Example: Interpreting Predicate Formulas

Given a structure A equipped with the following universe and

interpretation function, as well as equality over the naturals and the
universe:

Uy 2 {f,...,fo}
[¢']a
P14
[@*1*
[R*].a

[a].4

returns the count of legs for the input

(1>

is a table

(1>

lamp is on the table

(1>

the artisan crafted the furniture

(1>

Ron Swanson

The tables with the lamps on them

are crafted by Ron Swanson. All tables have four legs.

¥x ((P(x) A Q(x)) — R(a, x)) Vx (P(x) — g(x) = 4)

1/12

Substitution

This can be tricky (both by hand and in code).
Ape/x0)(F) £ “replace every free instance of x with x in F.”

Note: there are many ways to write this (including Ap /x(F)!). (shouia be

clear from context; do not be afraid to ask.

Easiest method: starting from the innermost bound variables, rename:

P(x) Vv Vx <HX(P(X) — Q(x)) A VX(R(X)) A S(X)>

2/12

Equivalence and satisfiability of predicate logic

Recall:

F=G 2 [Fla=[Gla A - A[Fla=[GC]a,

Two formulas F and G are equivalent if and only if they evaluate to the
same truth value for all suitable assignments.

Two formulas F and G are equivalent if and only if they evaluate to the
same truth value for all suitable structures?

F £ Vx(P(x,f(x)))
AVy=P(y,y)
AYuVVYw (P(u,v) A P(v,w) — P(u,v))
G £ some formula containing the same set of symbols

Easy mode: the formulas have the same surface string (syntax!).
Hard mode: the formula is occluded.

3/12

Finding SAT vs. Evaluating Predicate Logic

Propositional logic: find a mapping from propositions to truth values to
makes the formula true.

Predicate logic: find a structure where the mapping from interpreted
variables to truth values makes the formula true.

Logic: searching for a universe, emphasis on core mathematical truths.
Al: often have a universe in mind, really: SAT over formula + structure

Even with this information, exhaustive search is hard.

For certain tasks, there is an easier way!

4/12

From rewrite rules to inference

Recall:
——F = F (double negation)
—(F A G)=-FV -G (deMorgan’s)
—(FV G) = —=F A =G (deMorgan'’s)
FA(GV H)=(FAG)V(FA H) (distributive)
FV(GAH)=(FVG)A (
F—-G=-FVG

New ones for predicate logic:
—Vx(F(x)) = 3x(=F(x)) (deMorgan’s)
—3x(F(x)) = Vx(—F(x)) (deMorgan’s)

(F Vv H) (distributive)

How do we create new knowledge from what we already know, using only
syntax, not semantics?

5/12

Sequents vs. Implications (Inference vs. Derivations)

Fi,....,F, -G
(FAN...ANF)— G

Example Scenario: | have a proof of F — G and | a proof of G, but |
want a proof of G, and | can't break apart F or G to get it. How do |
produce such a proof?

We can think about a “proof” as datum that ensures the path of our reasoning
is correct.

6/12

Inference rules

Inference rules are if-statements that let us combine old information into
new information.

and elimination

and introduction

or introduction
implication elimination
bottom elimination

not elimination

7/12

Inference rules

Some inference rules require the notion of scope.

implication introduction
or elimination

not introduction

8/12

Inference rules with quantifiers always require scope

9/12

Natural deduction: inference rules + scope

For a sequent Fy,...,F, = G, F1,..., F, are always in scope, e.g.,

V(P(x) — Q(x)),IxP(x) F IQ(x)

10/12

Clicker Question

Which of the following lines is incorrect?

11/12

Next week, next unit

Next week: Remainder of unit 1 (logic): programming and
applications-focused.

Preview of next unit: We will put a pin this for now, but...much of Al
classically focuses on search and check. This is the “Hard” part of Al;
the “hard” part is often the encoding (knowledge representation).

12/12

