
Example: Interpreting Predicate Formulas

Given a structure A equipped with the following universe and
interpretation function, as well as equality over the naturals and the
universe:

UA ≜ {f1, . . . , f10}
[[g1]]A ≜ returns the count of legs for the input

[[P1]]A ≜ is a table

[[Q2]]A ≜ lamp is on the table

[[R2]]A ≜ the artisan crafted the furniture

[[a]]A ≜ Ron Swanson

The tables with the lamps on them
are crafted by Ron Swanson.

∀x ((P(x) ∧ Q(x)) → R(a, x))

All tables have four legs.

∀x (P(x) → g(x) = 4)

1 / 12



Substitution

This can be tricky (both by hand and in code).

A[x/x0](F ) ≜ “replace every free instance of x with x0 in F .”

Note: there are many ways to write this (including A[x0/x](F )!). (Should be

clear from context; do not be afraid to ask.)
Easiest method: starting from the innermost bound variables, rename:

P(x) ∨ ∀x

(
∃x
(
P(x) → Q(x)

)
∧ ∀x

(
R(x)

)
∧ S(x)

)

2 / 12



Equivalence and satisfiability of predicate logic

Recall:

F ≡ G ≜ [[F ]]A1= [[G ]]A1 ∧ · · · ∧ [[F ]]An= [[G ]]An

Two formulas F and G are equivalent if and only if they evaluate to the
same truth value for all suitable assignments.

Two formulas F and G are equivalent if and only if they evaluate to the
same truth value for all suitable structures?

F ≜ ∀x (P(x , f (x)))
∧ ∀y¬P(y , y)
∧ ∀u∀v∀w (P(u, v) ∧ P(v ,w) → P(u, v))

G ≜ some formula containing the same set of symbols

Easy mode: the formulas have the same surface string (syntax!).
Hard mode: the formula is occluded.

3 / 12



Finding SAT vs. Evaluating Predicate Logic

Propositional logic: find a mapping from propositions to truth values to
makes the formula true.
Predicate logic: find a structure where the mapping from interpreted
variables to truth values makes the formula true.

Logic: searching for a universe, emphasis on core mathematical truths.
AI: often have a universe in mind, really: SAT over formula + structure

Even with this information, exhaustive search is hard.

For certain tasks, there is an easier way!

4 / 12



From rewrite rules to inference

Recall:

¬¬F = F (double negation)

¬(F ∧ G ) = ¬F ∨ ¬G (deMorgan’s)

¬(F ∨ G ) = ¬F ∧ ¬G (deMorgan’s)

F ∧ (G ∨ H) = (F ∧ G ) ∨ (F ∧ H) (distributive)

F ∨ (G ∧ H) = (F ∨ G ) ∧ (F ∨ H) (distributive)

F → G = ¬F ∨ G

New ones for predicate logic:

¬∀x(F (x)) = ∃x(¬F (x)) (deMorgan’s)

¬∃x(F (x)) = ∀x(¬F (x)) (deMorgan’s)

How do we create new knowledge from what we already know, using only
syntax, not semantics?

5 / 12



Sequents vs. Implications (Inference vs. Derivations)

F1, . . . ,Fn ⊢ G

(F1 ∧ . . . ∧ Fn) → G

Example Scenario: I have a proof of F → G and I a proof of G , but I
want a proof of G , and I can’t break apart F or G to get it. How do I
produce such a proof?

We can think about a “proof” as datum that ensures the path of our reasoning
is correct.

6 / 12



Inference rules

Inference rules are if-statements that let us combine old information into
new information.

and elimination

and introduction

or introduction

implication elimination

bottom elimination

not elimination

7 / 12



Inference rules

Some inference rules require the notion of scope.

implication introduction

or elimination

not introduction

8 / 12



Inference rules with quantifiers always require scope

9 / 12



Natural deduction: inference rules + scope

For a sequent F1, . . . ,Fn ⊢ G , F1, . . . ,Fn are always in scope, e.g.,

∀(P(x) → Q(x)),∃xP(x) ⊢ ∃Q(x)

10 / 12



Clicker Question
Which of the following lines is incorrect?

11 / 12



Next week, next unit

Next week: Remainder of unit 1 (logic): programming and
applications-focused.

Preview of next unit: We will put a pin this for now, but...much of AI
classically focuses on search and check. This is the “Hard” part of AI;
the “hard” part is often the encoding (knowledge representation).

12 / 12


