'Wet' Chemical Techniques

- One technique to analyze the chemistry of a mineral is to dissolve it
 - Water, Strong acids/bases, hydrofluoric acid, oxidants, fluxes of other material dissolve mineral
 - Analyze the chemical constituents now dissolved in the resulting solution
 - Spectroscopy (often using Inductively coupled plasma (ICP) or flame) to ionize the atoms and investigate the effects of/on visible light.

THE ELECTROMAGNETIC SPECTRUM 10-10 10^{3} 10^{2} 10-1 10-2 10^{-3} 10-5 10^{-6} 10-7 10-8 10-9 10-11 10-12 10^{1} 10^{-4} Wavelength (in meters) longer This Period Size of a wavelength Protein Soccer Bacteria Field Common name of wave "HARD" X RAYS INFRARED ULTRAVIOLET RADIO WAVES MICROWAVES "SOFT" X RAYS GAMMA RAYS

Light Bulb

 10^{14}

1015

 10^{1}

 10^{16}

 10^{2}

The ALS

 10^{17}

 10^{3}

Elements

 10^{20}

higher

 10^{6}

Machines

1018

 10^{4}

1019

 10^{5}

Planck's law: $E=hv=hc/\lambda$ Where v is frequency, λ is wavelength, h is Planck's constant, and c is the speed of light

 10^{12}

10-2

 10^{13}

10.1

Microwave

Oven

109

10-5

1010

10-4

1011

10-3

FM Radio

108

10-6

107

10-7

Sources

Frequency (waves per

second)

Energy of one photon

(electron volts)

Radio

lower

10-9

 10^{6}

10-8

Spectroscopy

 Exactly how energy is absorbed and reflected, transmitted, or refracted changes the info and is determined by different techniques

Analytical Techniques for Minerals

- XRD (X-ray diffraction) is one of the most powerful tools for mineral identification, structural/chemical refinement, and size determination – we will study it in detail (both lecture and lab).
- Microscopy Optical techniques are another very powerful tool for mineral identification, identification of physical/ chemical 'history' of minerals/rocks, and mineral association which we will also study in detail (both lecture and lab)

Analytical Techniques for Minerals

- Spectroscopy different methods of studying how different parts of the electromagnetic spectrum (of which visible light is a small part) are affected by minerals
- Electron microscopy look at techniques which utilize how electrons (shot through a sample of mineral) interact with minerals – imaging possible to very small sizes
- Scanned-proximity probe microscopy techniques

 look at forces between probe tip and sample to
 measure a property (height, optical absorption,
 magnetism, etc)

More analytical techniques

- Sychrotron Different techniques (many similar to spectroscopic techniques) that utilize particles accelerated to very high speeds and energies and how they interact with minerals
- Magnetic different techniques that utilize the magnetic properties of minerals
- Size techniques to determine the sizes of different minerals
- Chemistry/isotopes techniques to probe chemical and isotopic signatures in minerals

Spectroscopy

 Exactly how light is absorbed and reflected, transmitted, or refracted changes the info and is determined by different techniques

Light Source

- Light shining on a sample can come from different places (in lab from a light, on a plane from a laser array, or from earth shining on Mars from a big laser)
- Can 'tune' these to any wavelength or range of wavelengths

IR image of Mars Olivine is purple

Causes of Absorption

- Molecular or atomic orbitals absorb light, kicks e⁻ from stable to excited state
- Charge transfer or radiation (color centers)
- Vibrational processes a bond vibrates at a specific frequency → only specific bonds can do absorb IR though (IR active)

Reflectance Spectroscopy

- Non-destructive form of analysis, used to 'see' some of the chemistry, bonding
- Spectroscopy is particularly good at detecting water and OH groups in minerals (especially in IR)
- Good at differentiating between different clays because it detects OH groups well

Raman Spectroscopy

 Another kind of spectroscopy which looks at a scattering effect and what that tells us about the chemistry, oxidation state, and relative proportions of different ions

Mössbauer Spectroscopy

- Special effect, restricted to specific isotopes of certain elements which causes a very characteristic emission (after getting hit with a beam of gamma radiation) which is sensitive to the bonding environment of that isotope (only ⁵⁷Co, ⁵⁷Fe, ¹²⁹I, ¹¹⁹Sn, ¹²¹Sb)
- Generally used to study Fe tells us about how Fe is bonded and it's

oxidation state

Nuclear Magnetic Resonance Spectroscopy (NMR)

- NMR is useful for determining short range cation ordering in minerals.
- The NMR spectrometer can be tuned to examine the nucleus of mineralogical interest (e.g. aluminosilicates (27AI, 29Si, 23Na) oxides (17O, 25Mg, etc.), phosphates (31P), hydrous minerals (1H, 19F)).
- NMR is particularly useful for cations that can not be distinguished by X-ray methods, such as Si/Al ordering in aluminosilicates

Electron Microscopy

- What we can see using visible light is limited at the small end of spatial scales by the wavelength of light (hundreds of nanometers)
- To image things smaller than this, need to use energy of smaller wavelengths
- Because energy is inversely proportional to wavelength (E=hc/λ), higher energy particles have smaller wavelengths and can image smaller things (e⁻ are easy to generate and accelerate → faster particle has more energy)

Electron Microscopy/ Spectroscopy

Interaction of electrons with a sample

e- penetration into a sample

 Details dependent on mineral composition and accelerating voltage of e- beam, but for SEM applications:

At 20 KV Accelerating Voltage and Z=28

SEM – what do we get?

 Topography (surface picture) – commonly enhanced by 'sputtering' (coating) the sample with gold or carbon

TEM (+ HRSTEM) – What do we get?

- 'See' smallest features with this sub-nm!
- Morphology size, shape, arrangement of particles on scale of atomic diameters
- Crystallographic information from diffracted electrons, get arrangement and order of atoms as well as detection of atomic-scale defects
- Compositional information Chemical identity, including redox speciation (distinguish Fe²⁺ and Fe³⁺ for instance)

Electron Microprobe

- Very similar to SEM and TEM in many respects, but utilizes 'thick sections' and a set of detectors which measure the emitted X-Rays from e⁻ bombardment and excitation more accurately than the detectors used in SEM or TEM analyses
- These detectors are wavelength dispersive spectrometry (WDS) detectors, there are usually an array of 3-5 which record over some range of wavelength much more accurately than the EDX detector available with SEM and TEM instruments

Synchrotrons

- A synchrotron is a ring which uses magnets and electrodes to accelerate x-rays or light to nearly the speed of light
- These extremely bright sources have widened the range of information which we can use traditional spectroscopy, diffraction, and even microscopy techniques for

National Synchrotron Light Source (NSLS)

XANES and EXAFS

- X-ray adsorption near-edge spectroscopy and Extended X-ray adsorption Fine Structure, commonly done with synchrotron radiation because the higher energy X-ray yields more precise data
- X-ray techniques which look at the fine details of X-ray interactions with minerals
- Sensitive to oxidation states and specific bonding environments

Atomic Force Microscopy (AFM)

- Can be done in water or air (unlike SEM/TEM which requires a vacuum)
- The probe is attached to a cantilever spring, in which the force 'sensed' is measured
- Get topograpgic information at an atomic

scale

Scanning tunneling microscopy (STM) is the precursor to this technique, and is still used to yield similar information

2.5 nm² rendering of a surface – what are the bumps??