 202                 |
| SBW | 907                                     | 1.78E+05             | 0.04                 | 7.10E+03                              | 7.1E+09                                | 1.8E+10                | 7.1E+09                  | 6.44E+12                 | 6                   |
|     |                                         | density =<br>n=      | = 2.5<br>0.4         | g/cm <sup>3</sup>                     |                                        |                        | reactive F               | P, bay-wide              | e 282               |

|     | Total P,<br><b>mg</b> / g<br>sediment | Area, m <sup>2</sup> | depth, m     | volume<br>sediment,<br>m <sup>3</sup> | volume<br>sediment,<br>cm <sup>3</sup> | mass<br>sediment,<br>g | mass<br>sediment,<br>dry | Total P,<br>ug | Total P,<br>tons |
|-----|---------------------------------------|----------------------|--------------|---------------------------------------|----------------------------------------|------------------------|--------------------------|----------------|------------------|
| IB  | 1394                                  | 2.59E+06             | 0.04         | 1.03E+05                              | 1.0E+11                                | 2.6E+11                | 1.0E+11                  | 1.44E+14       | 144              |
| MB  | 1474                                  | 4.33E+06             | 0.04         | 1.73E+05                              | 1.7E+11                                | 4.3E+11                | 1.7E+11                  | 2.55E+14       | 255              |
| OB  | 2058                                  | 7.03E+06             | 0.04         | 2.81E+05                              | 2.8E+11                                | 7.0E+11                | 2.8E+11                  | 5.79E+14       | 579              |
| SBW | 2293                                  | 1.78E+05             | 0.04         | 7.10E+03                              | 7.1E+09                                | 1.8E+10                | 7.1E+09                  | 1.63E+13       | 16               |
|     |                                       | density =<br>n=      | = 2.5<br>0.4 | g/cm3                                 |                                        |                        | total I                  | P, bay-wide    | 994              |

Table 8 - Calculations for determining total amount of P potentially available throughremineralization of Fe and Mn minerals. Where n is the sediment fraction and corresponds to aporosity of 60%.

*5.3. Statistical analysis of bay-wide samples*: Differences between P, Fe, and Mn for samples collected at the same time, but varying in sample position provide a picture of the spatial distribution of P, and an indication of whether any of the processes seen to affect seasonal distribution within sediment profile translate to any lateral diffusion of P across the bay. Correlation of Fe, Mn, and P for samples taken only in early August 2004 show a different trend with respect to the ascorbic acid extracted samples as compared to samples taken as part of the seasonal study. Table 9 shows Pearson Correlation Coefficients and P-values for both the aqua regia digested total Fe, Mn, and P concentrations and for the reactive P - amorphous Fe and Mn

|         | Aqua        | Regia       | Ascort      | oic Acid    |
|---------|-------------|-------------|-------------|-------------|
| Depth   | P-Fe        | P-Mn        | P-Fe        | P-Mn        |
| 0-1 cm  | 0.603/0.000 | 0.418/0.007 | 0.801/0.000 | 0.767/0.000 |
| 1-2 cm  | 0.726/0.000 | 0.482/0.002 | 0.427/0.033 | 0.363/0.074 |
| 2-3 cm  | 0.495/0.001 | 0.303/0.057 | 0.351/0.093 | 0.317/0.131 |
| 3-4 cm  | 0.642/0.000 | 0.382/0.016 | 0.177/0.408 | 0.184/0.390 |
| 4-5 cm  | 0.657/0.000 | 0.601/0.000 | 0.350/0.086 | 0.366/0.072 |
| 5-8 cm  | 0.644/0.000 | 0.492/0.001 | 0.224/0.305 | 0.321/0.135 |
| 8-12 cm | 0.508/0.001 | 0.201/0.220 | 0.254/0.254 | 0.322/0.143 |
| ALL     | 0.580/0.000 | 0.445/0.000 | 0.428/0.000 | 0.451/0.000 |

Table 9 - Person Correlation coefficients / P-values for basin samples 1-43 (Aqua Regia) and 1-27 (Ascorbic Acid). Values that are statistically valid are in bold, note that P-values greater than 0.050 indicate no statistically supported relationship between elements.

concentrations from ascorbic acid digestions. The differences between these correlations and those for the seasonal sampling are especially noticeable for Fe, Mn, and P extracted with ascorbic acid. Bay-wide differences across the bay and wetlands area are not generally due to changes associated with Fe and Mn minerals EXCEPT in the top 1 or 2 cm, where there is good correlation. This may indicate that reactive phosphorus in the system is constrained to the top 2 cm, afterwards phosphorus sorption to other materials or as precipitation of a distinct mineral phase may be a more important control on the overall. Spatial distribution of these materials across the bay is controlled by processes which are distinctly different from processes which were shown to control the P mobility seasonally. While seasonal variations in P positions tracked very well with changes in iron and manganese oxyhydroxide minerals, variable P concentrations across the bay are likely affected by a number of physical characteristics related to sediment provenance (origin), and reworking associated with sediment transport.

*Historical profile information:* The spatial distribution of total phosphorus in the bay is imprinted by the seasonal redox processes discussed above, which has resulted in the redistribution of sediment-bound phosphorus (Figure 14). If one considers that sediment loading rates in the bay have been estimated at approximately 0.15 cm of sediment per year (Cornwell and Owens, 1999), then a 10 cm sediment profiles should represent approximately 65 years of sediment. This would include time well before and after large changes in the overall phosphorus loading to the St. Albans Bay system due to upgrades to the waste treatment facility, closure of a large dairy, and continued significant

improvements to public education and community involvement in reducing P input into the bay. If phosphorus was deposited with sediment over time and there was no mobilization of that P with seasonal change, one may expect a profile such as the one depicted in Figure 15. None of the profiles in this study (see data in appendices as well as representative profiles in Figures 10, 11, and 14), regardless of spatial position, time of sampling, or extraction method, show this type of profile. This strongly suggests that significant, persistent, and seasonally active changes in redox fronts have induced reworking of phosphorus to effectively smear out the historical (past ~65 year history from this study) component. This effectively means that while significant improvement has been made to limit P loading into St. Albans Bay, the historical legacy of high phosphorus loading into the bay remains a significant component of near-surface sediment chemistry.



Figure 14 – Profile plot of averaged aqua regia extraction data from all cores at specified depths (marked at top of core sections) collected in St. Albans Bay, August 2004. Iron (Fe) data corresponds to the top x-axis, while phosphorus (P) and Manganese (Mn) correspond to the bottom y-axis.



Figure 15 – Generalized diagram of a sediment P profile that should be observed given significant decreases in P loading to St. Albans Bay.

5.4. Historical comparison of bay-wide samples: One of the original goals of this study was to assess how the phosphorus levels may have changed from the time of the first detailed study of sediment phosphorus concentrations in St. Albans Bay by Ackerly (1983), followed by Martin et al. (1994). Appendix C lists all of the common sample sites and depth intervals between this study, Ackerly (1983; samples collected 1982), and Martin et al. (1994; samples collected 1992). While there can now be observed significant differences between all of the study databases, the following points must be made as potential difficulties in making a direct, quantitative comparison:

 We have now shown that P is mobile in these sediments in large part due to transformation of iron and manganese oxyhydroxide minerals, and the position of redox fronts which would determine where this activity is actively occurring changes on very short timescales and may additionally be variable depending on spatial location. There is no constraint to base a comparison at times when the redox chemistry in the sediment profile would have been at comparable conditions, or even to base the sampling period on some combination of weather conditions which would affect redox front positions.

- 2. The flux rate of phosphorus from sediments into the overlying water column is almost completely unknown for sediments of St. Albans Bay, and given these results, fluxes may differ significantly and in a very episodic fashion. There is significant lack of constraint as to the flux of phosphorus from/to the sediment into the overlying water column (and subsequent incorporation into algal biomass) between these studies and no way to determine if significant P may have been tied up as a suspended algal fraction when the sediments were sampled.
- 3. Chemical and physical heterogeneities seen on several scales in this study and others, in addition to the significant effect of bioturbation due to bivalve activity observed by Cornwell and Owens (1999), suggest that taking a core from the exact same type of location 12 or 22 years later is most likely impossible.
- 4. Ackerly (1983) and Martin et al. (1994) used a colorimetric procedure for analysis of their extraction solutions. The high amount of iron present in samples processed for total P (aqua regia or perchloric acid extractions), HCI-extracted P, or ascorbic acid extractions would serve as an analytical interference which would yield lower P measurements due to competition between the Fe<sup>3+</sup> and colorimetric complex for the ascorbic acid. After experiencing problems with our matrixmatched, mixed standard (standards containing not only P, but also Fe and Mn) with the same colorimetric complex, we developed specific methods for ICP-OES which do not suffer from this potential analytical difficulty. Repeating the procedure to back-calculate what the Fe interference is not possible.
- 5. Sedimentation rates for St. Albans Bay are not well constrained, but Cornwell and Owens (1999) give rates of 0.13 and 0.18 cm per annum, determined from <sup>210</sup>Pb dating of a core from two locations in St. Albans Bay from the 1996 sampling by Horn Point Environmental Laboratories. Comparing levels of cores collected 22 and 12 years prior is an offset of approximately 3-4 and 1.5-2 cm, respectively, a calculation which further assumes a sedimentation rate that is constant, something that is almost certainly not the case in a small shallow basin with multiple inputs and unresolved current transport. Observed differences in sediment compaction (seen in this study as variation in porosity; Table 6) additionally support the idea

that sediment transport, deposition, and reworking is significantly heterogeneous over the St. Albans Bay sediment surface.

While making any sort of direct comparison between samples from specific locations is inappropriate for these reasons, there is certainly significant phosphorus contained in the sediments of St. Albans Bay. On average, Ackerly found 1400 µg total P / g sediment, Martin found 1100  $\mu$ g total P / g sediment, and this study found 1800  $\mu$ g total P / g sediment in the bay. For reference to direct comparison of each sample, which as pointed out above is not strictly appropriate, refer to Figures 16, 17, and 18. We DO NOT contend that these numbers necessarily indicate an increase in the overall amount of phosphorus contained in these sediments over time. A significant part could be due to different sampling times when more P could have been mobilized from the sediment into an algal fraction in the water column and a significant part could be due to analytical differences. How much P could be liberated into an algal fraction which may exist in the water column is impossible to determine from available data in 1982 and 1992, and there is little indication from any trend of phosphorus gradients with depth at those sampling times to suggest this may or may not have been an important process. There is also significant Fe and Mn in these sediments, and significant indication that the presence, reductive dissolution and transport followed by oxidation and reprecipitation of FeOOH and MnOOH minerals plays a significant role in P mobility and bioavailability to the overlying water column.



Figure 16 – Scatter plot comparing total P concentrations for each common site and spatial intervals 0-1, 1-2, 4-5, and 8-12 between 1992 and 2004 studies.



Figure 17 – Scatter plot comparing total P concentrations for each common site and spatial intervals 0-1, 1-2, 4-5, and 8-12 between 1982 and 2004 studies.



Figure 18 – Scatter plot comparing total P concentrations for each common site and spatial intervals 0-1, 1-2, 4-5, and 8-12 between 1982 and 1992 studies.

#### SECTION 6 – SUMMARY AND CONCLUSIONS

In this study, it was determined that there are significant amounts of phosphorus retained in St. Albans Bay sediments, and that the mobility of phosphorus in those sediments is at least partially controlled by changes in manganese and iron oxyhydroxide minerals. The seasonal component of these redox changes, analytical differences, and a strong spatial heterogeneity in these sediments make any direct comparison between this study and the studies of Ackerly (1983) or Martin et al. (1994) inappropriate. It is of considerable interest and importance to the St. Albans Bay community to assess whether the phosphorus content in the sediments of the bay is at all decreasing with time, as had been suggested would happen (Martin et al., 1994). It is reasonable to state from this data that any net loss of phosphorus through exchange with the main lake is not occurring at the rates which had been previously predicted and that the amount of phosphorus which is currently in the sediments will likely persist for some time. Additionally, remobilization of the phosphorus through the column as redox fronts move up and down through the seasons may keep a significant fraction of the historical phosphorus load nearer the top of the sediment column.

6.2. Recommendations for future study: A more thorough understanding of how phosphorus may be released and made bioavailable as a function of the dissolution of iron and manganese oxyhydroxides in the bay would be necessary in order to determine the potential role that sediment recycling of phosphorus plays on overall algal activity of the bay. Critical to this point is the flux of phosphorus out of the sediment into the water column and how that phosphorus persists in the water column and potentially diffuses out of the bay into the main lake. Another related question relates to whether there are specific chemical conditions (especially affecting N:P ratios which are thought to be an important factor in selecting algae species; M. Watzin, pers. Comm.) which may develop in the bay which selects for blue-green algae over other varieties, and if those conditions are selected by any process involving nutrient cycling in the sediments. Finally, what the overall sorption capacity of the iron and manganese oxyhydroxides is would be critical for understanding how they may or may not limit the amount of phosphorus that could escape from the sediment column into the water column. An investigation of phosphorus levels through a deeper section of sediments may give a better indication of phosphorus loading changes in time and the potential role of phosphorus remobilization along changing redox fronts. Any treatment option must also assess how the effects of seasonal redox cycling will be affected by chemical or physical perturbation.

#### **SECTION 7 - REFERENCES**

- Ackerly, S. 1983. Sediment-phosphorus relationships, St. Albans Bay, Lake Champlain.M.S. Thesis, University of Vermont, Burlington, VT.
- Anshutz, P., Sundby, B., Lefracois, L., Luther, G.W., and Mucci, A., 2000. Interactions between metal oxides and species of nitrogen and iodine in bioturbated marine sediments. Geochimica Et Cosmochimica Acta, V. 64, No. 16, p. 2751-2763.
- Brendel, P.J., and Luther, G.W., 1995. Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O-2, and S(-Ii) in Porewaters of Marine and Fresh-Water Sediments. Environmental Science & Technology, V. 29, No. 3, p. 751-761
- Brock, T.D., and Madigan, M.T., 1991. Biology of Microorganisms. 6<sup>th</sup> Edition. Prentice Hall, Upper Saddle River. 874 p.
- Cai, W., Zhao, P., Theberge, S.M., Witter, A., Wang, Y., Luther, G.W., 2002. Porewater redox species, pH, and pCO2 in aquatic sediments: Electrochemical sensor studies in Lake Champlain and Sapelo Island. In: Environmental Electrochemistry: Analyses of trace element biogeochemistry (eds. Taillefert, M., and Rozan, T.F.) ACS Symposium Series 811. p. 188-209.
- Cornwell, J.C. and Owens, M., 1999. Benthic Phosphorus cycling in Lake Champlain: Results of an integrated field sampling/water quality modeling study. Lake Champlain Basin Program Technical Report No. 34A. Grande Isle, VT.
- Druschel, G.K., Hamers, R.J., Luther, G.W., and Banfield, J.F., 2003b: Kinetics and mechanism of trithionate and tetrathionate oxidation at low pH by hydroxyl radicals. Aquatic Geochemistry. V. 9 No. 2, p. 145-164.

- Grenthe, I., Stumm, W., Laaksuharju, M., Nilsson, A.C., and Wikberg, P., 1992. Redox potentials and redox reactions in deep groundwater systems. Chemical Geology, V. 98, p. 131-150.
- HydroQual, Inc. 1999. Benthic phosphorus cycling in Lake Champlain: Results of an integrated field sampling/ water quality modeling study. Part A: Water quality modeling. Lake Champlain Basin Program Technical Report, No. 34a. Grand Isle, VT.
- Jackson, M.L., 1970. Soil Chemical Analysis. Prentice Hall.
- Kostka, J.E. and Luther, G.W., 1995. Seasonal cycling of reactive Fe in salt-marsh sediments. Biogeochemistry, V. 29, p. 159-181.
- Krom, M.D., and Berner, R.A., 1981. The diagenesis of phosphorus in near-shore marine sediment. Geochimica et Cosmochimica Acta, V. 45, p. 207
- Langmuir, D., 1997. Aqueous Environmental Geochemistry. Prentice Hall, Upper Saddle River. 600 p.
- Luther, G. W., Reimers, C. E., Nuzzio, D. B. and Lovalvo, D., 1999. In situ deployment of voltammetric, potentiometric. and amperometric microelectrodes from a ROV to determine dissolved O-2, Mn, Fe, S(-2), and pH in porewaters. Environmental Science & Technology. V. 33, No. 23, p. 4352-4356.
- Luther, G.W., III, Glazer, B., Ma, S., Trouwborst, R., Schultz, B.R., Druschel G.K., Kraiya, C., 2003: Iron and sulfur chemistry in a stratified lake: Evidence for iron-rich sulfide complexes. Aquatic Geochemistry V. 9, No. 2, p. 87-110.
- Martin, S.C., Ciotola, R.J., Maila, P., Urs, N.G.S., and Kotwal, P.B., 1994. Assessment of sediment phosphorus distribution and long-term recycling in St. Albans Bay, Lake

Champlain. Lake Champlain Basin Program Technical Report No. 7C Grande Isle, VT.

- Picotte, A. 2002. 2001 Lake Champlain Lay Monitoring Report. Vermont Department of Environmental Conservation. Waterbury.
- Roden, E.E. and Edmonds, J.W., 1997. Phosphate mobilization in iron-rich anaerobic sediments: microbial Fe(III) oxide reduction versus iron-sulfide formation. Archives of Hydrobiology, V. 139, No. 3, p. 347-378.
- Rozan, T.F., Taillefert, M., Trouwborst, R.E., Glazer, B.T., Ma, S.F., Herszage, J., Valdes, L.M., Price, K.S., Luther, G.W., 2002. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography, V. 47, No. 5, p. 1346-1354.
- Shenker, M; Seitelbach, S; Brand, S; Haim, A., Litaor, M.I., 2005. Redox reactions and phosphorus release in re-flooded soils of an altered wetland. European Journal Of Soil Science, V. 56 (4): 515-525.
- Smeltzer, E, 2003. The phosphorus problem in St. Albans Bay, A summary of research findings.
- Smeltzer, E., Kamman, N., Hyde, K., and Drake, J.C., 1994. Dynamic mass balance model of internal phosphorus loading in St. Albans Bay, Lake Champlain. Lake Champlain Basin Program Technical Report No. 7A. Grande Isle, VT.
- Van der Zee, C., Roberts, D.R., Rancourt, D.G., and Slomp, C.P., 2003. Nanogoethite is the dominant reactive oxyhydroxide phase in lake and marine sediments. Geology, V. 31, No. 11, p. 993-996.

- Vermont Department of Environmental Conservation and New York State Department of Environmental Conservation. 2005. Long-term water quality and biological monitoring project for Lake Champlain: Cumulative report for project years 1992-2003. Waterbury, VT and Ray Brook, NY. Report and data available at <u>http://www.anr.state.vt.us/dec/waterq/lakes/htm/lp\_longterm.htm</u>
- Williams, J.D.H., Mayer, T., Nriagu, J.O., 1980. Extractability of phosphorus from phosphate minerals common in soils and sediments. Soil Society of America Journal, V. 44, p. 462-465.

|           |                |          |          | HCl extractions N |          | NaOH     | H Ascorbic Acid extractions |          |          |          |
|-----------|----------------|----------|----------|-------------------|----------|----------|-----------------------------|----------|----------|----------|
|           |                |          |          | µg/g sed          | µg/g sed | µg∕g sed | µg∕g sed                    | µg/g sed | µg∕g sed | µg/g sed |
| Sample    | <u>Сала </u> # | T        | Porosity | E-                | Ν.Γ      | п        | п                           | E-       | Ν.Γ      | п        |
| Date      | Core #         | Interval | (%)      | Fe                | MIN      | P        | P                           | Fe       | MIN      | P        |
| 5/27/2004 | 1              | 0-1cm    | 59       | 3151              | 168      | 470      | 216                         | 2571     | 279      | 249      |
| 5/27/2004 | 1              | 1-2cm    | 64       |                   |          |          |                             |          |          |          |
| 5/27/2004 | 1              | 2-3cm    | 68       | 2353              | 77       | 525      |                             | 1925     | 136      | 194      |
| 6/23/2004 | 1              | 0-1cm    | 74       | 2987              | 69       | 536      |                             | 2042     | 129      | 233      |
| 6/23/2004 | 1              | 1-2cm    | 71       | 2841              | 68       | 513      |                             | 1949     | 125      | 218      |
| 6/23/2004 | 1              | 2-3cm    | 67       | 2558              | 55       | 556      | 127                         | 1328     | 82       | 137      |
| 6/23/2004 | 1              | 3-4cm    | 67       | 2514              | 53       | 532      | 148                         | 1519     | 89       | 153      |
| 6/23/2004 | 1              | 4-5cm    | 62       |                   |          |          | 88                          | 948      | 62       | 92       |
| 6/23/2004 | 1              | 5-6cm    | 62       |                   |          |          | 105                         | 937      | 64       | 93       |
| 6/23/2004 | 1              | 6-8cm    | 65       |                   |          |          | 136                         | 1275     | 82       | 122      |
| 7/7/2004  | 1              | 0-1cm    | 81       | 4651              | 194      | 569      |                             | 3297     | 307      | 378      |
| 7/7/2004  | 1              | 1-2cm    | 79       | 4200              | 138      | 505      | 271                         | 3323     | 274      | 397      |
| 7/7/2004  | 1              | 2-3cm    | 77       | 3499              | 71       | 526      | 208                         | 2136     | 100      | 213      |
| 7/7/2004  | 1              | 3-4cm    | 76       | 3110              | 59       | 452      | 172                         | 2415     | 107      | 219      |
| 7/7/2004  | 1              | 4-5cm    | 76       | 3470              | 63       | 533      | 152                         | 2210     | 98       | 187      |
| 7/7/2004  | 1              | 5-6cm    | 75       | 3303              | 57       | 497      | 171                         | 2204     | 108      | 210      |
| 7/7/2004  | 1              | 6-8cm    | 74       | 3370              | 67       | 495      | 205                         | 2310     | 120      | 240      |
| 7/7/2004  | 1              | 8-10cm   | 71       | 3418              | 65       | 527      | 199                         | 2195     | 116      | 249      |
| 7/7/2004  | 2              | 0-1cm    | 82       | 6167              | 136      | 511      |                             | 3015     | 228      | 327      |
| 7/7/2004  | 2              | 1-2cm    | 79       | 6693              | 137      | 493      | 299                         | 3188     | 195      | 379      |
| 7/7/2004  | 2              | 2-3cm    | 77       | 5416              | 78       | 486      | 206                         | 2231     | 101      | 216      |
| 7/7/2004  | 2              | 3-4cm    |          | 5802              | 80       | 481      | 187                         | 2748     | 107      | 211      |
| 7/7/2004  | 2              | 4-5cm    | 75       | 5406              | 81       | 483      | 206                         | 2407     | 113      | 213      |
| 7/7/2004  | 2              | 5-6cm    | 71       | 5542              | 79       | 491      | 175                         | 2552     | 120      | 226      |
| 7/7/2004  | 2              | 6-8cm    | 72       | 5653              | 85       | 493      | 211                         | 2374     | 117      | 230      |
| 7/7/2004  | 2              | 8-10cm   | 72       | 5158              | 77       | 453      | 193                         | 2485     | 122      | 230      |
| 7/19/2004 | 1              | 0-1cm    |          | 5227              | 169      | 489      | 394                         | 3793     | 430      | 472      |
| 7/19/2004 | 1              | 1-2cm    |          | 5101              | 97       | 476      | 323                         | 3381     | 264      | 361      |
| 7/19/2004 | 1              | 2-3cm    |          | 4337              | 69       | 480      | 231                         | 2577     | 150      | 252      |
| 7/19/2004 | 1              | 3-4cm    |          | 4139              | 61       | 491      | 201                         | 2314     | 115      | 221      |
| 7/19/2004 | 1              | 4-5cm    |          | 4034              | 61       | 494      | 204                         | 2481     | 116      | 206      |
| 7/19/2004 | 1              | 5-6cm    |          | 4145              | 64       | 472      | 203                         | 2727     | 133      | 232      |
| 7/19/2004 | 1              | 6-8cm    |          | 4267              | 66       | 510      | 208                         | 2293     | 112      | 200      |
| 7/19/2004 | 1              | 8-10cm   |          | 2836              | 42       | 390      | 127                         | 1417     | 69       | 130      |
| 7/19/2004 | 2              | 0-1cm    | 79       | 5473              | 156      | 503      | 325                         | 3324     | 320      | 382      |
| 7/19/2004 | 2              | 1-2cm    | 77       | 5091              | 97       | 480      |                             |          |          |          |
| 7/19/2004 | 2              | 2-3cm    | 75       | 4442              | 68       | 478      | 216                         | 2319     | 118      | 202      |
| 7/19/2004 | 2              | 3-4cm    | 75       | 4827              | 77       | 460      | 231                         | 2733     | 140      | 253      |

Appendix A-1 – Seasonal data by date

|                |        |          |                 | HCl extractions |          | NaOH     | H Ascorbic Acid extraction |          | tractions |          |
|----------------|--------|----------|-----------------|-----------------|----------|----------|----------------------------|----------|-----------|----------|
|                |        |          |                 | µg/g sed        | µg/g sed | µg∕g sed | µg/g sed                   | µg/g sed | µg∕g sed  | µg/g sed |
| Sample<br>Date | Core # | Interval | Porosity<br>(%) | Fe              | Mn       | Р        | Р                          | Fe       | Mn        | Р        |
| 7/19/2004      | 2      | 4-5cm    | 75              | 5119            | 80       | 470      | 254                        | 2705     | 139       | 260      |
| 7/19/2004      | 2      | 5-6cm    | 58              | 4502            | 66       | 496      | 228                        | 2524     | 122       | 220      |
| 7/19/2004      | 2      | 6-8cm    | 71              | 4820            | 74       | 543      | 209                        | 2282     | 113       | 196      |
| 7/19/2004      | 2      | 8-10cm   | 68              | 4224            | 64       | 487      | 177                        | 2091     | 100       | 182      |
| 7/26/2004      | 1      | 0-1cm    | 75              | 3691            | 128      | 527      |                            | 2225     | 221       | 288      |
| 7/26/2004      | 1      | 1-2cm    | 70              | 3465            | 78       | 559      |                            | 2185     | 162       | 238      |
| 7/26/2004      | 1      | 2-3cm    | 69              | 3331            | 65       | 503      | 197                        | 2186     | 133       | 224      |
| 7/26/2004      | 1      | 3-4cm    | 66              | 2856            | 52       | 563      | 136                        | 1597     | 96        | 160      |
| 7/26/2004      | 1      | 4-5cm    | 63              | 2876            | 52       | 524      | 132                        | 1709     | 94        | 162      |
| 7/26/2004      | 1      | 5-6cm    | 62              | 2819            | 52       | 587      | 138                        | 1582     | 87        | 146      |
| 7/26/2004      | 1      | 6-8cm    | 62              | 2867            | 55       | 585      | 141                        | 1571     | 86        | 146      |
| 7/26/2004      | 1      | 8-10cm   | 56              | 2741            | 54       | 585      | 104                        | 1296     | 67        | 121      |
| 7/26/2004      | 2      | 0-1cm    | 74              | 3538            | 90       | 534      |                            | 2567     | 203       | 312      |
| 7/26/2004      | 2      | 1-2cm    | 69              | 3099            | 59       | 505      |                            | 1854     | 109       | 179      |
| 7/26/2004      | 2      | 2-3cm    | 67              | 2750            | 48       | 631      |                            | 1813     | 91        | 152      |
| 7/26/2004      | 2      | 3-4cm    | 66              | 3053            | 57       | 529      |                            | 2006     | 102       | 176      |
| 7/26/2004      | 2      | 4-5cm    | 66              | 2990            | 57       | 553      |                            | 1905     | 98        | 170      |
| 7/26/2004      | 2      | 5-6cm    | 64              | 2722            | 44       | 577      |                            | 1666     | 86        | 149      |
| 7/26/2004      | 2      | 6-8cm    | 61              |                 |          |          |                            | 1363     | 70        | 125      |
| 7/26/2004      | 2      | 8-10cm   | 62              | 2674            | 44       | 523      |                            | 1020     | 53        | 96       |
| 7/26/2004      | 3      | 0-1cm    | 74              | 3152            | 77       | 565      |                            | 2005     | 147       | 221      |
| 7/26/2004      | 3      | 1-2cm    | 66              | 2763            | 51       | 571      |                            | 1478     | 79        | 142      |
| 7/26/2004      | 3      | 2-3cm    | 67              | 2910            | 48       | 612      |                            | 1635     | 81        | 128      |
| 7/26/2004      | 3      | 3-4cm    | 65              | 2669            | 46       | 595      |                            | 1801     | 90        | 139      |
| 7/26/2004      | 3      | 4-5cm    | 63              | 2925            | 53       | 578      |                            | 1712     | 85        | 137      |
| 8/5/2004       | 1      | 0-1cm    | 72              |                 |          |          | 259                        | 2502     | 179       | 254      |
| 8/5/2004       | 1      | 1-2cm    | 71              |                 |          |          | 172                        | 2067     | 108       | 169      |
| 8/5/2004       | 1      | 2-3cm    | 71              |                 |          |          | 255                        | 2061     | 104       | 195      |
| 8/5/2004       | 1      | 3-4cm    | 74              |                 |          |          | 294                        | 2359     | 112       | 176      |
| 8/5/2004       | 1      | 4-5cm    | 69              |                 |          |          | 238                        | 1968     | 96        | 147      |
| 8/5/2004       | 1      | 5-6cm    | 59              |                 |          |          | 167                        | 1533     | 72        | 116      |
| 8/5/2004       | 1      | 6-8cm    | 55              |                 |          |          | 162                        | 1217     | 58        | 104      |
| 8/5/2004       | 1      | 8-10cm   | 53              |                 |          |          | 134                        | 1023     | 56        | 84       |
| 8/5/2004       | 2      | 0-1cm    | 76              | 3139            | 96       | 521      | 344                        | 2852     | 219       | 295      |
| 8/5/2004       | 2      | 1-2cm    | 71              | 2578            | 63       | 565      | 238                        | 1813     | 102       | 155      |
| 8/5/2004       | 2      | 2-3cm    | 66              | 2556            | 59       | 548      | 228                        | 1775     | 84        | 138      |
| 8/5/2004       | 2      | 3-4cm    | 60              | 2491            | 66       | 546      | 216                        | 1966     | 97        | 155      |
| 8/5/2004       | 2      | 4-5cm    | 62              | 2539            | 66       | 554      | 236                        | 1873     | 102       | 164      |

|                |        |          |                 | HCl extractions |          | NaOH     | Ascorbi  | c Acid ex | tractions |          |
|----------------|--------|----------|-----------------|-----------------|----------|----------|----------|-----------|-----------|----------|
|                |        |          |                 | µg/g sed        | µg/g sed | µg∕g sed | µg/g sed | µg/g sed  | µg∕g sed  | µg/g sed |
| Sample<br>Date | Core # | Interval | Porosity<br>(%) | Fe              | Mn       | Р        | Р        | Fe        | Mn        | Р        |
| 8/5/2004       | 2      | 5-6cm    | 61              | 2406            | 73       | 549      | 222      | 1764      | 93        | 151      |
| 8/5/2004       | 2      | 6-8cm    | 54              |                 |          |          |          | 950       | 45        | 107      |
| 8/12/2004      | 1      | 0-1cm    | 73              | 2333            | 67       | 633      | 153      | 1615      | 115       | 233      |
| 8/12/2004      | 1      | 1-2cm    | 70              | 2291            | 43       | 647      | 130      | 1514      | 66        | 175      |
| 8/12/2004      | 1      | 2-3cm    | 70              | 2397            | 49       | 557      | 186      |           |           |          |
| 8/12/2004      | 1      | 3-4cm    | 70              | 3296            | 61       | 584      | 204      | 1756      | 94        | 203      |
| 8/12/2004      | 1      | 4-5cm    | 65              | 2413            | 53       | 675      | 181      | 1509      | 70        | 170      |
| 8/12/2004      | 1      | 5-6cm    | 64              | 2886            | 63       | 601      | 186      | 1927      | 109       | 185      |
| 8/12/2004      | 1      | 6-8cm    | 61              | 1967            | 49       | 629      | 151      |           |           |          |
| 8/12/2004      | 1      | 8-10cm   | 56              | 2196            | 35       | 658      | 115      |           |           |          |
| 8/12/2004      | 2      | 0-1cm    | 76              | 3959            | 144      | 567      | 272      | 2540      | 252       | 337      |
| 8/12/2004      | 2      | 1-2cm    | 72              | 2435            | 58       | 520      | 150      | 1855      | 106       | 183      |
| 8/12/2004      | 2      | 2-3cm    | 69              | 2322            | 49       | 573      | 187      | 1672      | 89        | 158      |
| 8/12/2004      | 2      | 3-4cm    | 67              | 3015            | 56       | 556      | 174      | 1638      | 85        | 160      |
| 8/12/2004      | 2      | 4-5cm    | 66              | 2651            | 53       | 562      | 181      | 1630      | 84        | 184      |
| 8/12/2004      | 2      | 5-6cm    | 63              | 2096            | 52       | 591      | 171      | 1507      | 77        | 193      |
| 8/12/2004      | 2      | 6-8cm    | 60              | 1919            | 44       | 582      | 143      | 1345      | 60        | 148      |
| 8/18/2004      | 1      | 0-1cm    | 73              | 2913            | 96       | 455      | 188      | 1617      | 134       | 279      |
| 8/18/2004      | 1      | 1-2cm    | 72              | 3607            | 80       | 427      | 171      | 1562      | 99        | 220      |
| 8/18/2004      | 1      | 2-3cm    | 74              | 3252            | 76       | 398      | 268      | 1767      | 160       | 234      |
| 8/18/2004      | 1      | 3-4cm    | 72              | 3294            | 75       | 397      | 250      | 1846      | 131       | 228      |
| 8/18/2004      | 1      | 4-5cm    | 76              | 3371            | 82       | 418      | 280      | 1821      | 118       | 260      |
| 8/18/2004      | 1      | 5-6cm    | 65              | 2428            | 63       | 449      | 227      | 1964      | 121       | 211      |
| 8/18/2004      | 1      | 6-8cm    | 64              | 2939            | 65       | 455      | 215      | 1486      | 70        | 214      |
| 8/18/2004      | 1      | 8-10cm   | 60              | 3437            | 58       | 444      | 208      | 1059      | 46        | 159      |
| 9/13/2004      | 1      | 0-1cm    |                 | 4871            | 58       | 499      |          | 2080      | 99        | 215      |
| 9/13/2004      | 1      | 1-2cm    |                 | 5711            | 61       | 571      |          | 2662      | 128       | 252      |
| 9/13/2004      | 1      | 2-3cm    |                 | 4944            | 54       | 495      |          | 1674      | 60        | 203      |
| 9/13/2004      | 1      | 3-4cm    |                 | 4762            | 52       | 517      |          | 1959      | 85        | 223      |
| 9/13/2004      | 1      | 4-5cm    |                 | 4596            | 49       | 515      |          | 1840      | 76        | 185      |
| 9/13/2004      | 2      | 0-1cm    |                 | 4053            | 41       | 485      |          | 2229      | 118       | 262      |
| 9/13/2004      | 2      | 1-2cm    |                 | 4804            | 51       | 564      |          | 2554      | 124       | 254      |
| 9/13/2004      | 2      | 2-3cm    |                 | 5704            | 63       | 476      |          | 2826      | 104       | 289      |
| 9/13/2004      | 2      | 3-4cm    |                 | 4868            | 48       | 411      |          | 1785      | 75        | 210      |
| 9/13/2004      | 2      | 4-5cm    |                 | 3931            | 43       | 400      |          | 1171      | 46        | 146      |
| 10/7/2004      | 1      | 0-1cm    |                 | 5987            | 92       | 448      |          |           |           |          |
| 10/7/2004      | 1      | 2-3cm    |                 | 5357            | 59       | 456      |          |           |           |          |
| 10/7/2004      | 1      | 3-4cm    |                 | 5362            | 66       | 475      |          |           |           |          |

| 0-1 cm   | sections       |           |          |                 | HCl extractions N |          | NaOH     | Ascorbi  | c Acid ex | tractions |          |
|----------|----------------|-----------|----------|-----------------|-------------------|----------|----------|----------|-----------|-----------|----------|
|          |                |           |          |                 | µg/g sed          | µg/g sed | µg/g sed | µg/g sed | µg/g sed  | µg/g sed  | µg/g sec |
| Interval | Sample<br>Date | Core<br># | Interval | Porosity<br>(%) | Fe                | Mn       | Р        | Р        | Fe        | Mn        | Р        |
| 0-1cm    | 5/27/2004      | 1         | 0-1cm    | 59              | 3151              | 168      | 470      | 216      | 2571      | 279       | 249      |
| 0-1cm    | 6/23/2004      | 1         | 0-1cm    | 74              | 2987              | 69       | 536      |          | 2042      | 129       | 233      |
| 0-1cm    | 7/7/2004       | 1         | 0-1cm    | 81              | 4651              | 194      | 569      |          | 3297      | 307       | 378      |
| 0-1cm    | 7/7/2004       | 2         | 0-1cm    | 82              | 6167              | 136      | 511      |          | 3015      | 228       | 327      |
| 0-1cm    | 7/19/2004      | 1         | 0-1cm    |                 | 5227              | 169      | 489      | 394      | 3793      | 430       | 472      |
| 0-1cm    | 7/19/2004      | 2         | 0-1cm    | 79              | 5473              | 156      | 503      | 325      | 3324      | 320       | 382      |
| 0-1cm    | 7/26/2004      | 1         | 0-1cm    | 75              | 3691              | 128      | 527      |          | 2225      | 221       | 288      |
| 0-1cm    | 7/26/2004      | 2         | 0-1cm    | 74              | 3538              | 90       | 534      |          | 2567      | 203       | 312      |
| 0-1cm    | 7/26/2004      | 3         | 0-1cm    | 74              | 3152              | 77       | 565      |          | 2005      | 147       | 221      |
| 0-1cm    | 8/5/2004       | 1         | 0-1cm    | 72              |                   |          |          | 259      | 2502      | 179       | 254      |
| 0-1cm    | 8/5/2004       | 2         | 0-1cm    | 76              | 3139              | 96       | 521      | 344      | 2852      | 219       | 295      |
| 0-1cm    | 8/12/2004      | 1         | 0-1cm    | 73              | 2333              | 67       | 633      | 153      | 1615      | 115       | 233      |
| 0-1cm    | 8/12/2004      | 2         | 0-1cm    | 76              | 3959              | 144      | 567      | 272      | 2540      | 252       | 337      |
| 0-1cm    | 8/18/2004      | 1         | 0-1cm    | 73              | 2913              | 96       | 455      | 188      | 1617      | 134       | 279      |
| 0-1cm    | 9/13/2004      | 1         | 0-1cm    |                 | 4871              | 58       | 499      |          | 2080      | 99        | 215      |
| 0-1cm    | 9/13/2004      | 2         | 0-1cm    |                 | 4053              | 41       | 485      |          | 2229      | 118       | 262      |
| 0-1cm    | 10/7/2004      | 1         | 0-1cm    |                 | 5987              | 92       | 448      |          |           |           |          |

Appendix A-2 – Seasonal data grouped by depth

| 1-2 cm   | sections       |           |          |                 | HCl extractions N |          | NaOH     | Ascorbi  | c Acid ex | tractions |          |
|----------|----------------|-----------|----------|-----------------|-------------------|----------|----------|----------|-----------|-----------|----------|
|          |                |           |          |                 | µg/g sed          | µg/g sed | µg/g sed | µg/g sed | µg/g sed  | µg/g sed  | µg/g sec |
| Interval | Sample<br>Date | Core<br># | Interval | Porosity<br>(%) | Fe                | Mn       | Р        | Р        | Fe        | Mn        | Р        |
| 1-2cm    | 5/27/2004      | 1         | 1-2cm    | 64              |                   |          |          |          |           |           |          |
| 1-2cm    | 6/23/2004      | 1         | 1-2cm    | 71              | 2841              | 68       | 513      |          | 1949      | 125       | 218      |
| 1-2cm    | 7/7/2004       | 1         | 1-2cm    | 79              | 4200              | 138      | 505      | 271      | 3323      | 274       | 397      |
| 1-2cm    | 7/7/2004       | 2         | 1-2cm    | 79              | 6693              | 137      | 493      | 299      | 3188      | 195       | 379      |
| 1-2cm    | 7/19/2004      | 1         | 1-2cm    |                 | 5101              | 97       | 476      | 323      | 3381      | 264       | 361      |
| 1-2cm    | 7/19/2004      | 2         | 1-2cm    | 77              | 5091              | 97       | 480      |          |           |           |          |
| 1-2cm    | 7/26/2004      | 1         | 1-2cm    | 70              | 3465              | 78       | 559      |          | 2185      | 162       | 238      |
| 1-2cm    | 7/26/2004      | 2         | 1-2cm    | 69              | 3099              | 59       | 505      |          | 1854      | 109       | 179      |
| 1-2cm    | 7/26/2004      | 3         | 1-2cm    | 66              | 2763              | 51       | 571      |          | 1478      | 79        | 142      |
| 1-2cm    | 8/5/2004       | 1         | 1-2cm    | 71              |                   |          |          | 172      | 2067      | 108       | 169      |
| 1-2cm    | 8/5/2004       | 2         | 1-2cm    | 71              | 2578              | 63       | 565      | 238      | 1813      | 102       | 155      |
| 1-2cm    | 8/12/2004      | 1         | 1-2cm    | 70              | 2291              | 43       | 647      | 130      | 1514      | 66        | 175      |
| 1-2cm    | 8/12/2004      | 2         | 1-2cm    | 72              | 2435              | 58       | 520      | 150      | 1855      | 106       | 183      |
| 1-2cm    | 8/18/2004      | 1         | 1-2cm    | 72              | 3607              | 80       | 427      | 171      | 1562      | 99        | 220      |
| 1-2cm    | 9/13/2004      | 1         | 1-2cm    |                 | 5711              | 61       | 571      |          | 2662      | 128       | 252      |
| 1-2cm    | 9/13/2004      | 2         | 1-2cm    |                 | 4804              | 51       | 564      |          | 2554      | 124       | 254      |

| 2-3 cm   | sections       |           |          |                 | HCl extractions N |          |          | NaOH     | Ascorbi  | c Acid ex | tractions |
|----------|----------------|-----------|----------|-----------------|-------------------|----------|----------|----------|----------|-----------|-----------|
|          |                |           |          |                 | µg/g sed          | µg/g sed | µg/g sed | µg/g sed | µg/g sed | µg/g sed  | µg/g sed  |
| Interval | Sample<br>Date | Core<br># | Interval | Porosity<br>(%) | Fe                | Mn       | Р        | Р        | Fe       | Mn        | Р         |
| 2-3cm    | 5/27/2004      | 1         | 2-3cm    | 68              | 2353              | 77       | 525      |          | 1925     | 136       | 194       |
| 2-3cm    | 6/23/2004      | 1         | 2-3cm    | 67              | 2558              | 55       | 556      | 127      | 1328     | 82        | 137       |
| 2-3cm    | 7/7/2004       | 1         | 2-3cm    | 77              | 3499              | 71       | 526      | 208      | 2136     | 100       | 213       |
| 2-3cm    | 7/7/2004       | 2         | 2-3cm    | 77              | 5416              | 78       | 486      | 206      | 2231     | 101       | 216       |
| 2-3cm    | 7/19/2004      | 1         | 2-3cm    |                 | 4337              | 69       | 480      | 231      | 2577     | 150       | 252       |
| 2-3cm    | 7/19/2004      | 2         | 2-3cm    | 75              | 4442              | 68       | 478      | 216      | 2319     | 118       | 202       |
| 2-3cm    | 7/26/2004      | 1         | 2-3cm    | 69              | 3331              | 65       | 503      | 197      | 2186     | 133       | 224       |
| 2-3cm    | 7/26/2004      | 2         | 2-3cm    | 67              | 2750              | 48       | 631      |          | 1813     | 91        | 152       |
| 2-3cm    | 7/26/2004      | 3         | 2-3cm    | 67              | 2910              | 48       | 612      |          | 1635     | 81        | 128       |
| 2-3cm    | 8/5/2004       | 1         | 2-3cm    | 71              |                   |          |          | 255      | 2061     | 104       | 195       |
| 2-3cm    | 8/5/2004       | 2         | 2-3cm    | 66              | 2556              | 59       | 548      | 228      | 1775     | 84        | 138       |
| 2-3cm    | 8/12/2004      | 1         | 2-3cm    | 70              | 2397              | 49       | 557      | 186      |          |           |           |
| 2-3cm    | 8/12/2004      | 2         | 2-3cm    | 69              | 2322              | 49       | 573      | 187      | 1672     | 89        | 158       |
| 2-3cm    | 8/18/2004      | 1         | 2-3cm    | 74              | 3252              | 76       | 398      | 268      | 1767     | 160       | 234       |
| 2-3cm    | 9/13/2004      | 1         | 2-3cm    |                 | 4944              | 54       | 495      |          | 1674     | 60        | 203       |
| 2-3cm    | 9/13/2004      | 2         | 2-3cm    |                 | 5704              | 63       | 476      |          | 2826     | 104       | 289       |
| 2-3cm    | 10/7/2004      | 1         | 2-3cm    |                 | 5357              | 59       | 456      |          |          |           |           |

| 3-4 cm   | sections       |           |          |                 | HCl extractions 1 |          | NaOH     | Ascorbi  | c Acid ex | tractions |          |
|----------|----------------|-----------|----------|-----------------|-------------------|----------|----------|----------|-----------|-----------|----------|
|          |                |           |          |                 | µg/g sed          | µg/g sed | µg/g sed | µg/g sed | µg/g sed  | µg/g sed  | µg/g sec |
| Interval | Sample<br>Date | Core<br># | Interval | Porosity<br>(%) | Fe                | Mn       | Р        | Р        | Fe        | Mn        | Р        |
| 3-4cm    | 6/23/2004      | 1         | 3-4cm    | 67              | 2514              | 53       | 532      | 148      | 1519      | 89        | 153      |
| 3-4cm    | 7/7/2004       | 1         | 3-4cm    | 76              | 3110              | 59       | 452      | 172      | 2415      | 107       | 219      |
| 3-4cm    | 7/7/2004       | 2         | 3-4cm    |                 | 5802              | 80       | 481      | 187      | 2748      | 107       | 211      |
| 3-4cm    | 7/19/2004      | 1         | 3-4cm    |                 | 4139              | 61       | 491      | 201      | 2314      | 115       | 221      |
| 3-4cm    | 7/19/2004      | 2         | 3-4cm    | 75              | 4827              | 77       | 460      | 231      | 2733      | 140       | 253      |
| 3-4cm    | 7/26/2004      | 1         | 3-4cm    | 66              | 2856              | 52       | 563      | 136      | 1597      | 96        | 160      |
| 3-4cm    | 7/26/2004      | 2         | 3-4cm    | 66              | 3053              | 57       | 529      |          | 2006      | 102       | 176      |
| 3-4cm    | 7/26/2004      | 3         | 3-4cm    | 65              | 2669              | 46       | 595      |          | 1801      | 90        | 139      |
| 3-4cm    | 8/5/2004       | 1         | 3-4cm    | 74              |                   |          |          | 294      | 2359      | 112       | 176      |
| 3-4cm    | 8/5/2004       | 2         | 3-4cm    | 60              | 2491              | 66       | 546      | 216      | 1966      | 97        | 155      |
| 3-4cm    | 8/12/2004      | 1         | 3-4cm    | 70              | 3296              | 61       | 584      | 204      | 1756      | 94        | 203      |
| 3-4cm    | 8/12/2004      | 2         | 3-4cm    | 67              | 3015              | 56       | 556      | 174      | 1638      | 85        | 160      |
| 3-4cm    | 8/18/2004      | 1         | 3-4cm    | 72              | 3294              | 75       | 397      | 250      | 1846      | 131       | 228      |
| 3-4cm    | 9/13/2004      | 1         | 3-4cm    |                 | 4762              | 52       | 517      |          | 1959      | 85        | 223      |
| 3-4cm    | 9/13/2004      | 2         | 3-4cm    |                 | 4868              | 48       | 411      |          | 1785      | 75        | 210      |
| 3-4cm    | 10/7/2004      | 1         | 3-4cm    |                 | 5362              | 66       | 475      |          |           |           |          |

| 4-5 cm   | sections       |           |          |                 | HCl extractions |              |          | NaOH     | Ascorbi  | c Acid ex | tractions |
|----------|----------------|-----------|----------|-----------------|-----------------|--------------|----------|----------|----------|-----------|-----------|
|          |                |           |          |                 | µg/g sed        | µg/g sed     | µg/g sed | µg/g sed | µg/g sed | µg/g sed  | µg/g sed  |
| Interval | Sample<br>Date | Core<br># | Interval | Porosity<br>(%) | Fe              | Mn           | Р        | Р        | Fe       | Mn        | Р         |
| 4-5cm    | 6/23/2004      | 1         | 4-5cm    | 62              |                 |              |          | 88       | 948      | 62        | 92        |
| 4-5cm    | 7/7/2004       | 1         | 4-5cm    | 76              | 3470            | 63           | 533      | 152      | 2210     | 98        | 187       |
| 4-5cm    | 7/7/2004       | 2         | 4-5cm    | 75              | 5406            | 81           | 483      | 206      | 2407     | 113       | 213       |
| 4-5cm    | 7/19/2004      | 1         | 4-5cm    |                 | 4034            | 61           | 494      | 204      | 2481     | 116       | 206       |
| 4-5cm    | 7/19/2004      | 2         | 4-5cm    | 75              | 5119            | 80           | 470      | 254      | 2705     | 139       | 260       |
| 4-5cm    | 7/26/2004      | 1         | 4-5cm    | 63              | 2876            | 52           | 524      | 132      | 1709     | 94        | 162       |
| 4-5cm    | 7/26/2004      | 2         | 4-5cm    | 66              | 2990            | 57           | 553      |          | 1905     | 98        | 170       |
| 4-5cm    | 7/26/2004      | 3         | 4-5cm    | 63              | 2925            | 53           | 578      |          | 1712     | 85        | 137       |
| 4-5cm    | 8/5/2004       | 1         | 4-5cm    | 69              |                 |              |          | 238      | 1968     | 96        | 147       |
| 4-5cm    | 8/5/2004       | 2         | 4-5cm    | 62              | 2539            | 66           | 554      | 236      | 1873     | 102       | 164       |
| 4-5cm    | 8/12/2004      | 1         | 4-5cm    | 65              | 2413            | 53           | 675      | 181      | 1509     | 70        | 170       |
| 4-5cm    | 8/12/2004      | 2         | 4-5cm    | 66              | 2651            | 53           | 562      | 181      | 1630     | 84        | 184       |
| 4-5cm    | 8/18/2004      | 1         | 4-5cm    | 76              | 3371            | 82           | 418      | 280      | 1821     | 118       | 260       |
| 4-5cm    | 9/13/2004      | 1         | 4-5cm    |                 | 4596            | 49           | 515      |          | 1840     | 76        | 185       |
| 4-5cm    | 9/13/2004      | 2         | 4-5cm    |                 | 3931            | 43           | 400      |          | 1171     | 46        | 146       |
|          |                |           |          |                 |                 |              |          |          |          |           |           |
| 5-6 cm   | sections       |           |          |                 | HC              | l extraction | ons      | NaOH     | Ascorbi  | c Acid ex | tractions |
|          |                |           |          |                 | µg/g sed        | µg/g sed     | µg/g sed | µg/g sed | µg∕g sed | µg∕g sed  | µg/g sed  |
|          | Commla         | Carra     |          | Danasitar       |                 |              |          |          |          |           |           |

| 3-0 CIII | sections       |           |          |                 | HC       | 1 extraction | ons      | NaOH     | Ascorbi  | z Acia ex | tractions |
|----------|----------------|-----------|----------|-----------------|----------|--------------|----------|----------|----------|-----------|-----------|
|          |                |           |          |                 | µg/g sed | µg/g sed     | µg/g sed | µg/g sed | µg/g sed | µg/g sed  | µg/g sed  |
| Interval | Sample<br>Date | Core<br># | Interval | Porosity<br>(%) | Fe       | Mn           | Р        | Р        | Fe       | Mn        | Р         |
| 5-6cm    | 6/23/2004      | 1         | 5-6cm    | 62              |          |              |          | 105      | 937      | 64        | 93        |
| 5-6cm    | 7/7/2004       | 1         | 5-6cm    | 75              | 3303     | 57           | 497      | 171      | 2204     | 108       | 210       |
| 5-6cm    | 7/7/2004       | 2         | 5-6cm    | 71              | 5542     | 79           | 491      | 175      | 2552     | 120       | 226       |
| 5-6cm    | 7/19/2004      | 1         | 5-6cm    |                 | 4145     | 64           | 472      | 203      | 2727     | 133       | 232       |
| 5-6cm    | 7/19/2004      | 2         | 5-6cm    | 58              | 4502     | 66           | 496      | 228      | 2524     | 122       | 220       |
| 5-6cm    | 7/26/2004      | 1         | 5-6cm    | 62              | 2819     | 52           | 587      | 138      | 1582     | 87        | 146       |
| 5-6cm    | 7/26/2004      | 2         | 5-6cm    | 64              | 2722     | 44           | 577      |          | 1666     | 86        | 149       |
| 5-6cm    | 8/5/2004       | 1         | 5-6cm    | 59              |          |              |          | 167      | 1533     | 72        | 116       |
| 5-6cm    | 8/5/2004       | 2         | 5-6cm    | 61              | 2406     | 73           | 549      | 222      | 1764     | 93        | 151       |
| 5-6cm    | 8/12/2004      | 1         | 5-6cm    | 64              | 2886     | 63           | 601      | 186      | 1927     | 109       | 185       |
| 5-6cm    | 8/12/2004      | 2         | 5-6cm    | 63              | 2096     | 52           | 591      | 171      | 1507     | 77        | 193       |
| 5-6cm    | 8/18/2004      | 1         | 5-6cm    | 65              | 2428     | 63           | 449      | 227      | 1964     | 121       | 211       |

| 6-8 cm   | sections       |           |          |                 | HC       | l extraction | ons      | NaOH     | Ascorbi  | c Acid ex | tractions |
|----------|----------------|-----------|----------|-----------------|----------|--------------|----------|----------|----------|-----------|-----------|
|          |                |           |          |                 | µg/g sed | µg/g sed     | µg/g sed | µg/g sed | µg/g sed | µg/g sed  | µg/g sed  |
| Interval | Sample<br>Date | Core<br># | Interval | Porosity<br>(%) | Fe       | Mn           | Р        | Р        | Fe       | Mn        | Р         |
| 6-8cm    | 6/23/2004      | 1         | 6-8cm    | 65              |          |              |          | 136      | 1275     | 82        | 122       |
| 6-8cm    | 7/7/2004       | 1         | 6-8cm    | 74              | 3370     | 67           | 495      | 205      | 2310     | 120       | 240       |
| 6-8cm    | 7/7/2004       | 2         | 6-8cm    | 72              | 5653     | 85           | 493      | 211      | 2374     | 117       | 230       |
| 6-8cm    | 7/19/2004      | 1         | 6-8cm    |                 | 4267     | 66           | 510      | 208      | 2293     | 112       | 200       |
| 6-8cm    | 7/19/2004      | 2         | 6-8cm    | 71              | 4820     | 74           | 543      | 209      | 2282     | 113       | 196       |
| 6-8cm    | 7/26/2004      | 1         | 6-8cm    | 62              | 2867     | 55           | 585      | 141      | 1571     | 86        | 146       |
| 6-8cm    | 7/26/2004      | 2         | 6-8cm    | 61              |          |              |          |          | 1363     | 70        | 125       |
| 6-8cm    | 8/5/2004       | 1         | 6-8cm    | 55              |          |              |          | 162      | 1217     | 58        | 104       |
| 6-8cm    | 8/5/2004       | 2         | 6-8cm    | 54              |          |              |          |          | 950      | 45        | 107       |
| 6-8cm    | 8/12/2004      | 1         | 6-8cm    | 61              | 1967     | 49           | 629      | 151      |          |           |           |
| 6-8cm    | 8/12/2004      | 2         | 6-8cm    | 60              | 1919     | 44           | 582      | 143      | 1345     | 60        | 148       |
| 6-8cm    | 8/18/2004      | 1         | 6-8cm    | 64              | 2939     | 65           | 455      | 215      | 1486     | 70        | 214       |

| 8-10 cm  | sections       |           |          |                 | HC       | l extraction | ons      | NaOH     | Ascorbi  | c Acid ex | tractions |
|----------|----------------|-----------|----------|-----------------|----------|--------------|----------|----------|----------|-----------|-----------|
|          |                |           |          |                 | µg/g sed | µg/g sed     | µg/g sed | µg/g sed | µg/g sed | µg/g sed  | µg/g sed  |
| Interval | Sample<br>Date | Core<br># | Interval | Porosity<br>(%) | Fe       | Mn           | Р        | Р        | Fe       | Mn        | Р         |
| 8-10cm   | 7/7/2004       | 1         | 8-10cm   | 71              | 3418     | 65           | 527      | 199      | 2195     | 116       | 249       |
| 8-10cm   | 7/7/2004       | 2         | 8-10cm   | 72              | 5158     | 77           | 453      | 193      | 2485     | 122       | 230       |
| 8-10cm   | 7/19/2004      | 1         | 8-10cm   |                 | 2836     | 42           | 390      | 127      | 1417     | 69        | 130       |
| 8-10cm   | 7/19/2004      | 2         | 8-10cm   | 68              | 4224     | 64           | 487      | 177      | 2091     | 100       | 182       |
| 8-10cm   | 7/26/2004      | 1         | 8-10cm   | 56              | 2741     | 54           | 585      | 104      | 1296     | 67        | 121       |
| 8-10cm   | 7/26/2004      | 2         | 8-10cm   | 62              | 2674     | 44           | 523      |          | 1020     | 53        | 96        |
| 8-10cm   | 8/5/2004       | 1         | 8-10cm   | 53              |          |              |          | 134      | 1023     | 56        | 84        |
| 8-10cm   | 8/12/2004      | 1         | 8-10cm   | 56              | 2196     | 35           | 658      | 115      |          |           |           |
| 8-10cm   | 8/18/2004      | 1         | 8-10cm   | 60              | 3437     | 58           | 444      | 208      | 1059     | 46        | 159       |

| Pearson Cor                                                                                                      | relation Co                                                                                                                           | efficient                                                                       | P-V                                                                                                                        | alues                                                                                                              |                                                                               |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| AA-0-1                                                                                                           | Fe                                                                                                                                    | Mn                                                                              | AA-0-1                                                                                                                     | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.9                                                                                                                                   |                                                                                 | Mn                                                                                                                         | 0.000                                                                                                              |                                                                               |
| Р                                                                                                                | 0.863                                                                                                                                 | 0.894                                                                           | Р                                                                                                                          | 0.000                                                                                                              | 0.000                                                                         |
| HCl-0-1                                                                                                          | Fe                                                                                                                                    | Mn                                                                              | HC1-0-1                                                                                                                    | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.355                                                                                                                                 |                                                                                 | Mn                                                                                                                         | 0.178                                                                                                              |                                                                               |
| Р                                                                                                                | -0.414                                                                                                                                | -0.045                                                                          | Р                                                                                                                          | 0.11                                                                                                               | 0.869                                                                         |
| AA - 1-2                                                                                                         | Fe                                                                                                                                    | Mn                                                                              | AA-1-2                                                                                                                     | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.915                                                                                                                                 |                                                                                 | Mn                                                                                                                         | 0.000                                                                                                              |                                                                               |
| Р                                                                                                                | 0.933                                                                                                                                 | 0.921                                                                           | Р                                                                                                                          | 0.000                                                                                                              | 0.000                                                                         |
| HCl-1-2                                                                                                          | Fe                                                                                                                                    | Mn                                                                              | HC1-1-2                                                                                                                    | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.618                                                                                                                                 |                                                                                 | Mn                                                                                                                         | 0.019                                                                                                              |                                                                               |
| Р                                                                                                                | -0.346                                                                                                                                | -0.573                                                                          | Р                                                                                                                          | 0.225                                                                                                              | 0.032                                                                         |
|                                                                                                                  |                                                                                                                                       |                                                                                 |                                                                                                                            |                                                                                                                    |                                                                               |
| AA - 2-3                                                                                                         | Fe                                                                                                                                    | Mn                                                                              | AA-2-3                                                                                                                     | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.449                                                                                                                                 | 0.5.77                                                                          | Mn                                                                                                                         | 0.093                                                                                                              | 0.007                                                                         |
| P                                                                                                                | 0.829                                                                                                                                 | 0.567                                                                           | P                                                                                                                          | 0                                                                                                                  | 0.027                                                                         |
| HC1-2-3                                                                                                          | Fe                                                                                                                                    | Mn                                                                              | HCI-2-3                                                                                                                    | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.333                                                                                                                                 | 0.007                                                                           | Mn                                                                                                                         | 0.207                                                                                                              | 0.002                                                                         |
| P                                                                                                                | -0.608                                                                                                                                | -0.697                                                                          | P                                                                                                                          | 0.013                                                                                                              | 0.003                                                                         |
| AA-3-4                                                                                                           | Fe                                                                                                                                    | Mn                                                                              | AA-3-4                                                                                                                     | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.644                                                                                                                                 |                                                                                 | Mn                                                                                                                         | 0.01                                                                                                               |                                                                               |
| Р                                                                                                                | 0.604                                                                                                                                 | 0.559                                                                           | Р                                                                                                                          | 0.017                                                                                                              | 0.03                                                                          |
| HC1-3-4                                                                                                          | Fe                                                                                                                                    | Mn                                                                              | HC1-3-4                                                                                                                    | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.444                                                                                                                                 |                                                                                 | Mn                                                                                                                         | 0.097                                                                                                              |                                                                               |
| Р                                                                                                                | -0.521                                                                                                                                | -0.44                                                                           | Р                                                                                                                          | 0.047                                                                                                              | 0.101                                                                         |
| AA - 4-5                                                                                                         | Fe                                                                                                                                    | Mn                                                                              | AA - 4-5                                                                                                                   | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.883                                                                                                                                 |                                                                                 | Mn                                                                                                                         | 0.000                                                                                                              | 10111                                                                         |
| Р                                                                                                                | 0.732                                                                                                                                 | 0.777                                                                           | Р                                                                                                                          | 0.002                                                                                                              | 0.001                                                                         |
| HC1-4-5                                                                                                          | Fe                                                                                                                                    | Mn                                                                              | HC1-4-5                                                                                                                    | Fe                                                                                                                 | Mn                                                                            |
| Mn                                                                                                               | 0.449                                                                                                                                 |                                                                                 | Mn                                                                                                                         | 0.124                                                                                                              |                                                                               |
| Р                                                                                                                | -0.591                                                                                                                                | -0.326                                                                          | Р                                                                                                                          | 0.034                                                                                                              | 0277                                                                          |
|                                                                                                                  |                                                                                                                                       |                                                                                 |                                                                                                                            |                                                                                                                    | 0.277                                                                         |
| AA - 5-6                                                                                                         | E.                                                                                                                                    | M                                                                               |                                                                                                                            | E.                                                                                                                 | 0.277                                                                         |
| N.L.                                                                                                             | Fe                                                                                                                                    | Mn                                                                              | AA-5-6                                                                                                                     | Fe                                                                                                                 | Mn                                                                            |
| Mn<br>P                                                                                                          | Fe<br>0.932<br>0.889                                                                                                                  | Mn                                                                              | AA-5-6<br>Mn<br>P                                                                                                          | Fe<br>0.000                                                                                                        | 0.277<br>Mn                                                                   |
| Mn<br>P<br>HCL 56                                                                                                | Fe<br>0.932<br>0.889<br>Fa                                                                                                            | Mn<br>0.895<br>Mn                                                               | AA-5-6<br>Mn<br>P                                                                                                          | Fe<br>0.000<br>0.000<br>Fa                                                                                         | 0.277<br>Mn<br>0.000<br>Mn                                                    |
| Mn<br>P<br>HCl-5-6<br>Mn                                                                                         | Fe<br>0.932<br>0.889<br>Fe<br>0.595                                                                                                   | Mn<br>0.895<br>Mn                                                               | AA-5-6<br>Mn<br>P<br>HCl-5-6<br>Mn                                                                                         | Fe<br>0.000<br>0.000<br>Fe<br>0.069                                                                                | 0.217<br>Mn<br>0.000<br>Mn                                                    |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P                                                                                    | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506                                                                                         | Mn<br>0.895<br>Mn<br>-0.491                                                     | AA-5-6<br>Mn<br>P<br>HCl-5-6<br>Mn<br>P                                                                                    | Fe<br>0.000<br>0.000<br>Fe<br>0.069<br>0.136                                                                       | 0.277<br>Mn<br>0.000<br>Mn<br>0.149                                           |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P                                                                                    | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506                                                                                         | Mn<br>0.895<br>Mn<br>-0.491                                                     | AA-5-6<br>Mn<br>P<br>HCl-5-6<br>Mn<br>P                                                                                    | Fe<br>0.000<br>0.000<br>Fe<br>0.069<br>0.136                                                                       | 0.277<br>Mn<br>0.000<br>Mn<br>0.149                                           |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8                                                                          | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe                                                                                   | Mn<br>0.895<br>Mn<br>-0.491<br>Mn                                               | AA - 5-6<br>Mn<br>P<br>HCI - 5-6<br>Mn<br>P<br>AA - 6-8                                                                    | Fe<br>0.000<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe                                                                 | 0.277<br>Mn<br>0.000<br>Mn<br>0.149<br>Mn                                     |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn                                                                    | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965                                                                          | Mn<br>0.895<br>Mn<br>-0.491<br>Mn                                               | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn                                                                    | Fe<br>0.000<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000                                                        | 0.277<br>Mn<br>0.000<br>Mn<br>0.149<br>Mn                                     |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P                                                               | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866                                                                 | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804                                      | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P                                                               | Fe<br>0.000<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001                                               | Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003                                     |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCl-6-8                                                    | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866<br>Fe                                                           | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804<br>Mn                                | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCI-6-8                                                    | Fe<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001<br>Fe                                                  | Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003<br>Mn                               |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn                                              | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866<br>Fe<br>0.955                                                  | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804<br>Mn                                | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn                                              | Fe<br>0.000<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001<br>Fe<br>0                                    | Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003<br>Mn                               |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn<br>P                                         | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866<br>Fe<br>0.955<br>-0.543                                        | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804<br>Mn<br>-0.697                      | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P                                         | Fe<br>0.000<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001<br>Fe<br>0<br>0.165                           | 0.277<br>Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003<br>Mn<br>0.055             |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn<br>P                   | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866<br>Fe<br>0.955<br>-0.543<br>Fe                                  | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804<br>Mn<br>-0.697<br>Mn                | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P<br>AA-8-10                              | Fe<br>0.000<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001<br>Fe<br>0<br>0.165<br>Fe                     | Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003<br>Mn<br>0.055<br>Mn                |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn<br>P                   | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866<br>Fe<br>0.955<br>-0.543<br>Fe<br>0.989                         | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804<br>Mn<br>-0.697<br>Mn                | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P                   | Fe<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001<br>Fe<br>0<br>0.165<br>Fe<br>0                         | Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003<br>Mn<br>0.055<br>Mn                |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn<br>P<br>AA-8-10<br>Mn<br>P                   | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866<br>Fe<br>0.955<br>-0.543<br>Fe<br>0.989<br>0.894                | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804<br>Mn<br>-0.697<br>Mn<br>0.876       | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P                   | Fe<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001<br>Fe<br>0<br>0.165<br>Fe<br>0<br>0.165                | Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003<br>Mn<br>0.055<br>Mn<br>0.004       |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn<br>P<br>AA-8-10<br>Mn<br>P<br>HCl-8-10       | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866<br>Fe<br>0.955<br>-0.543<br>Fe<br>0.989<br>0.894<br>Fe          | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804<br>Mn<br>-0.697<br>Mn<br>0.876<br>Mn | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P<br>HCI-6-810      | Fe<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001<br>Fe<br>0<br>0.165<br>Fe<br>0<br>0.003<br>Fe          | Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003<br>Mn<br>0.055<br>Mn<br>0.004<br>Mn |
| Mn<br>P<br>HCl-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCl-6-8<br>Mn<br>P<br>AA-8-10<br>Mn<br>P<br>HCl-8-10<br>Mn | Fe<br>0.932<br>0.889<br>Fe<br>0.595<br>-0.506<br>Fe<br>0.965<br>0.866<br>Fe<br>0.955<br>-0.543<br>Fe<br>0.989<br>0.894<br>Fe<br>0.927 | Mn<br>0.895<br>Mn<br>-0.491<br>Mn<br>0.804<br>Mn<br>-0.697<br>Mn<br>0.876<br>Mn | AA-5-6<br>Mn<br>P<br>HCI-5-6<br>Mn<br>P<br>AA-6-8<br>Mn<br>P<br>HCI-6-8<br>Mn<br>P<br>AA-8-10<br>Mn<br>P<br>HCI-8-10<br>Mn | Fe<br>0.000<br>Fe<br>0.069<br>0.136<br>Fe<br>0.000<br>0.001<br>Fe<br>0<br>0.165<br>Fe<br>0<br>0.003<br>Fe<br>0.003 | Mn<br>0.000<br>Mn<br>0.149<br>Mn<br>0.003<br>Mn<br>0.055<br>Mn<br>0.004<br>Mn |

Appendix A-3 – Statistical Correlation matrices (P, Mn, Fe) for seasonal samples calculated with Minitab v13.32.

| All Con | centrati | ons in µg/g | sediment |         | Totals |          |          | Sequent            | tial Extr | action | > - | >    |         |        |     |
|---------|----------|-------------|----------|---------|--------|----------|----------|--------------------|-----------|--------|-----|------|---------|--------|-----|
|         |          |             |          |         | Aqua R | legia Ex | traction | NH <sub>4</sub> Cl | NaOH      |        | HCl |      | Ascorbi | c Acid |     |
|         |          |             |          | organic |        |          |          |                    |           |        |     |      |         |        |     |
| sample  |          |             | porosity | content |        |          |          |                    |           |        |     |      |         |        |     |
| #       | cm       | Location    | (%)      | (%)     | Fe     | Mn       | Р        | Р                  | Р         | Fe     | Mn  | Р    | Fe      | Mn     | Р   |
| 1       | 0-1      | MB          | 69%      | 4.3     | 60642  | 1409     | 2214     | 13.4               | 354       | 9802   | 186 | 355  | 4939    | 438    | 429 |
| 1       | 1-2      | MB          | 72%      | 4.5     | 59436  | 1542     | 1954     | 14.1               | 424       | 11438  | 261 | 355  | 4284    | 216    | 365 |
| 1       | 2-3      | MB          | 75%      | 1.5     | 60725  | 1078     | 2214     | 14.9               | 490       | 6880   | 84  | 239  | 6843    | 365    | 449 |
| 1       | 3-4      | MB          | 72%      | 4.8     | 81945  | 1473     | 2564     | 15.2               | 309       | 10343  | 174 | 319  | 1416    | 69     | 137 |
| 1       | 4-5      | MB          | 72%      | 4.6     | 55165  | 916      | 1745     | 17.3               | 290       | 9061   | 138 | 335  | 3704    | 202    | 281 |
| 1       | 5-8      | MB          | 68%      | 5.1     | 63286  | 1069     | 1983     | 11.9               | 244       | 8079   | 108 | 343  | 3504    | 195    | 252 |
| 1       | 8-12     | MB          | 67%      | 5.0     | 57503  | 940      | 1678     | 13.3               | 367       | 7441   | 100 | 358  | 3488    | 222    | 279 |
| 2       | 0-1      | IB          | 64%      | 3.5     | 63438  | 1722     | 3195     | 19.4               | 365       | 5419   | 176 | 451  | 4659    | 403    | 579 |
| 2       | 1-2      | IB          | 72%      | 2.7     | 48056  | 895      | 2203     | 17.6               | 451       | 2416   | 39  | 235  | 4495    | 319    | 391 |
| 2       | 1-2      | IB          | 66%      | 3.4     | 47338  | 1070     | 1778     | 29.6               | 254       | 4528   | 91  | 202  | 3088    | 187    | 289 |
| 2       | 2-3      | IB          | 63%      | 4.3     | 44708  | 764      | 2016     | 18.5               | 320       | 3503   | 59  | 286  | 3161    | 173    | 290 |
| 2       | 3-4      | IB          | 63%      | 4.2     | 44570  | 749      | 2018     | 13.0               | 372       | 4000   | 57  | 289  | 3556    | 193    | 347 |
| 2       | 4-5      | IB          | 64%      | 3.8     | 32066  | 509      | 1374     | 15.9               | 333       | 3297   | 50  | 278  | 3716    | 164    | 364 |
| 2       | 5-8      | IB          | 64%      | 3.9     | 52869  | 809      | 2252     | 17.7               | 108       | 2485   | 33  | 276  | 3325    | 168    | 323 |
| 2       | 8-12     | IB          | 55%      | 3.5     | 16980  | 260      | 1190     | 13.9               | 74        | 2906   | 29  | 333  | 2282    | 101    | 221 |
| 3       | 0-1      | IB          | 46%      | 2.1     | 13310  | 304      | 973      | 13.2               | 175       | 2115   | 45  | 546  | 1900    | 149    | 211 |
| 3       | 1-2      | IB          | 46%      | 2.4     | 29498  | 532      | 2277     | 6.0                | 127       | 3773   | 111 | 2413 | 2096    | 341    | 135 |
| 3       | 2-3      | IB          | 46%      | 2.0     | 16259  | 287      | 1159     | 12.1               | 192       | 1994   | 29  | 544  | 1945    | 98     | 190 |
| 3       | 3-4      | IB          | 40%      | 2.4     | 15646  | 289      | 1354     | 7.3                | 276       | 4803   | 45  | 235  | 2260    | 112    | 168 |
| 3       | 4-5      | IB          | 38%      | 2.1     | 14332  | 277      | 1060     | 10.5               | 147       | 2060   | 31  | 462  | 941     | 53     | 74  |
| 3       | 5-8      | IB          | 32%      | 1.8     | 14163  | 206      | 1072     | 4.5                | 164       | 2210   | 22  | 429  | 1815    | 57     | 155 |
| 3       | 8-12     | IB          | 28%      | 1.7     | 19111  | 181      | 1305     | 3.9                | 128       |        |     |      | 3005    | 43     | 117 |
| 4       | 0-1      | IB          | 75%      | 4.5     | 44440  | 73       | 1541     | 21.7               | 392       | 11245  | 231 | 395  | 5898    | 415    | 484 |
| 4       | 1-2      | IB          | 74%      | 5.6     | 47451  | 56       | 1565     | 10.2               | 346       | 6305   | 98  | 248  | 5522    | 360    | 415 |

| All Concentrations in $\mu g/g$ sediment |      |          |          | Totals  |        |           | Sequent  | tial Extra         | action | > -   | >   |      |         |        |     |
|------------------------------------------|------|----------|----------|---------|--------|-----------|----------|--------------------|--------|-------|-----|------|---------|--------|-----|
|                                          |      |          |          |         | Aqua R | tegia Ext | traction | NH <sub>4</sub> Cl | NaOH   |       | HCl |      | Ascorbi | c Acid |     |
|                                          |      |          |          | organic |        |           |          |                    |        |       |     |      |         |        |     |
| sample                                   |      |          | porosity | content |        |           |          |                    |        |       |     |      |         |        |     |
| #                                        | cm   | Location | (%)      | (%)     | Fe     | Mn        | Р        | Р                  | Р      | Fe    | Mn  | Р    | Fe      | Mn     | Р   |
| 4                                        | 2-3  | IB       | 72%      | 4.8     | 41786  | 48        | 1242     | 9.4                |        | 6381  | 82  | 257  | 5377    | 291    | 348 |
| 4                                        | 3-4  | IB       | 71%      | 11.8    | 42763  | 63        | 1319     | 4.8                | 252    |       |     |      | 5292    | 299    | 384 |
| 4                                        | 4-5  | IB       | 67%      | 5.4     | 45728  | 58        | 1370     | 8.2                | 292    |       |     |      | 6361    | 358    | 412 |
| 4                                        | 5-8  | IB       | 69%      | 5.1     | 40013  | 54        | 1120     | 176.8              | 221    | 37361 | 440 | 1959 | 5279    | 297    | 370 |
| 4                                        | 8-12 | IB       | 67%      | 5.1     | 39228  | 48        | 1163     | 13.7               | 203    | 4931  | 57  | 233  | 3151    | 208    | 212 |
| 5                                        | 0-1  | MB       | 70%      | 5.3     | 37627  | 48        | 1566     | 4.9                | 168    | 3646  | 138 | 181  | 4891    | 673    | 373 |
| 5                                        | 1-2  | MB       | 71%      | 5.4     | 44218  | 22        | 1422     | 4.1                | 302    | 7033  | 81  | 316  | 1579    | 60     | 75  |
| 5                                        | 2-3  | MB       | 65%      | 5.4     | 52861  | 1294      | 2868     | 8.4                | 294    | 8321  | 77  | 308  | 9171    | 395    | 540 |
| 5                                        | 3-4  | MB       | 58%      | 4.7     | 32393  | 31        | 1356     | 7.6                | 181    | 3946  | 65  | 314  | 2913    | 286    | 213 |
| 5                                        | 4-5  | MB       | 45%      | 3.1     | 27348  | 25        | 1241     | 2.9                | 159    | 3449  | 42  | 255  | 3046    | 200    | 213 |
| 5                                        | 5-8  | MB       | 27%      | 2.9     | 18182  | 16        | 869      | 0.8                | 93     | 1533  | 22  | 126  | 2683    | 170    | 155 |
| 5                                        | 8-12 | MB       | 23%      | 1.8     | 26091  | 407       | 1364     | 15.0               | 143    | 2942  | 32  | 350  | 2825    | 101    | 160 |
| 6                                        | 0-1  | MB       | 71%      | 4.3     | 36676  | 2653      | 1841     | 20.0               | 569    | 6398  | 641 | 318  | 4726    | 1049   | 459 |
| 6                                        | 1-2  | MB       | 73%      | 4.4     | 39889  | 69        | 1481     | 11.7               |        | 6887  | 354 | 287  | 5055    | 881    | 480 |
| 6                                        | 2-3  | MB       | 71%      | 7.6     | 40299  | 57        | 1530     | 22.8               |        |       |     |      | 5008    | 728    | 493 |
| 6                                        | 3-4  | MB       | 64%      | 3.9     | 32096  | 51        | 1214     | 4.9                | 280    | 4601  | 252 | 297  | 4313    | 578    | 442 |
| 6                                        | 4-5  | MB       | 56%      | 3.1     | 22482  | 28        | 865      | 1.5                | 141    | 3291  | 57  | 289  | 2587    | 250    | 199 |
| 6                                        | 5-8  | MB       | 41%      | 2.4     | 20470  | 30        | 770      | 7.4                | 161    | 3937  | 130 | 321  | 4251    | 310    | 188 |
| 7                                        | 0-1  | MB       | 61%      | 2.7     | 16151  | 602       | 1163     | 5.1                | 84     | 1993  | 125 | 349  | 4503    | 213    | 149 |
| 7                                        | 1-2  | MB       | 44%      | 1.7     | 16043  | 353       | 1115     | 1.7                | 43     | 2402  | 40  | 457  | 1032    | 92     | 52  |
| 7                                        | 2-3  | MB       | 28%      | 1.1     | 18630  | 303       | 1114     | 1.2                | 49     | 2425  | 37  | 521  | 1422    | 79     | 62  |
| 7                                        | 3-4  | MB       | 21%      | 0.7     | 37358  | 579       | 1307     | 0.5                | 97     | 1600  | 24  | 617  | 785     | 54     | 9   |
| 7                                        | 4-5  | MB       | 25%      | 1.1     | 55455  | 767       | 1448     | 0.2                |        | 4507  | 59  | 427  | 1578    | 97     | 28  |
| 8                                        | 0-1  | MB       | 74%      | 3.1     | 59565  | 1646      | 2436     | 18.3               | 693    | 8939  | 417 | 366  | 6350    | 803    | 641 |

| All Concentrations in $\mu g/g$ sediment |      |          |          |         | Totals |          |          | Sequent            | tial Extra | action | > - | >   |         |        |     |
|------------------------------------------|------|----------|----------|---------|--------|----------|----------|--------------------|------------|--------|-----|-----|---------|--------|-----|
|                                          |      |          |          |         | Aqua R | legia Ex | traction | NH <sub>4</sub> Cl | NaOH       |        | HCl |     | Ascorbi | c Acid |     |
|                                          |      |          |          | organic |        |          |          |                    |            |        |     |     |         |        |     |
| sample                                   |      |          | porosity | content |        |          |          |                    |            |        |     |     |         |        |     |
| #                                        | cm   | Location | (%)      | (%)     | Fe     | Mn       | Р        | Р                  | Р          | Fe     | Mn  | Р   | Fe      | Mn     | Р   |
| 8                                        | 1-2  | MB       | 77%      | 4.6     | 33627  | 896      | 1181     | 13.6               | 541        | 8153   | 261 | 314 | 6172    | 476    | 527 |
| 8                                        | 2-3  | MB       | 76%      |         | 59232  | 1425     | 2087     | 16.8               | 751        | 9698   | 251 | 548 | 5772    | 507    | 423 |
| 8                                        | 3-4  | MB       | 74%      | 3.3     | 63397  | 1148     | 1797     | 19.4               | 210        | 3900   | 66  | 233 | 3244    | 262    | 258 |
| 8                                        | 4-5  | MB       | 70%      | 5.0     | 38267  | 655      | 1531     | 12.0               | 260        | 5316   | 123 | 321 | 3745    | 329    | 240 |
| 8                                        | 5-8  | MB       | 72%      | 4.3     |        |          |          | 17.3               | 498        | 5109   | 77  | 384 | 3000    | 242    | 227 |
| 8                                        | 8-12 | MB       | 59%      | 4.7     |        |          |          | 10.0               | 192        | 6645   | 96  | 416 | 2062    | 141    | 146 |
| 9                                        | 0-1  | MB       | 44%      | 1.2     | 10030  | 223      | 827      | 15.7               | 54         | 997    | 18  | 487 | 973     | 70     | 96  |
| 9                                        | 1-2  | MB       | 35%      | 0.0     | 7487   | 109      | 525      | 6.7                | 40         |        |     |     | 365     | 24     | 26  |
| 9                                        | 2-3  | MB       | 31%      | 1.4     | 8932   | 148      | 583      | 4.3                | 107        | 481    | 10  | 311 | 207     | 18     | 16  |
| 9                                        | 3-4  | MB       | 31%      | 2.0     | 10614  | 151      | 579      | 2.1                | 36         | 552    | 9   | 303 | 1115    | 35     | 49  |
| 9                                        | 4-5  | MB       | 40%      | 2.9     | 19725  | 202      | 662      | 6.9                | 177        | 2429   | 31  | 501 | 605     | 62     | 48  |
| 9                                        | 5-8  | MB       | 42%      | 3.6     | 30850  | 345      | 987      | 4.2                | 65         | 1903   | 43  | 379 | 687     | 102    | 42  |
| 10                                       | 0-1  | MB       | 72%      | 4.1     | 67104  | 1623     | 1942     | 17.1               | 373        | 11926  | 257 | 347 | 6407    | 485    | 429 |
| 10                                       | 1-2  | MB       | 74%      | 3.2     | 58904  | 1280     | 1594     | 14.9               | 259        | 6473   | 111 | 238 | 5338    | 370    | 320 |
| 10                                       | 2-3  | MB       | 74%      | 3.2     | 60706  | 1634     | 2154     | 18.6               | 459        | 7294   | 137 | 191 | 6368    | 521    | 555 |
| 10                                       | 3-4  | MB       | 73%      | 4.6     | 74125  | 1756     | 2583     | 13.9               | 509        | 11591  | 222 | 319 | 5675    | 378    | 473 |
| 10                                       | 4-5  | MB       | 71%      | 4.2     | 70845  | 1607     | 2320     | 16.2               | 398        | 11945  | 227 | 333 | 5401    | 341    | 455 |
| 10                                       | 5-8  | MB       | 68%      | 4.1     | 63949  | 1740     | 2040     | 11.5               |            | 10666  | 289 | 299 | 7494    | 567    | 529 |
| 10                                       | 8-12 | MB       | 71%      | 4.4     | 65241  | 1356     | 1944     | 13.2               | 396        | 8268   | 137 | 297 | 5458    | 335    | 360 |
| 11                                       | 0-1  | MB       | 75%      | 5.0     | 57537  | 3017     | 2857     | 16.3               | 513        | 6948   | 419 | 260 | 6434    | 953    | 719 |
| 11                                       | 2-3  | MB       | 73%      | 5.2     | 47279  | 959      | 1701     | 10.4               | 219        | 5030   | 62  | 255 | 3708    | 192    | 208 |
| 11                                       | 3-4  | MB       | 69%      | 4.7     | 44252  | 898      | 1616     | 8.1                | 187        | 4405   | 39  | 189 | 4874    | 233    | 245 |
| 11                                       | 4-5  | MB       | 63%      | 4.4     | 35095  | 689      | 1397     | 5.4                | 231        | 3591   | 44  | 364 | 6756    | 288    | 504 |
| 11                                       | 5-8  | MB       | 50%      | 3.2     | 23791  | 468      | 1372     | 6.1                | 122        | 1854   | 31  | 312 | 1292    | 85     | 97  |

| All Cond | All Concentrations in $\mu g/g$ sediment |          |          |         | Totals |           |          | Sequent            | tial Extra | action | > - | >   |         |        |     |
|----------|------------------------------------------|----------|----------|---------|--------|-----------|----------|--------------------|------------|--------|-----|-----|---------|--------|-----|
|          |                                          |          |          |         | Aqua R | legia Ext | traction | NH <sub>4</sub> Cl | NaOH       |        | HCl |     | Ascorbi | c Acid |     |
|          |                                          |          |          | organic |        |           |          |                    |            |        |     |     |         |        |     |
| sample   |                                          |          | porosity | content |        |           |          |                    |            |        |     |     |         |        |     |
| #        | cm                                       | Location | (%)      | (%)     | Fe     | Mn        | Р        | Р                  | Р          | Fe     | Mn  | Р   | Fe      | Mn     | Р   |
| 12       | 0-1                                      | MB       | 74%      | 5.1     | 60254  | 1941      | 2277     | 9.8                | 374        | 6620   | 252 | 297 | 6144    | 586    | 482 |
| 12       | 1-2                                      | MB       | 72%      | 5.0     | 8014   | 128       | 619      | 7.9                | 532        |        |     |     | 5338    | 345    | 367 |
| 12       | 2-3                                      | MB       | 70%      | 5.1     | 50945  | 1038      | 1881     | 7.3                | 419        | 5014   | 103 | 273 | 0       | 0      | 0   |
| 12       | 3-4                                      | MB       | 69%      | 4.6     | 58301  | 1167      | 1970     | 16.8               | 311        | 4180   | 79  | 237 | 5663    | 387    | 369 |
| 12       | 4-5                                      | MB       | 71%      | 4.6     | 53752  | 1021      | 2046     | 9.1                | 389        | 5598   | 89  | 255 | 5703    | 296    | 510 |
| 12       | 5-8                                      | MB       | 71%      | 5.0     | 44807  | 886       | 1550     | 5.7                | 251        | 6832   | 168 | 407 | 4184    | 268    | 299 |
| 12       | 8-12                                     | MB       | 57%      | 4.6     | 36397  | 626       | 1377     | 5.8                | 164        | 2857   | 44  | 279 | 2472    | 164    | 151 |
| 13       | 0-1                                      | MB       | 54%      | 2.8     | 23777  | 519       | 1237     | 6.8                | 85         | 4220   | 74  | 516 | 1587    | 128    | 105 |
| 13       | 1-2                                      | MB       | 34%      | 3.4     | 23216  | 497       | 1244     | 6.9                | 81         | 3497   | 57  | 350 | 2824    | 173    | 128 |
| 13       | 2-3                                      | MB       |          | 2.8     | 18388  | 337       | 1145     |                    | 149        | 2846   | 30  | 451 | 1865    | 100    | 81  |
| 13       | 3-4                                      | MB       | 34%      | 2.4     | 11414  | 212       | 841      | 4.2                | 75         |        |     |     | 1700    | 104    | 72  |
| 13       | 4-5                                      | MB       | 34%      | 1.8     | 15439  | 228       | 784      | 7.1                | 248        | 3136   | 43  | 461 | 822     | 36     | 38  |
| 13       | 5-8                                      | MB       | 28%      | 1.2     | 19626  | 247       | 1103     | 3.2                | 79         | 1564   | 15  | 374 | 1631    | 42     | 48  |
| 13       | 8-12                                     | MB       | 27%      | 3.6     | 20526  | 231       | 1169     | 2.3                | 60         | 2822   | 21  | 289 | 1690    | 55     | 86  |
| 14       | 0-1                                      | IB       | 74%      | 4.9     | 59200  | 1558      | 2196     | 13.9               | 371        | 5025   | 147 | 253 | 4868    | 431    | 420 |
| 14       | 1-2                                      | IB       | 74%      | 5.5     | 51727  | 1206      | 2047     | 12.7               | 531        | 5380   | 141 | 181 | 7303    | 426    | 518 |
| 14       | 2-3                                      | IB       | 74%      | 7.0     | 53303  | 915       | 1942     | 0.0                | 627        | 7137   | 124 | 269 | 1790    | 112    | 137 |
| 14       | 3-4                                      | IB       | 73%      | 5.5     | 50255  | 879       | 1690     | 11.7               | 353        | 7317   | 120 | 336 | 5359    | 270    | 334 |
| 14       | 4-5                                      | IB       | 71%      | 5.6     | 52045  | 1020      | 1759     | 8.7                | 476        | 5050   | 94  | 255 | 4180    | 246    | 248 |
| 14       | 5-8                                      | IB       | 71%      | 5.7     | 46923  | 856       | 1509     | 9.1                | 538        | 7685   | 117 | 394 | 4976    | 276    | 310 |
| 14       | 8-12                                     | IB       | 64%      | 4.9     | 42102  | 795       | 1448     | 12.1               | 339        | 2719   | 57  | 234 | 3199    | 274    | 332 |
| 15       | 0-1                                      | IB       | 72%      | 3.7     | 46643  | 1106      | 1677     | 14.6               | 353        | 5012   | 93  | 256 | 4660    | 338    | 377 |
| 15       | 1-2                                      | IB       | 72%      | 4.9     | 42928  | 769       | 1514     | 12.2               | 355        | 10903  | 170 | 435 | 4135    | 238    | 305 |
| 15       | 2-3                                      | IB       | 73%      | 5.5     | 46254  | 732       | 1679     | 11.6               | 374        | 11578  | 168 | 440 | 5026    | 208    | 355 |

| All Concentrations in $\mu g/g$ sediment |      |          |          |         | Totals |          |          | Sequent            | tial Extr | action | > - | >   |         |        |      |
|------------------------------------------|------|----------|----------|---------|--------|----------|----------|--------------------|-----------|--------|-----|-----|---------|--------|------|
|                                          |      |          |          |         | Aqua R | legia Ex | traction | NH <sub>4</sub> Cl | NaOH      |        | HCl |     | Ascorbi | c Acid |      |
|                                          |      |          |          | organic |        |          |          |                    |           |        |     |     |         |        |      |
| sample                                   |      |          | porosity | content |        |          |          |                    |           |        |     |     |         |        |      |
| #                                        | cm   | Location | (%)      | (%)     | Fe     | Mn       | Р        | Р                  | Р         | Fe     | Mn  | Р   | Fe      | Mn     | Р    |
| 15                                       | 3-4  | IB       | 70%      | 5.7     | 51525  | 944      | 1799     | 9.9                | 144       | 7078   | 107 | 271 | 6118    | 285    | 370  |
| 15                                       | 4-5  | IB       | 63%      | 5.1     | 40315  | 621      | 1399     | 12.9               | 237       | 7282   | 85  | 289 | 4471    | 197    | 302  |
| 15                                       | 5-8  | IB       | 69%      | 5.8     | 41420  | 673      | 1352     | 13.2               | 313       | 10760  | 135 | 479 | 3842    | 211    | 259  |
| 15                                       | 8-12 | IB       | 63%      | 5.3     | 47979  | 764      | 1891     | 18.0               | 335       | 12248  | 228 | 689 |         |        |      |
| 16                                       | 0-1  | IB       | 46%      | 3.7     | 15011  | 241      | 1272     | 6.2                | 211       | 4932   | 70  | 574 | 1556    | 88     | 185  |
| 16                                       | 2-3  | IB       | 45%      | 4.0     | 20849  | 336      | 1306     | 8.5                | 148       | 2016   | 23  | 271 | 1528    | 82     | 154  |
| 16                                       | 3-4  | IB       | 43%      | 4.4     |        |          |          | 5.4                | 185       |        |     |     |         |        |      |
| 16                                       | 4-5  | IB       | 39%      | 2.9     | 12709  | 188      | 987      | 5.9                | 169       | 1510   | 20  | 337 | 1320    | 60     | 126  |
| 16                                       | 5-8  | IB       | 37%      | 2.9     |        |          |          | 2.8                | 117       | 1924   | 23  | 391 | 1656    | 89     | 111  |
| 16                                       | 8-12 | IB       | 38%      | 3.4     | 15467  | 190      | 1112     | 3.9                | 171       | 2205   | 22  | 543 | 2021    | 86     | 159  |
| 17                                       | 0-1  | SBW      | 65%      | 8.4     | 46766  | 602      | 4327     | 40.2               | 1124      | 4042   | 64  | 251 | 5232    | 193    | 927  |
| 17                                       | 1-2  | SBW      | 70%      | 22.0    |        |          |          | 24.5               | 800       | 1179   | 29  | 85  | 2043    | 140    | 1492 |
| 17                                       | 2-3  | SBW      | 73%      | 22.3    | 21314  | 402      | 4245     | 19.6               | 2292      | 1455   | 45  | 100 | 1752    | 144    | 1641 |
| 17                                       | 3-4  | SBW      | 74%      | 26.5    | 15898  | 384      | 4432     | 23.9               | 1993      | 901    | 31  | 53  | 1400    | 140    | 1880 |
| 17                                       | 4-5  | SBW      | 72%      | 16.3    | 13127  | 646      | 2581     | 69.1               | 909       | 511    | 15  | 37  | 1771    | 211    | 1471 |
| 17                                       | 5-8  | SBW      | 71%      | 13.4    | 16164  | 737      | 2140     | 44.0               | 1430      | 879    | 29  | 54  | 881     | 99     | 1387 |
| 17                                       | 8-12 | SBW      | 75%      | 22.9    | 11949  | 524      | 2711     | 30.1               | 1447      | 1083   | 57  | 51  | 1059    | 143    | 1096 |
| 19                                       | 0-1  | SBW      | 52%      | 4.9     | 33707  | 438      | 2144     | 20.2               | 619       |        |     |     | 1667    | 81     | 389  |
| 19                                       | 1-2  | SBW      | 54%      | 5.2     | 48278  | 623      | 3206     | 28.2               | 923       | 118    | 7   | 2   | 2054    | 81     | 571  |
| 19                                       | 2-3  | SBW      | 48%      | 5.2     |        |          |          |                    | 411       | 3185   | 54  | 383 |         |        |      |
| 19                                       | 3-4  | SBW      | 49%      | 4.6     | 24405  | 274      | 1525     |                    | 229       | 2958   | 42  | 307 | 1504    | 52     | 346  |
| 19                                       | 4-5  | SBW      | 42%      | 5.7     | 26742  | 320      | 1642     | 12.9               | 470       | 2801   | 40  | 270 | 2052    | 67     | 428  |
| 19                                       | 5-8  | SBW      | 38%      | 6.0     | 20958  | 237      | 1335     | 10.6               |           | 2366   | 36  | 290 | 1847    | 62     | 327  |
| 19                                       | 8-12 | SBW      | 28%      | 3.0     | 22190  | 271      | 1295     | 7.7                |           |        |     |     | 1561    | 47     | 274  |

| All Cond | All Concentrations in $\mu g/g$ sediment |          |          |         | Totals |          |          | Sequent            | tial Extra | action | > - | >   |         |        |     |
|----------|------------------------------------------|----------|----------|---------|--------|----------|----------|--------------------|------------|--------|-----|-----|---------|--------|-----|
|          |                                          |          |          |         | Aqua R | legia Ex | traction | NH <sub>4</sub> Cl | NaOH       |        | HCl |     | Ascorbi | c Acid |     |
|          |                                          |          |          | organic |        |          |          |                    |            |        |     |     |         |        |     |
| sample   |                                          |          | porosity | content |        |          |          |                    |            |        |     |     |         |        |     |
| #        | cm                                       | Location | (%)      | (%)     | Fe     | Mn       | Р        | Р                  | Р          | Fe     | Mn  | Р   | Fe      | Mn     | Р   |
| 20       | 0-1                                      | SBW      | 69%      | 4.2     | 42315  | 667      | 3253     | 41.0               | 572        | 2465   | 40  | 167 | 4367    | 193    | 919 |
| 20       | 1-2                                      | SBW      | 70%      | 7.4     |        |          |          | 32.4               | 674        | 4351   | 52  | 260 | 4503    | 189    | 864 |
| 20       | 2-3                                      | SBW      | 70%      | 8.6     | 39926  | 584      | 2797     | 31.7               | 796        | 5092   | 53  | 294 | 4493    | 167    | 842 |
| 20       | 3-4                                      | SBW      | 71%      | 9.4     | 36206  | 496      | 2437     | 31.1               | 904        | 8461   | 122 | 393 | 3673    | 161    | 809 |
| 20       | 4-5                                      | SBW      | 67%      | 6.5     |        |          |          | 32.4               | 972        | 5523   | 56  | 293 | 4250    | 163    | 859 |
| 20       | 5-8                                      | SBW      | 67%      | 9.9     |        |          |          | 26.4               | 896        | 6116   | 57  | 416 |         |        |     |
| 20       | 8-12                                     | SBW      | 57%      | 8.5     | 28257  | 373      | 2134     | 24.1               | 592        | 4358   | 48  | 339 | 4880    | 171    | 704 |
| 21       | 0-1                                      | IB       | 21%      |         | 5540   | 107      | 658      | 6.6                | 69         | 1974   | 46  | 415 | 825     | 64     | 70  |
| 21       | 1-2                                      | IB       | 21%      | 0.4     | 6551   | 100      | 765      | 3.5                |            | 852    | 18  | 515 | 531     | 29     | 39  |
| 21       | 2-3                                      | IB       | 19%      | 0.3     | 5497   | 85       | 679      | 3.5                |            | 654    | 15  | 394 | 401     | 20     | 28  |
| 21       | 3-4                                      | IB       | 19%      | 0.2     | 7157   | 106      | 828      | 3.9                | 37         | 1141   | 24  | 393 | 406     | 23     | 34  |
| 21       | 4-5                                      | IB       | 32%      | 0.3     | 6207   | 101      | 556      | 3.4                |            | 534    | 16  | 223 | 372     | 24     | 23  |
| 21       | 5-8                                      | IB       | 19%      | 0.4     | 7376   | 111      | 650      | 4.3                | 42         | 1281   | 25  | 314 | 2057    | 125    | 125 |
| 21       | 8-12                                     | IB       | 18%      | 0.6     | 6635   | 111      | 493      | 3.1                | 18         | 1343   | 28  | 244 | 658     | 40     | 80  |
| 24       | 0-1                                      | IB       | 70%      | 4.9     | 39276  | 1297     | 1800     | 11.8               | 496        | 6720   | 232 | 277 | 5690    | 565    | 520 |
| 24       | 1-2                                      | IB       | 71%      | 4.2     |        |          |          | 16.0               | 213        | 7004   | 150 | 301 | 5012    | 423    | 473 |
| 24       | 2-3                                      | IB       | 67%      | 4.8     |        |          |          | 9.9                | 213        | 2713   | 41  | 155 | 3997    | 270    | 298 |
| 24       | 3-4                                      | IB       | 64%      | 4.1     | 48100  | 949      | 1801     | 8.4                | 341        | 2982   | 46  | 139 | 4211    | 269    | 333 |
| 24       | 4-5                                      | IB       | 63%      | 4.7     | 48167  | 986      | 1861     | 10.0               | 330        | 3296   | 68  | 134 | 4591    | 318    | 453 |
| 24       | 5-8                                      | IB       | 59%      | 4.6     |        |          |          | 8.1                | 326        | 6300   | 79  | 428 |         |        |     |
| 24       | 8-12                                     | IB       | 46%      | 3.4     | 47126  | 662      | 2165     | 8.9                | 350        | 3741   | 43  | 429 | 1943    | 100    | 123 |
| 25       | 0-1                                      | IB       | 68%      | 4.1     | 34357  | 808      | 1602     | 16.8               | 347        | 4704   | 114 | 310 | 4871    | 355    | 486 |
| 25       | 1-2                                      | IB       | 70%      | 4.9     | 48600  | 806      | 1838     | 13.5               | 466        | 4501   | 50  | 240 | 4082    | 183    | 295 |
| 25       | 2-3                                      | IB       | 63%      | 4.4     | 51324  | 829      | 2187     | 13.2               |            | 1429   | 22  | 327 | 5706    | 202    | 407 |

| All Con | centratio | ons in µg/g | sediment |                    | Totals |           |          | Sequent            | tial Extra | action | > - | >   |         |        |      |
|---------|-----------|-------------|----------|--------------------|--------|-----------|----------|--------------------|------------|--------|-----|-----|---------|--------|------|
|         |           |             |          |                    | Aqua R | legia Ext | traction | NH <sub>4</sub> Cl | NaOH       |        | HCl |     | Ascorbi | c Acid |      |
| sample  |           |             | porosity | organic<br>content |        |           |          |                    |            |        |     |     |         |        |      |
| #       | cm        | Location    | (%)      | (%)                | Fe     | Mn        | Р        | Р                  | Р          | Fe     | Mn  | Р   | Fe      | Mn     | Р    |
| 25      | 3-4       | IB          | 53%      | 4.7                | 36490  | 634       | 1540     | 13.4               | 367        | 4734   | 52  | 263 | 3721    | 209    | 275  |
| 25      | 4-5       | IB          | 61%      | 4.3                | 38997  | 710       | 1642     | 16.8               | 541        | 4521   | 69  | 318 | 3522    | 212    | 315  |
| 25      | 5-8       | IB          | 59%      | 4.8                | 36536  | 533       | 1460     | 11.9               | 280        | 4444   | 59  | 322 | 3746    | 151    | 221  |
| 25      | 8-12      | IB          | 49%      | 4.1                | 32596  | 493       | 1406     | 0.0                | 260        | 4532   | 50  | 482 | 2630    | 142    | 219  |
| 27      | 0-1       | OB          | 74%      | 1.0                | 68526  | 7654      | 3881     | 31.6               | 835        | 8316   | 920 | 160 | 12873   | 3605   | 1713 |
| 27      | 1-2       | OB          | 75%      | 2.9                | 68178  | 3558      | 2576     | 27.5               |            |        |     |     | 8852    | 1354   | 861  |
| 27      | 2-3       | OB          | 74%      | 2.3                | 65365  | 2524      | 2147     | 21.5               | 247        | 5442   | 118 | 143 | 7703    | 821    | 500  |
| 27      | 3-4       | OB          | 73%      | 4.3                | 64492  | 3033      | 2055     | 3.9                | 431        | 10783  | 251 | 232 | 9612    | 1089   | 443  |
| 27      | 4-5       | OB          | 71%      | 4.3                | 64461  | 2156      | 2367     | 18.5               | 512        | 8677   | 129 | 224 | 6858    | 594    | 539  |
| 27      | 5-8       | OB          | 72%      | 5.0                | 59259  | 2250      | 2165     | 13.4               | 810        | 9779   | 221 | 280 | 6900    | 761    | 620  |
| 27      | 8-12      | OB          | 60%      | 3.3                | 49298  | 1455      | 1593     | 9.1                |            | 8518   | 174 | 291 | 4520    | 444    | 344  |

| All Con | centrations | s in µg/g sed | iment    |         | Totals |           |         |
|---------|-------------|---------------|----------|---------|--------|-----------|---------|
|         |             |               |          |         | Aqua I | Regia Ext | raction |
|         |             |               |          | organic |        |           |         |
| sample  | cm          |               | porosity | content |        |           |         |
| #       | interval    | Location      | (%)      | (%)     | Fe     | Mn        | Р       |
| 28      | 3-4         | SBW           | 53%      | 7.3     | 44177  | 2142      | 2181    |
| 28      | 4-5         | SBW           | 59%      | 8.9     | 36074  | 1766      | 1748    |
| 28      | 5-8         | SBW           | 48%      | 6.7     | 38588  | 1909      | 1840    |
| 28      | 8-12        | SBW           | 59%      | 9.9     | 37806  | 1788      | 1516    |
| 29      | 0-1         | SBW           | 44%      | 3.3     | 10681  | 489       | 667     |
| 29      | 1-2         | SBW           | 35%      | 3.2     | 15661  | 696       | 929     |
| 29      | 2-3         | SBW           | 29%      | 2.5     | 14062  | 173       | 988     |
| 30      | 0-1         | SBW           | 37%      | 4.8     | 32963  | 586       | 3018    |
| 30      | 2-3         | SBW           | 31%      | 4.5     | 28181  | 347       | 2139    |
| 30      | 3-4         | SBW           | 24%      | 4.5     | 33198  | 1653      | 2248    |
| 30      | 4-5         | SBW           | 27%      | 3.9     | 38374  | 1859      | 2535    |
| 30      | 5-8         | SBW           | 30%      | 3.0     | 29160  | 1391      | 1651    |
| 30      | 8-12        | SBW           | 28%      | 3.4     | 13946  | 236       | 823     |
| 31      | 0-1         | SBW           | 55%      | 4.5     | 28263  | 363       | 2090    |
| 31      | 1-2         | SBW           | 38%      | 4.7     | 26450  | 392       | 2009    |
| 31      | 2-3         | SBW           | 39%      | 5.6     | 26416  | 364       | 1967    |
| 31      | 3-4         | SBW           | 42%      | 5.6     | 32174  | 439       | 2500    |
| 31      | 5-8         | SBW           | 36%      | 4.5     | 30248  | 396       | 2379    |
| 31      | 8-12        | SBW           | 26%      | 3.1     | 15556  | 179       | 1126    |
| 32      | 0-1         | SBW           | 60%      | 10.8    | 36605  | 452       | 2736    |
| 32      | 1-2         | SBW           | 68%      | 12.3    | 43400  | 444       | 2551    |
| 32      | 2-3         | SBW           | 68%      | 13.1    | 35940  | 381       | 2534    |
| 32      | 3-4         | SBW           | 68%      | 12.2    | 52515  | 2438      | 3057    |
| 32      | 4-5         | SBW           | 63%      | 12.8    | 11926  | 130       | 951     |
| 32      | 5-8         | SBW           | 66%      | 12.7    | 43950  | 473       | 2652    |

| All Con | centrations | in µg/g sed | iment    |         | Totals |           |         |
|---------|-------------|-------------|----------|---------|--------|-----------|---------|
|         |             |             |          |         | Aqua I | Regia Ext | raction |
|         |             |             |          | organic |        |           |         |
| sample  | cm          |             | porosity | content |        |           |         |
| #       | interval    | Location    | (%)      | (%)     | Fe     | Mn        | Р       |
| 33      | 1-2         | SBW         | 43%      | 4.8     | 29355  | 336       | 1945    |
| 33      | 2-3         | SBW         | 47%      | 5.1     | 39220  | 1914      | 2486    |
| 33      | 3-4         | SBW         | 47%      | 4.8     | 30360  | 334       | 2192    |
| 33      | 4-5         | SBW         | 43%      | 5.2     | 28551  | 343       | 2122    |
| 33      | 5-8         | SBW         | 34%      | 5.2     | 37021  | 461       | 2677    |
| 33      | 8-12        | SBW         | 41%      | 5.5     | 33429  | 435       | 2392    |
| 34      | 0-1         | SBW         | 59%      | 6.4     | 37657  | 461       | 2520    |
| 34      | 1-2         | SBW         | 59%      | 5.2     | 49518  | 2430      | 2972    |
| 34      | 2-3         | SBW         | 60%      | 6.2     | 44115  | 2172      | 2838    |
| 34      | 3-4         | SBW         | 58%      | 5.3     | 42451  | 2029      | 2789    |
| 34      | 4-5         | SBW         | 57%      | 5.5     | 44944  | 2197      | 2856    |
| 34      | 5-8         | SBW         | 48%      | 5.0     | 35261  | 418       | 2517    |
| 34      | 8-12        | SBW         | 51%      | 6.5     | 36096  | 447       | 2475    |
| 35      | 0-1         | IB          | 68%      | 4.9     | 41294  | 2011      | 1663    |
| 35      | 1-2         | IB          | 65%      | 5.0     | 40414  | 1989      | 1438    |
| 35      | 2-3         | IB          | 62%      | 4.4     | 35355  | 1739      | 1306    |
| 35      | 3-4         | IB          | 62%      | 4.3     | 36643  | 1771      | 1416    |
| 35      | 4-5         | IB          | 58%      | 3.5     | 41408  | 1993      | 1627    |
| 35      | 5-8         | IB          | 57%      | 4.9     | 36510  | 1705      | 1352    |
| 35      | 8-12        | IB          | 56%      | 4.4     | 32672  | 1623      | 1239    |
| 36      | 0-1         | IB          | 43%      | 1.8     | 13638  | 620       | 970     |
| 36      | 1-2         | IB          | 42%      | 1.8     | 12555  | 583       | 943     |
| 36      | 2-3         | IB          | 35%      | 1.5     | 11702  | 546       | 944     |
| 36      | 3-4         | IB          | 30%      | 1.4     | 11180  | 533       | 839     |
| 36      | 4-5         | IB          | 31%      | 0.9     | 9340   | 417       | 759     |

| All Con | centrations | s in µg/g sed | iment    |         | Totals                |      |      |  |  |
|---------|-------------|---------------|----------|---------|-----------------------|------|------|--|--|
|         |             |               |          |         | Aqua Regia Extraction |      |      |  |  |
|         |             |               |          | organic |                       |      |      |  |  |
| sample  | cm          |               | porosity | content |                       |      |      |  |  |
| #       | interval    | Location      | (%)      | (%)     | Fe                    | Mn   | P    |  |  |
| 36      | 5-8         | IB            | 25%      | 1.0     | 10282                 | 467  | 962  |  |  |
| 36      | 8-12        | IB            | 22%      | 0.6     | 9547                  | 401  | 504  |  |  |
| 37      | 0-1         | IB            | 70%      | 4.4     | 48953                 | 2417 | 2016 |  |  |
| 37      | 1-2         | IB            | 63%      | 4.2     | 36505                 | 654  | 1408 |  |  |
| 37      | 2-3         | IB            | 65%      | 5.2     | 26262                 | 442  | 1119 |  |  |
| 37      | 3-4         | IB            | 60%      | 5.4     | 44431                 | 537  | 1218 |  |  |
| 37      | 4-5         | IB            | 60%      | 5.1     | 34652                 | 557  | 1286 |  |  |
| 37      | 5-8         | IB            | 54%      | 4.9     | 29518                 | 422  | 1081 |  |  |
| 37      | 8-12        | IB            | 44%      | 3.5     | 29550                 | 1432 | 1239 |  |  |
| 38      | 0-1         | IB            | 69%      | 4.6     | 48218                 | 2445 | 1874 |  |  |
| 38      | 1-2         | IB            | 63%      | 5.1     | 44847                 | 2125 | 1540 |  |  |
| 38      | 2-3         | IB            | 69%      | 5.2     | 45846                 | 2216 | 1470 |  |  |
| 38      | 3-4         | IB            | 69%      | 6.3     | 42852                 | 2102 | 1443 |  |  |
| 38      | 4-5         | IB            | 61%      | 5.8     | 48651                 | 2394 | 1763 |  |  |
| 38      | 5-8         | IB            | 62%      | 4.6     | 35176                 | 514  | 1123 |  |  |
| 38      | 8-12        | IB            | 48%      | 4.0     | 28329                 | 1382 | 1176 |  |  |
| 39      | 1-2         | IB            | 69%      | 100.0   | 40311                 | 758  | 1464 |  |  |
| 39      | 2-3         | IB            | 68%      | 5.3     | 49939                 | 939  | 1794 |  |  |
| 39      | 5-8         | IB            | 63%      | 5.0     | 42783                 | 677  | 1398 |  |  |
| 40      | 0-1         | IB            | 62%      | 35.2    | 28613                 | 1438 | 1380 |  |  |
| 40      | 1-2         | IB            | 53%      | 4.1     | 21764                 | 670  | 997  |  |  |
| 40      | 2-3         | IB            |          | 3.1     | 19639                 | 937  | 905  |  |  |
| 40      | 3-4         | IB            | 37%      | 2.3     | 13433                 | 663  | 746  |  |  |
| 40      | 4-5         | IB            | 27%      | 1.5     | 10038                 | 436  | 776  |  |  |
| 40      | 5-8         | IB            | 15%      | 1.1     | 11317                 | 467  | 783  |  |  |

| All Con | centrations | s in µg/g sed | iment    |         | Totals                |      |      |  |  |
|---------|-------------|---------------|----------|---------|-----------------------|------|------|--|--|
|         |             |               |          |         | Aqua Regia Extraction |      |      |  |  |
|         |             |               |          | organic |                       |      |      |  |  |
| sample  | cm          |               | porosity | content |                       |      |      |  |  |
| #       | interval    | Location      | (%)      | (%)     | Fe                    | Mn   | Р    |  |  |
| 40      | 8-12        | IB            | 22%      | 1.5     | 15641                 | 709  | 818  |  |  |
| 41      | 0-1         | MB            | 69%      | 5.0     | 32822                 | 794  | 1319 |  |  |
| 41      | 1-2         | MB            | 68%      | 5.2     | 47583                 | 901  | 1575 |  |  |
| 41      | 2-3         | MB            | 69%      | 6.0     | 37396                 | 638  | 1451 |  |  |
| 41      | 3-4         | MB            | 67%      | 5.8     | 32591                 | 482  | 1111 |  |  |
| 41      | 4-5         | MB            | 68%      | 6.4     | 35331                 | 513  | 1150 |  |  |
| 41      | 5-8         | MB            | 67%      | 6.1     | 17235                 | 232  | 550  |  |  |
| 41      | 8-12        | MB            | 64%      | 5.2     | 39454                 | 1936 | 1110 |  |  |
| 42      | 0-1         | MB            | 72%      | 4.6     | 47753                 | 1906 | 1734 |  |  |
| 42      | 1-2         | MB            | 70%      | 4.8     | 42503                 | 1262 | 1452 |  |  |
| 42      | 2-3         | MB            | 73%      | 6.0     | 57547                 | 1356 | 1849 |  |  |
| 42      | 3-4         | MB            | 67%      | 5.4     | 45622                 | 1325 | 1440 |  |  |
| 42      | 4-5         | MB            | 67%      | 4.6     | 60358                 | 2939 | 1810 |  |  |
| 42      | 5-8         | MB            | 67%      | 5.7     | 43928                 | 1307 | 1527 |  |  |
| 42      | 8-12        | MB            | 57%      | 5.2     | 47808                 | 724  | 1567 |  |  |
| 43      | 0-1         | MB            | 74%      | 5.7     | 41378                 | 1150 | 1478 |  |  |
| 43      | 1-2         | MB            | 71%      | 5.3     | 38916                 | 790  | 1105 |  |  |
| 43      | 2-3         | MB            | 70%      | 5.9     | 34749                 | 859  | 1239 |  |  |
| 43      | 3-4         | MB            | 67%      | 5.7     | 38804                 | 823  | 1302 |  |  |
| 43      | 4-5         | MB            | 67%      | 5.5     | 27075                 | 591  | 843  |  |  |
| 43      | 5-8         | MB            | 44%      | 3.4     | 27874                 | 387  | 949  |  |  |
| 43      | 8-12        | MB            | 35%      | 3.0     | 29108                 | 396  | 925  |  |  |
| 44      | 0-1         | OB            | 75%      | 3.7     | 54837                 | 2833 | 2617 |  |  |
| 44      | 1-2         | OB            | 74%      | 4.1     | 55051                 | 3595 | 2317 |  |  |
| 44      | 2-3         | OB            | 76%      | 5.8     | 57113                 | 3040 | 1848 |  |  |

| All Con | centrations | s in μg/g sedi | iment    |         | Totals                |      |      |  |  |
|---------|-------------|----------------|----------|---------|-----------------------|------|------|--|--|
|         |             |                |          |         | Aqua Regia Extraction |      |      |  |  |
|         |             |                |          | organic |                       |      |      |  |  |
| sample  | cm          |                | porosity | content |                       |      |      |  |  |
| #       | interval    | Location       | (%)      | (%)     | Fe                    | Mn   | Р    |  |  |
| 44      | 3-4         | OB             | 73%      | 5.2     | 50720                 | 2593 | 1498 |  |  |
| 44      | 4-5         | OB             | 76%      | 6.6     | 49531                 | 2447 | 1533 |  |  |
| 44      | 5-8         | OB             | 66%      | 4.4     | 43547                 | 1630 | 2176 |  |  |
| 44      | 8-12        | OB             | 44%      | 3.9     | 47753                 | 2316 | 1900 |  |  |
| 45      | 0-1         | OB             | 74%      | 4.8     | 47616                 | 1445 | 1680 |  |  |
| 45      | 1-2         | OB             | 70%      | 5.9     | 49159                 | 1747 | 2199 |  |  |
| 45      | 2-3         | OB             | 68%      | 6.2     | 51368                 | 1951 | 2144 |  |  |
| 45      | 3-4         | OB             | 57%      | 4.3     | 47024                 | 1671 | 1745 |  |  |
| 45      | 4-5         | OB             | 39%      | 4.8     | 44382                 | 1093 | 2347 |  |  |
| 45      | 5-8         | OB             | 21%      | 3.8     | 37366                 | 666  | 1325 |  |  |
| 45      | 8-12        | OB             | 46%      | 3.5     | 35096                 | 628  | 1101 |  |  |

|        |       | Total Phosphorus (µg/g) |      |      | Total Iron (µg/g) |       |       |              |              |        |       |
|--------|-------|-------------------------|------|------|-------------------|-------|-------|--------------|--------------|--------|-------|
| Core   |       |                         |      |      |                   |       |       | <b>D</b> P - | <b>D</b> P - | DFe -  | DFe - |
| Number | Depth | 1982                    | 1992 | 2004 | 1982              | 1992  | 2004  | 1982         | 1992         | 1982   | 1992  |
| 1      | 1     | 1984                    | 1090 | 2214 | 34520             | 35856 | 60642 | 230          | 1124         | 26122  | 24786 |
| 1      | 2     | 1864                    | 1077 | 1954 | 30235             | 35986 | 59436 | 90           | 877          | 29201  | 23450 |
| 1      | 4     | 1625                    | 1115 | 2564 | 30164             | 35961 | 81945 | 939          | 1449         | 51781  | 45984 |
| 1      | 8     | 1168                    | 1183 | 1678 | 28259             | 35081 | 57503 | 510          | 495          | 29244  | 22422 |
| 2      | 1     | 1407                    | 944  | 3195 | 27296             | 28051 | 63438 | 1788         | 2251         | 36142  | 35387 |
| 2      | 2     | 1338                    | 877  | 2203 | 23745             | 25326 | 48056 | 865          | 1326         | 24311  | 22730 |
| 2      | 4     | 1299                    | 914  | 2018 | 23407             | 25922 | 44570 | 719          | 1104         | 21163  | 18648 |
| 2      | 8     | 1194                    | 801  | 1190 | 25736             | 25770 | 16980 | -4           | 389          | -8756  | -8790 |
| 3      | 1     | 1171                    | 995  | 973  | 16883             | 12376 | 13310 | -198         | -22          | -3573  | 934   |
| 3      | 2     | 1141                    | 948  | 2277 | 13605             | 11674 | 29498 | 1136         | 1329         | 15893  | 17824 |
| 3      | 4     | 1176                    | 868  | 1354 | 14586             | 9794  | 15656 | 178          | 486          | 1070   | 5862  |
| 3      | 8     | 1063                    | 669  | 1305 | 10998             | 9612  | 19111 | 242          | 636          | 8113   | 9499  |
| 4      | 1     | 1086                    | 158  | 1541 | 30382             | 33430 | 44440 | 455          | 1383         | 14058  | 11010 |
| 4      | 2     | 972                     | 1002 | 1565 | 27480             | 35140 | 47451 | 593          | 563          | 19971  | 12311 |
| 4      | 4     | 931                     | 1087 | 1319 | 26187             | 33968 | 41786 | 388          | 232          | 15599  | 7818  |
| 4      | 8     | 859                     | 954  | 1163 | 24109             | 30542 | 39228 | 304          | 209          | 15119  | 8686  |
| 5      | 1     | 779                     | 495  | 1566 | 13217             | 8632  | 37627 | 787          | 1071         | 24410  | 28995 |
| 5      | 2     | 460                     | 397  | 1422 | 9158              | 6883  | 44218 | 962          | 1025         | 35060  | 37335 |
| 5      | 4     | 276                     | 382  | 1356 | 6484              | 4626  | 32393 | 1080         | 974          | 25909  | 27767 |
| 5      | 8     | 276                     | 955  | 1364 |                   |       |       | 1088         | 409          |        |       |
| 7      | 1     | 766                     | 955  | 1163 | 9270              | 14928 | 16151 | 397          | 208          | 6881   | 1223  |
| 7      | 2     | 581                     | 798  | 1115 | 9068              | 11347 | 16043 | 534          | 317          | 6975   | 4696  |
| 7      | 4     | 671                     | 784  | 1307 | 9170              | 39457 | 37358 | 636          | 523          | 28188  | -2099 |
| 7      | 8     | 683                     | 824  | 1448 | 33353             | 44328 | 55454 | 765          | 624          | 22101  | 11126 |
| 8      | 1     | 1707                    | 1518 |      | 29933             | 30702 |       |              |              |        |       |
| 8      | 2     | 1292                    | 1115 | 2436 | 26923             | 27349 | 59565 | 1144         | 1321         | 32642  | 32216 |
| 8      | 4     | 1082                    | 915  | 2087 | 26118             | 26988 | 59232 | 1005         | 1172         | 33114  | 32244 |
| 8      | 8     | 988                     | 881  | 1531 | 20970             | 20886 | 38267 | 543          | 650          | 17297  | 17381 |
| 9      | 1     | 1418                    | 619  | 827  | 14526             | 6710  | 10030 | -591         | 208          | -4496  | 3320  |
| 9      | 2     | 930                     | 606  | 525  | 20010             | 6139  | 7487  | -405         | -81          | -12523 | 1348  |
| 9      | 4     | 862                     | 542  | 579  | 25314             | 6663  | 10614 | -283         | 37           | -14700 | 3951  |
| 9      | 8     | 846                     | 571  | 987  | 12807             | 17528 | 30580 | 141          | 416          | 17773  | 13052 |
| 10     | 1     | 1828                    | 1283 | 1942 |                   |       | 67104 | 114          | 659          |        |       |
| 10     | 2     | 1716                    | 1321 | 1594 | 35961             | 37671 | 58904 | -122         | 273          | 22943  | 21233 |
| 10     | 4     | 1541                    | 1316 | 2583 | 28489             | 37301 | 70845 | 1042         | 1267         | 42356  | 33544 |
| 10     | 8     | 1337                    | 958  | 1944 | 33198             | 34518 | 65241 | 607          | 986          | 32043  | 30723 |
| 11     | 1     | 1726                    | 588  | 2857 | 21306             | 13053 | 57537 | 1131         | 2269         | 36231  | 44484 |
| 11     | 2     | 1615                    | 603  | 1701 | 24062             | 14629 | 47279 | 86           | 1098         | 23217  | 32650 |
| 11     | 4     | 1346                    | 566  | 1616 | 35278             | 15029 | 44252 | 270          | 1050         | 8974   | 29223 |
| 11     | 8     | 1039                    | 479  | 1372 | 58459             | 14287 | 23721 | 333          | 893          | -34738 | 9434  |

Appendix C - Historical Comparison

|          |       | Total Pl | nosphoru | ıs (µg/g) | g) Total Iron (µg/g) |       |       |              |              |        |        |
|----------|-------|----------|----------|-----------|----------------------|-------|-------|--------------|--------------|--------|--------|
| Core     |       |          |          |           |                      |       |       | <b>D</b> P - | <b>D</b> P - | DFe -  | DFe -  |
| Number   | Depth | 1982     | 1992     | 2004      | 1982                 | 1992  | 2004  | 1982         | 1992         | 1982   | 1992   |
| 12       | 1     | 1660     | 1176     | 2277      | 33689                | 34845 | 60254 | 617          | 1101         | 26565  | 25409  |
| 12       | 2     | 1373     | 1174     | 619       | 33224                | 44264 | 8014  | -754         | -555         | -25210 | -36250 |
| 12       | 4     | 1287     | 1057     | 1970      | 33051                | 31969 | 58301 | 683          | 913          | 25250  | 26332  |
| 12       | 8     | 1325     | 877      | 1377      | 30812                | 27214 | 36397 | 52           | 500          | 5585   | 9183   |
| 13       | 1     | 1061     | 702      | 1237      | 1663                 | 14223 | 23216 | 176          | 535          | 21553  | 8993   |
| 13       | 2     | 1051     | 624      | 1244      | 23439                | 16516 | 18388 | 193          | 620          | -5051  | 1872   |
| 13       | 4     | 1028     | 595      | 841       | 23355                | 18117 | 11414 | -187         | 246          | -11941 | -6703  |
| 15       | 1     | 1465     | 1132     | 1677      |                      |       |       | 212          | 545          |        |        |
| 15       | 2     | 1381     | 1229     | 1514      |                      |       |       | 133          | 285          |        |        |
| 15       | 4     | 1305     | 1255     | 1799      |                      |       |       | 494          | 544          |        |        |
| 15       | 8     | 1281     | 1156     | 1891      |                      |       |       | 610          | 735          |        |        |
| 16       | 1     | 1185     | 1210     | 1272      |                      |       |       | 87           | 62           |        |        |
| 16       | 2     | 1081     | 1187     | 1306      |                      |       |       | 225          | 119          |        |        |
| 16       | 4     | 1109     | 790      | 987       |                      |       |       | -122         | 197          |        |        |
| 16       | 8     | 1057     | 696      | 1112      |                      |       |       | 55           | 416          |        |        |
| 17       | 1     | 2370     | 2136     | 4327      | 23742                | 30578 | 46766 | 1957         | 2191         | 23024  | 16188  |
| 17       | 2     | 2288     | 2108     | 4245      | 23885                | 28241 | 21314 | 1957         | 2137         | -2571  | -6927  |
| 17       | 4     | 2344     | 2067     | 4432      |                      |       |       | 2088         | 2365         |        |        |
| 17       | 8     | 2195     | 1941     | 2711      |                      |       |       | 516          | 770          |        |        |
| 19       | 1     | 3255     | 1838     | 2144      | 24481                | 24040 | 33707 | -1111        | 306          | 9226   | 9667   |
| 19       | 2     | 2982     | 1809     | 3206      | 23775                | 22391 | 48278 | 224          | 1397         | 24503  | 25887  |
| 19       | 4     | 2898     | 1826     | 1525      | 24353                | 22392 | 24405 | -1373        | -301         | 52     | 2013   |
| 19       | 8     | 2752     | 1834     | 1295      | 22794                | 22986 | 22190 | -1457        | -539         | -604   | -796   |
| 20       | 1     | 2565     | 1914     | 3253      | 24591                | 30204 | 42318 | 688          | 1339         | 17727  | 12114  |
| 20       | 2     | 2444     | 1894     | 2797      | 16657                | 29889 | 39926 | 353          | 903          | 23269  | 10037  |
| 20       | 4     | 2248     | 1757     | 2437      | 23981                | 27339 |       | 189          | 680          |        |        |
| 20       | 8     | 1378     | 1337     | 2134      | 19053                | 18947 | 28257 | 756          | 797          | 9204   | 9310   |
| 24       | 1     | 1658     | 1040     | 1800      | 29264                | 29798 | 39276 | 142          | 760          | 10012  | 9478   |
| 24       | 2     | 1349     | 1070     |           | 28360                | 28478 | 48100 |              |              | 19740  | 19622  |
| 24       | 4     | 1185     | 1064     | 1801      | 26235                | 26939 | 48167 | 616          | 737          | 21932  | 21228  |
| 24       | 8     | 1013     | 977      | 1363      | 22185                | 23774 | 37823 | 350          | 386          | 15638  | 14049  |
| 25       | 1     | 1238     | 1083     | 1602      | 20985                | 26181 | 34357 | 364          | 519          | 13372  | 8176   |
| 25       | 2     | 1265     | 1058     | 1838      | 22384                | 24679 | 48600 | 573          | 780          | 26216  | 23921  |
| 25       | 4     | 1160     | 1116     | 1540      | 20110                | 23340 | 36490 | 380          | 424          | 16380  | 13150  |
| 25       | 8     | 957      | 1238     | 1406      | 13677                | 24255 | 32596 | 449          | 168          | 18919  | 8341   |
| 27       | 1     | 3234     | 2080     | 3881      | 48893                | 42759 | 68526 | 647          | 1801         | 19633  | 25767  |
| 27       | 2     | 2248     | 1587     | 2576      | 38174                | 37685 | 68178 | 328          | 989          | 30004  | 30493  |
| 27       | 4     | 1507     | 1146     | 2055      | 34329                | 34553 | 64492 | 548          | 909          | 30163  | 29939  |
| 27       | 8     | 1427     | 1023     | 1593      | 33160                | 34287 | 49298 | 166          | 570          | 16138  | 15011  |
| AVERAGES |       | 1433     | 1099     | 1832      | 24073                | 24515 | 39911 | 399          | 733          | 15838  | 15396  |

# Appendix D

Raw data files are available on an excel spreadsheet.

Note that all ICP analyses presented are the result of triplicate analyses, analytical errors presented are from deviations in analysis.